ABOUT THE SPEAKER
Nicholas Christakis - Physician, social scientist
Nicholas Christakis explores how the large-scale, face-to-face social networks in which we are embedded affect our lives, and what we can do to take advantage of this fact.

Why you should listen

People aren't merely social animals in the usual sense, for we don't just live in groups. We live in networks -- and we have done so ever since we emerged from the African savannah. Via intricately branching paths tracing out cascading family connections, friendship ties, and work relationships, we are interconnected to hundreds or even thousands of specific people, most of whom we do not know. We affect them and they affect us.

Nicholas Christakis' work examines the biological, psychological, sociological, and mathematical rules that govern how we form these social networks, and the rules that govern how they shape our lives. His work shows how phenomena as diverse as obesity, smoking, emotions, ideas, germs, and altruism can spread through our social ties, and how genes can partially underlie our creation of social ties to begin with. His work also sheds light on how we might take advantage of an understanding of social networks to make the world a better place.

At Yale, Christakis is a Professor of Social and Natural Science, and he directs a diverse research group in the field of biosocial science, primarily investigating social networks. His popular undergraduate course "Health of the Public" is available as a podcast. His book, Connected, co-authored with James H. Fowler, appeared in 2009, and has been translated into 20 languages. In 2009, he was named by Time magazine to its annual list of the 100 most influential people in the world, and also, in 2009 and 2010, by Foreign Policy magazine to its list of 100 top global thinkers

More profile about the speaker
Nicholas Christakis | Speaker | TED.com
TED@Cannes

Nicholas Christakis: How social networks predict epidemics

尼古拉斯·克里斯塔吉斯 (Nicholas Christakis):社交网络是怎样预测流行病的传播的

Filmed:
669,862 views

在摸清错综复杂的人际关系网之后,尼古拉斯·克里斯塔吉斯 (Nicholas Christakis)和同事詹姆斯·福乐开始研究怎么善用这一信息。这里,他介绍了新出笼的发现:这些社会关系可以被用来及早发现流行病,控制病毒的爆发,新思想的传播,和危险行为的蔓延。
- Physician, social scientist
Nicholas Christakis explores how the large-scale, face-to-face social networks in which we are embedded affect our lives, and what we can do to take advantage of this fact. Full bio

Double-click the English transcript below to play the video.

00:15
For the last 10 years年份, I've been spending开支 my time trying to figure数字 out
0
0
3000
过去十年间,我一直在想
00:18
how and why human人的 beings众生
1
3000
2000
人们是怎样把自己放在社交网络中的
00:20
assemble集合 themselves他们自己 into social社会 networks网络.
2
5000
3000
以及他们为什么要这么做。
00:23
And the kind of social社会 network网络 I'm talking about
3
8000
2000
这里的社交网络
00:25
is not the recent最近 online线上 variety品种,
4
10000
2000
不是最近网上最近流行的那种
00:27
but rather, the kind of social社会 networks网络
5
12000
2000
而是,
00:29
that human人的 beings众生 have been assembling组装 for hundreds数以百计 of thousands数千 of years年份,
6
14000
3000
自从人类从非洲大陆出现之后,
00:32
ever since以来 we emerged出现 from the African非洲人 savannah大草原.
7
17000
3000
人们几十万年来进行的社交活动。
00:35
So, I form形成 friendships友谊 and co-worker同事
8
20000
2000
比如说,
00:37
and sibling兄弟 and relative相对的 relationships关系 with other people
9
22000
3000
我和其他人建立友谊,同事,兄弟,亲戚的关系,
00:40
who in turn have similar类似 relationships关系 with other people.
10
25000
2000
其他人也和另外其他人建立类似的关系。
00:42
And this spreads利差 on out endlessly不休 into a distance距离.
11
27000
3000
这样的关系无尽止地延伸出去。
00:45
And you get a network网络 that looks容貌 like this.
12
30000
2000
这样你就有了一个像这样的网络。
00:47
Every一切 dot is a person.
13
32000
2000
网络中的每一个点就是一个人。
00:49
Every一切 line线 between之间 them is a relationship关系 between之间 two people --
14
34000
2000
连接两点的每一条线就是两个人之间的关系 --
00:51
different不同 kinds of relationships关系.
15
36000
2000
不同类型的关系。
00:53
And you can get this kind of vast广大 fabric of humanity人性,
16
38000
3000
这样就得到了这种巨大的人际关系网,
00:56
in which哪一个 we're all embedded嵌入式.
17
41000
2000
我们都交织在网中。
00:58
And my colleague同事, James詹姆士 Fowler福勒 and I have been studying研究 for quite相当 sometime某时
18
43000
3000
我的同事,詹姆斯.福乐,和我一起已经研究了好些时间
01:01
what are the mathematical数学的, social社会,
19
46000
2000
什么是支配这些网络的数学,社交,
01:03
biological生物 and psychological心理 rules规则
20
48000
3000
生物和心理规则
01:06
that govern治理 how these networks网络 are assembled组装
21
51000
2000
以及
01:08
and what are the similar类似 rules规则
22
53000
2000
什么是基本的规则
01:10
that govern治理 how they operate操作, how they affect影响 our lives生活.
23
55000
3000
来支配这些网络的运作,和如何影响我们的生活。
01:13
But recently最近, we've我们已经 been wondering想知道
24
58000
2000
最近,我们在研究
01:15
whether是否 it might威力 be possible可能 to take advantage优点 of this insight眼光,
25
60000
3000
是否有可能利用这种认识
01:18
to actually其实 find ways方法 to improve提高 the world世界,
26
63000
2000
来发现改善这个世界的方法,
01:20
to do something better,
27
65000
2000
做一些好事
01:22
to actually其实 fix固定 things, not just understand理解 things.
28
67000
3000
解决一些问题,而不只是理解而已。
01:25
So one of the first things we thought we would tackle滑车
29
70000
3000
所以我们认为需要解决的一件首要的事情
01:28
would be how we go about predicting预测 epidemics流行病.
30
73000
3000
就是怎样预测传染病。
01:31
And the current当前 state of the art艺术 in predicting预测 an epidemic疫情 --
31
76000
2000
现在预测传染病的方法 --
01:33
if you're the CDCCDC or some other national国民 body身体 --
32
78000
3000
如果是美国疾病控制预防中心或者其他国家级的机构 --
01:36
is to sit in the middle中间 where you are
33
81000
2000
就是呆在原地
01:38
and collect搜集 data数据
34
83000
2000
从医生和实验室
01:40
from physicians医师 and laboratories实验室 in the field领域
35
85000
2000
收集数据
01:42
that report报告 the prevalence流行 or the incidence发生率 of certain某些 conditions条件.
36
87000
3000
来分析疾病的流行性和发病率。
01:45
So, so and so patients耐心 have been diagnosed确诊 with something,
37
90000
3000
所以,(如果)一些病人在一个地方被诊断了得病,
01:48
or other patients耐心 have been diagnosed确诊,
38
93000
2000
或者其他病人在另一个地方得到诊断,
01:50
and all these data数据 are fed美联储 into a central中央 repository知识库, with some delay延迟.
39
95000
3000
所有这些数据,一定的延迟之后,都送到一个中心数据库。
01:53
And if everything goes smoothly顺利,
40
98000
2000
如果一切顺利,
01:55
one to two weeks from now
41
100000
2000
一两个星期之后,
01:57
you'll你会 know where the epidemic疫情 was today今天.
42
102000
3000
你就会知道发生在今天的传染病在何处。
02:00
And actually其实, about a year or so ago,
43
105000
2000
实际上,一年前左右,
02:02
there was this promulgation发布
44
107000
2000
曾经有过这样的一个,google流感趋势的想法
02:04
of the idea理念 of Google谷歌 Flu流感 Trends趋势, with respect尊重 to the flu流感,
45
109000
3000
关于流感,
02:07
where by looking at people's人们 searching搜索 behavior行为 today今天,
46
112000
3000
通过观察人们今天的搜索行为,
02:10
we could know where the flu流感 --
47
115000
2000
我们能知道流感的发病区...
02:12
what the status状态 of the epidemic疫情 was today今天,
48
117000
2000
传染病今天的状况,
02:14
what's the prevalence流行 of the epidemic疫情 today今天.
49
119000
3000
以及传播的趋势。
02:17
But what I'd like to show显示 you today今天
50
122000
2000
但我今天想给你展示的
02:19
is a means手段 by which哪一个 we might威力 get
51
124000
2000
是一种方法
02:21
not just rapid快速 warning警告 about an epidemic疫情,
52
126000
3000
通过这个方法,我们不只是得到关于传染病的警示,
02:24
but also actually其实
53
129000
2000
而且
02:26
early detection发现 of an epidemic疫情.
54
131000
2000
也能够及早发现传染病。
02:28
And, in fact事实, this idea理念 can be used
55
133000
2000
事实上,这个想法不只能
02:30
not just to predict预测 epidemics流行病 of germs病菌,
56
135000
3000
预测病毒的传播,
02:33
but also to predict预测 epidemics流行病 of all sorts排序 of kinds.
57
138000
3000
也能预测很多事情的传播。
02:37
For example, anything that spreads利差 by a form形成 of social社会 contagion传染性
58
142000
3000
比如说,任何以社交形式传播的事情,
02:40
could be understood了解 in this way,
59
145000
2000
都能用这种方法来理解,
02:42
from abstract抽象 ideas思路 on the left
60
147000
2000
从左边这些抽象的事物,
02:44
like patriotism爱国主义, or altruism利他主义, or religion宗教
61
149000
3000
像爱国主义,或利他主义,或者宗教,
02:47
to practices做法
62
152000
2000
到具体的事物,
02:49
like dieting节食 behavior行为, or book purchasing购买,
63
154000
2000
像饮食行为,或者买书,
02:51
or drinking, or bicycle-helmet自行车头盔 [and] other safety安全 practices做法,
64
156000
3000
或饮酒,或自行车头盔和其他的一些安全措施,
02:54
or products制品 that people might威力 buy购买,
65
159000
2000
或者人们可能买的产品,
02:56
purchases购买 of electronic电子 goods产品,
66
161000
2000
电子书的购买,
02:58
anything in which哪一个 there's kind of an interpersonal人际交往 spread传播.
67
163000
3000
任何能在人们之间传播的事情。
03:01
A kind of a diffusion扩散 of innovation革新
68
166000
2000
一种创新的传播
03:03
could be understood了解 and predicted预料到的
69
168000
2000
可以用我即将展示的方法
03:05
by the mechanism机制 I'm going to show显示 you now.
70
170000
3000
来理解和预测。
03:08
So, as all of you probably大概 know,
71
173000
2000
正如你们所有人也许知道的,
03:10
the classic经典 way of thinking思维 about this
72
175000
2000
考虑这个问题的传统方法
03:12
is the diffusion-of-innovation扩散的创新,
73
177000
2000
是创新扩散,
03:14
or the adoption采用 curve曲线.
74
179000
2000
或创新采用曲线。
03:16
So here on the Y-axisY轴, we have the percent百分 of the people affected受影响,
75
181000
2000
这儿,Y轴上显示的是受到影响的人们的百分比,
03:18
and on the X-axisX轴, we have time.
76
183000
2000
x轴上显示的是时间。
03:20
And at the very beginning开始, not too many许多 people are affected受影响,
77
185000
3000
一开始,受到影响的人不多,
03:23
and you get this classic经典 sigmoidalS形,
78
188000
2000
得到的是S状的分布,
03:25
or S-shapedS-形, curve曲线.
79
190000
2000
或者说S形状的曲线。
03:27
And the reason原因 for this shape形状 is that at the very beginning开始,
80
192000
2000
形成这种形状的原因是这样的,在一开始,
03:29
let's say one or two people
81
194000
2000
假设一两个人
03:31
are infected感染, or affected受影响 by the thing
82
196000
2000
受到影响,
03:33
and then they affect影响, or infect感染, two people,
83
198000
2000
然后他们去影响两个人,
03:35
who in turn affect影响 four, eight, 16 and so forth向前,
84
200000
3000
然后就是四个,八个,十六个,等等,
03:38
and you get the epidemic疫情 growth发展 phase of the curve曲线.
85
203000
3000
这样你就得到了这个曲线的传播增长阶段。
03:41
And eventually终于, you saturate饱和 the population人口.
86
206000
2000
最终,这个群体就饱和了。
03:43
There are fewer and fewer people
87
208000
2000
可以被影响的人
03:45
who are still available可得到 that you might威力 infect感染,
88
210000
2000
就越来越少,
03:47
and then you get the plateau高原 of the curve曲线,
89
212000
2000
这时你就得到了曲线的平顶部分,
03:49
and you get this classic经典 sigmoidalS形 curve曲线.
90
214000
3000
这样就形成了经典的S状曲线。
03:52
And this holds持有 for germs病菌, ideas思路,
91
217000
2000
这种方法可以用于病毒,观点,
03:54
product产品 adoption采用, behaviors行为,
92
219000
2000
产品推广,行为,
03:56
and the like.
93
221000
2000
以及其他类似的情况。
03:58
But things don't just diffuse扩散 in human人的 populations人群 at random随机.
94
223000
3000
但是这些事物在人群中并非是随机传播的。
04:01
They actually其实 diffuse扩散 through通过 networks网络.
95
226000
2000
他们实际上是通过网络传播。
04:03
Because, as I said, we live生活 our lives生活 in networks网络,
96
228000
3000
正如我所说的,因为我们在网络中生存,
04:06
and these networks网络 have a particular特定 kind of a structure结构体.
97
231000
3000
这些网络有一种特殊的结构。
04:09
Now if you look at a network网络 like this --
98
234000
2000
现在,如果你看像这样的一个网络。。。
04:11
this is 105 people.
99
236000
2000
有105人。
04:13
And the lines线 represent代表 -- the dots are the people,
100
238000
2000
这些线代表。。。这些点是人,
04:15
and the lines线 represent代表 friendship友谊 relationships关系.
101
240000
2000
这些线代表朋友关系。
04:17
You might威力 see that people occupy占据
102
242000
2000
你也许看到在这个网络中
04:19
different不同 locations地点 within the network网络.
103
244000
2000
人们占据了不同的地点。
04:21
And there are different不同 kinds of relationships关系 between之间 the people.
104
246000
2000
人们之间也有不同的关系。
04:23
You could have friendship友谊 relationships关系, sibling兄弟 relationships关系,
105
248000
3000
这些关系可以是朋友关系,同胞关系,
04:26
spousal配偶 relationships关系, co-worker同事 relationships关系,
106
251000
3000
配偶关系,同事关系,
04:29
neighbor邻居 relationships关系 and the like.
107
254000
3000
邻居关系,以及类似的关系。
04:32
And different不同 sorts排序 of things
108
257000
2000
不同的事物
04:34
spread传播 across横过 different不同 sorts排序 of ties联系.
109
259000
2000
通过不同的联系来传播。
04:36
For instance, sexually transmitted发送 diseases疾病
110
261000
2000
比如说,性病
04:38
will spread传播 across横过 sexual有性 ties联系.
111
263000
2000
通过性关系传播。
04:40
Or, for instance, people's人们 smoking抽烟 behavior行为
112
265000
2000
或者,比如说,人们的吸烟行为
04:42
might威力 be influenced影响 by their friends朋友.
113
267000
2000
可能会受到他们朋友的影响。
04:44
Or their altruistic利他 or their charitable慈善 giving behavior行为
114
269000
2000
或者利他主义以及慈善施舍行为
04:46
might威力 be influenced影响 by their coworkers合作伙伴,
115
271000
2000
可能会受到同事的影响,
04:48
or by their neighbors邻居.
116
273000
2000
或者邻居的影响。
04:50
But not all positions位置 in the network网络 are the same相同.
117
275000
3000
但并非网络中所有的位置都是一样的。
04:53
So if you look at this, you might威力 immediately立即 grasp把握
118
278000
2000
所以你看这里,就能立即理解
04:55
that different不同 people have different不同 numbers数字 of connections连接.
119
280000
3000
不同的人有不同数量的连接。
04:58
Some people have one connection连接, some have two,
120
283000
2000
有些人有一个连接,有些人有两个,
05:00
some have six, some have 10 connections连接.
121
285000
3000
有些人有六个,有些人有十个连接。
05:03
And this is called the "degree" of a node节点,
122
288000
2000
这就叫做结点的度数,
05:05
or the number of connections连接 that a node节点 has.
123
290000
2000
或者一个结点有的连接数目。
05:07
But in addition加成, there's something else其他.
124
292000
2000
但是,还有些别的东西。
05:09
So, if you look at nodes节点 A and B,
125
294000
2000
如果你看结点A和B,
05:11
they both have six connections连接.
126
296000
2000
都有六个连接关系。
05:13
But if you can see this image图片 [of the network网络] from a bird's鸟类 eye view视图,
127
298000
3000
但是如果拔高来看,
05:16
you can appreciate欣赏 that there's something very different不同
128
301000
2000
你就能理解A和B是
05:18
about nodes节点 A and B.
129
303000
2000
非常不一样。
05:20
So, let me ask you this -- I can cultivate培育 this intuition直觉 by asking a question --
130
305000
3000
让我来问你 -- 用一个问题来说明这个直觉 ---
05:23
who would you rather be
131
308000
2000
如果有个致命的病毒正在网络中传播,
05:25
if a deadly致命 germ病菌 was spreading传播 through通过 the network网络, A or B?
132
310000
3000
你更愿意是哪一个,A还是B?
05:28
(Audience听众: B.) Nicholas尼古拉斯 Christakis克里斯塔基斯: B, it's obvious明显.
133
313000
2000
(观众:B) 尼古拉斯·克里斯塔吉斯: B, 这很明显。
05:30
B is located位于 on the edge边缘 of the network网络.
134
315000
2000
B在网络的边缘。
05:32
Now, who would you rather be
135
317000
2000
现在,如果有个非常有料的流言在网络中传播,
05:34
if a juicy多汁 piece of gossip八卦 were spreading传播 through通过 the network网络?
136
319000
3000
你愿意是哪一个?
05:37
A. And you have an immediate即时 appreciation升值
137
322000
3000
A。 你很快就看到
05:40
that A is going to be more likely容易
138
325000
2000
A更有可能
05:42
to get the thing that's spreading传播 and to get it sooner
139
327000
3000
更快地得到正在传播的事物
05:45
by virtue美德 of their structural结构 location位置 within the network网络.
140
330000
3000
因为他们在网络中的位置。
05:48
A, in fact事实, is more central中央,
141
333000
2000
A,实际上,(位置)更加中心,
05:50
and this can be formalized形式化 mathematically数学.
142
335000
3000
这个能在数学上来表示。
05:53
So, if we want to track跟踪 something
143
338000
2000
如果我们要追踪
05:55
that was spreading传播 through通过 a network网络,
144
340000
3000
在网络中传播的事物,
05:58
what we ideally理想 would like to do is to set up sensors传感器
145
343000
2000
理想情况下我们会想设置感应器
06:00
on the central中央 individuals个人 within the network网络,
146
345000
2000
在网络的中心人物上,
06:02
including包含 node节点 A,
147
347000
2000
包括结点A,
06:04
monitor监控 those people that are right there in the middle中间 of the network网络,
148
349000
3000
以此来观察网络中心的人们的活动,
06:07
and somehow不知何故 get an early detection发现
149
352000
2000
从而能够做到及早探测
06:09
of whatever随你 it is that is spreading传播 through通过 the network网络.
150
354000
3000
正在网络中传播的东西。
06:12
So if you saw them contract合同 a germ病菌 or a piece of information信息,
151
357000
3000
也就是说,假如你看到网络中心的人们感染病毒或得到了一些信息,
06:15
you would know that, soon不久 enough足够,
152
360000
2000
你就能知道,很快
06:17
everybody每个人 was about to contract合同 this germ病菌
153
362000
2000
所有人都会被传染这种病毒
06:19
or this piece of information信息.
154
364000
2000
或得到这个消息。
06:21
And this would be much better
155
366000
2000
这种方法
06:23
than monitoring监控 six randomly随机 chosen选择 people,
156
368000
2000
比不考虑群体的结构,监测六个随机选择的人,
06:25
without reference参考 to the structure结构体 of the population人口.
157
370000
3000
要好的多。
06:28
And in fact事实, if you could do that,
158
373000
2000
实际上,如果能够这样做,
06:30
what you would see is something like this.
159
375000
2000
你就会看到像这样的情况。
06:32
On the left-hand左手 panel面板, again, we have the S-shapedS-形 curve曲线 of adoption采用.
160
377000
3000
在左边,我们有S形状的传播曲线。
06:35
In the dotted red line线, we show显示
161
380000
2000
这条红色的点线,我们表示的是
06:37
what the adoption采用 would be in the random随机 people,
162
382000
2000
在随机人群中的感染率,
06:39
and in the left-hand左手 line线, shifted to the left,
163
384000
3000
左手的线条,向左移动,
06:42
we show显示 what the adoption采用 would be
164
387000
2000
表现的是
06:44
in the central中央 individuals个人 within the network网络.
165
389000
2000
在网络的中心群体中的感染率。
06:46
On the Y-axisY轴 is the cumulative累积的 instances实例 of contagion传染性,
166
391000
2000
Y轴上是感染个体的累计总数,
06:48
and on the X-axisX轴 is the time.
167
393000
2000
X轴上是时间。
06:50
And on the right-hand右手 side, we show显示 the same相同 data数据,
168
395000
2000
右边,我们显示同样的数据,
06:52
but here with daily日常 incidence发生率.
169
397000
2000
但是在每天的个体数。
06:54
And what we show显示 here is -- like, here --
170
399000
2000
我们在这里要显示的是 -- 比如说,这里 --
06:56
very few少数 people are affected受影响, more and more and more and up to here,
171
401000
2000
很少的人受到影响,然后逐渐增多到这里,
06:58
and here's这里的 the peak of the epidemic疫情.
172
403000
2000
这里是感染的高峰。
07:00
But shifted to the left is what's occurring发生 in the central中央 individuals个人.
173
405000
2000
但是移到左边,是在中心群体中的发展趋势。
07:02
And this difference区别 in time between之间 the two
174
407000
3000
两者之间在时间上的区别
07:05
is the early detection发现, the early warning警告 we can get,
175
410000
3000
正是我们能够得到
07:08
about an impending即将到来的 epidemic疫情
176
413000
2000
关于传染病在人群中的
07:10
in the human人的 population人口.
177
415000
2000
早期预测, 早期示警。
07:12
The problem问题, however然而,
178
417000
2000
然而,这个方法的难处在于,
07:14
is that mapping制图 human人的 social社会 networks网络
179
419000
2000
测绘人类的社交关系网
07:16
is not always possible可能.
180
421000
2000
并不总是可能的。
07:18
It can be expensive昂贵, not feasible可行,
181
423000
2000
这很昂贵,[很难],
07:20
unethical不道德的,
182
425000
2000
不正当,
07:22
or, frankly坦率地说, just not possible可能 to do such这样 a thing.
183
427000
3000
或者坦白说,就是没可能做这样的事情。
07:25
So, how can we figure数字 out
184
430000
2000
那么,我们怎样能弄清楚
07:27
who the central中央 people are in a network网络
185
432000
2000
哪些人在网络中心
07:29
without actually其实 mapping制图 the network网络?
186
434000
3000
而不需要通过测绘整个网络呢?
07:32
What we came来了 up with
187
437000
2000
我们想出来的方法
07:34
was an idea理念 to exploit利用 an old fact事实,
188
439000
2000
是采用了一个古老的事实,
07:36
or a known已知 fact事实, about social社会 networks网络,
189
441000
2000
或者说关于社交网络的已知事实,
07:38
which哪一个 goes like this:
190
443000
2000
这个事实是这样的:
07:40
Do you know that your friends朋友
191
445000
2000
你知道你的朋友
07:42
have more friends朋友 than you do?
192
447000
3000
有比你更多的朋友吗?
07:45
Your friends朋友 have more friends朋友 than you do,
193
450000
3000
你的朋友比你有更多的朋友。
07:48
and this is known已知 as the friendship友谊 paradox悖论.
194
453000
2000
这个称为朋友的悖论。
07:50
Imagine想像 a very popular流行 person in the social社会 network网络 --
195
455000
2000
想像有一个在社交网络中非常受欢迎的人物--
07:52
like a party派对 host主办 who has hundreds数以百计 of friends朋友 --
196
457000
3000
就像一个聚会的主持有几百个朋友--
07:55
and a misanthrope愤世嫉俗者 who has just one friend朋友,
197
460000
2000
而一个憎恨人类的人只有一个朋友,
07:57
and you pick someone有人 at random随机 from the population人口;
198
462000
3000
然后你随机从人群中选个人;
08:00
they were much more likely容易 to know the party派对 host主办.
199
465000
2000
他们更有可能认识聚会的主持。
08:02
And if they nominate提名 the party派对 host主办 as their friend朋友,
200
467000
2000
如果他们选择晚会主持作为他们的朋友,
08:04
that party派对 host主办 has a hundred friends朋友,
201
469000
2000
那么这个聚会主持就有一百个朋友,
08:06
therefore因此, has more friends朋友 than they do.
202
471000
3000
因此,就有比他们更多的朋友。
08:09
And this, in essence本质, is what's known已知 as the friendship友谊 paradox悖论.
203
474000
3000
这个就称为朋友悖论。
08:12
The friends朋友 of randomly随机 chosen选择 people
204
477000
3000
随机选择的人群的朋友
08:15
have higher更高 degree, and are more central中央
205
480000
2000
比随机人群本身,
08:17
than the random随机 people themselves他们自己.
206
482000
2000
有更高的(关系)度数,并且更加中心。
08:19
And you can get an intuitive直观的 appreciation升值 for this
207
484000
2000
你能对这个理论有一个本能的理解
08:21
if you imagine想像 just the people at the perimeter周长 of the network网络.
208
486000
3000
如果想像网络周边的人群。
08:24
If you pick this person,
209
489000
2000
如果你选择(网络周边的)这个人
08:26
the only friend朋友 they have to nominate提名 is this person,
210
491000
3000
他们能选择的唯一朋友就是这个人,
08:29
who, by construction施工, must必须 have at least最小 two
211
494000
2000
而这个,在这个结构中,一定有至少两个朋友,
08:31
and typically一般 more friends朋友.
212
496000
2000
通常情况下,有更多的朋友。
08:33
And that happens发生 at every一切 peripheral外围设备 node节点.
213
498000
2000
这种情况发生在每个周边结点上。
08:35
And in fact事实, it happens发生 throughout始终 the network网络 as you move移动 in,
214
500000
3000
实际上,每当你加入一个网络的时候这个情况都会发生,
08:38
everyone大家 you pick, when they nominate提名 a random随机 --
215
503000
2000
你选择的每个人,当他们随机选择。。。
08:40
when a random随机 person nominates提名 a friend朋友 of theirs他们的,
216
505000
3000
当任意一个人选择他们的一个朋友,
08:43
you move移动 closer接近 to the center中央 of the network网络.
217
508000
3000
你就向网络中心移动。
08:46
So, we thought we would exploit利用 this idea理念
218
511000
3000
所以,我们想利用这个概念
08:49
in order订购 to study研究 whether是否 we could predict预测 phenomena现象 within networks网络.
219
514000
3000
来研究是否能预测网络的现象。
08:52
Because now, with this idea理念
220
517000
2000
因为,有了这个概念,
08:54
we can take a random随机 sample样品 of people,
221
519000
2000
我们就选择一个随机人群,
08:56
have them nominate提名 their friends朋友,
222
521000
2000
让他们提供他们的朋友,
08:58
those friends朋友 would be more central中央,
223
523000
2000
他们的朋友就更加中心,
09:00
and we could do this without having to map地图 the network网络.
224
525000
3000
这样我们就能选择网络的中心,而不用描绘整个网络。
09:03
And we tested测试 this idea理念 with an outbreak暴发 of H1N1 flu流感
225
528000
3000
我们用这个想法来测试H1N1流感的爆发
09:06
at Harvard哈佛 College学院
226
531000
2000
在哈佛大学
09:08
in the fall秋季 and winter冬季 of 2009, just a few少数 months个月 ago.
227
533000
3000
2009年的秋冬,就是几个月前。
09:11
We took 1,300 randomly随机 selected undergraduates本科生,
228
536000
3000
我们随机选择了1300本科学生,
09:14
we had them nominate提名 their friends朋友,
229
539000
2000
让他们推举他们的朋友,
09:16
and we followed其次 both the random随机 students学生们 and their friends朋友
230
541000
2000
然后我们跟踪随机的学生人群和他们的朋友
09:18
daily日常 in time
231
543000
2000
每天按时
09:20
to see whether是否 or not they had the flu流感 epidemic疫情.
232
545000
3000
观察他们是否传染上流感。
09:23
And we did this passively被动 by looking at whether是否 or not they'd他们会 gone走了 to university大学 health健康 services服务.
233
548000
3000
我们观察的方法是看他们有没有去过大学健康服务机构。
09:26
And also, we had them [actively积极地] email电子邮件 us a couple一对 of times a week.
234
551000
3000
并且我们要求他们一个星期给我们发几次电子邮件。
09:29
Exactly究竟 what we predicted预料到的 happened发生.
235
554000
3000
我们的预测一点不错的发生了。
09:32
So the random随机 group is in the red line线.
236
557000
3000
这个随机组在这个红线上。
09:35
The epidemic疫情 in the friends朋友 group has shifted to the left, over here.
237
560000
3000
朋友组的传染移到左边,这里
09:38
And the difference区别 in the two is 16 days.
238
563000
3000
中间相差了16天。
09:41
By monitoring监控 the friends朋友 group,
239
566000
2000
通过检测朋友组,
09:43
we could get 16 days advance提前 warning警告
240
568000
2000
我们能够得到16天的预先示警
09:45
of an impending即将到来的 epidemic疫情 in this human人的 population人口.
241
570000
3000
在这个人群的关于这个传染病的传播。
09:48
Now, in addition加成 to that,
242
573000
2000
现在,在这个基础上,
09:50
if you were an analyst分析人士 who was trying to study研究 an epidemic疫情
243
575000
3000
如果你是分析师,要研究一种传染病
09:53
or to predict预测 the adoption采用 of a product产品, for example,
244
578000
3000
或者预测一个产品的推广,
09:56
what you could do is you could pick a random随机 sample样品 of the population人口,
245
581000
3000
你能做的是选择一个随机的人群,
09:59
also have them nominate提名 their friends朋友 and follow跟随 the friends朋友
246
584000
3000
让他们任命他们的朋友,然后跟踪他们的朋友,
10:02
and follow跟随 both the randoms随机量 and the friends朋友.
247
587000
3000
跟踪随机组和朋友组。
10:05
Among其中 the friends朋友, the first evidence证据 you saw of a blip昙花一现 above以上 zero
248
590000
3000
在朋友组中,你看到的第一个零上的尖峰信号
10:08
in adoption采用 of the innovation革新, for example,
249
593000
3000
关于,比如说,创新科技的采纳,
10:11
would be evidence证据 of an impending即将到来的 epidemic疫情.
250
596000
2000
就是即将来临的流行趋势的信号。
10:13
Or you could see the first time the two curves曲线 diverged分歧,
251
598000
3000
或者你能看到两条曲线第一次分离的地方,
10:16
as shown显示 on the left.
252
601000
2000
就像左边显示的。
10:18
When did the randoms随机量 -- when did the friends朋友 take off
253
603000
3000
朋友组什么时候开始
10:21
and leave离开 the randoms随机量,
254
606000
2000
与随机组分离,
10:23
and [when did] their curve曲线 start开始 shifting?
255
608000
2000
他们的曲线什么时候开始偏移?
10:25
And that, as indicated指示 by the white白色 line线,
256
610000
2000
正如白线显示的,
10:27
occurred发生 46 days
257
612000
2000
发生在
10:29
before the peak of the epidemic疫情.
258
614000
2000
流行高峰的46天之前。
10:31
So this would be a technique技术
259
616000
2000
通过这个技术
10:33
whereby因此 we could get more than a month-and-a-half一个月和半 warning警告
260
618000
2000
我们能得到关于流感在特定人群中传播
10:35
about a flu流感 epidemic疫情 in a particular特定 population人口.
261
620000
3000
一个半月以上的预先示警。
10:38
I should say that
262
623000
2000
我应该说
10:40
how far advanced高级 a notice注意 one might威力 get about something
263
625000
2000
能多早得到关于一些事情的消息
10:42
depends依靠 on a host主办 of factors因素.
264
627000
2000
取决于很多因素。
10:44
It could depend依靠 on the nature性质 of the pathogen病原 --
265
629000
2000
它也许取决于病原体的本质---
10:46
different不同 pathogens病原体,
266
631000
2000
不同的病原体,
10:48
using运用 this technique技术, you'd get different不同 warning警告 --
267
633000
2000
使用这种技术,你可能得到不同的示警---
10:50
or other phenomena现象 that are spreading传播,
268
635000
2000
或者其他一些传播的现象,
10:52
or frankly坦率地说, on the structure结构体 of the human人的 network网络.
269
637000
3000
或者,直接的说,在人类网络的结构中。
10:55
Now in our case案件, although虽然 it wasn't necessary必要,
270
640000
3000
现在,在我们的例子中,尽管不是很必要,
10:58
we could also actually其实 map地图 the network网络 of the students学生们.
271
643000
2000
我们也能够描绘这个学生网络。
11:00
So, this is a map地图 of 714 students学生们
272
645000
2000
这是714个学生的映射图
11:02
and their friendship友谊 ties联系.
273
647000
2000
和他们朋友联系。
11:04
And in a minute分钟 now, I'm going to put this map地图 into motion运动.
274
649000
2000
很快,我要使这个图动起来。
11:06
We're going to take daily日常 cuts削减 through通过 the network网络
275
651000
2000
我们要通过这个网络作每日监控
11:08
for 120 days.
276
653000
2000
120天。
11:10
The red dots are going to be cases of the flu流感,
277
655000
3000
红点将会是流感的传染者,
11:13
and the yellow黄色 dots are going to be friends朋友 of the people with the flu流感.
278
658000
3000
黄点就是流感传染这人的朋友。
11:16
And the size尺寸 of the dots is going to be proportional成比例的
279
661000
2000
这些点的大小
11:18
to how many许多 of their friends朋友 have the flu流感.
280
663000
2000
和他们得流感朋友的数目成正比。
11:20
So bigger dots mean more of your friends朋友 have the flu流感.
281
665000
3000
越大的点意味着更多的朋友得了流感。
11:23
And if you look at this image图片 -- here we are now in September九月 the 13th --
282
668000
3000
你看这个图 --- 这儿是九月十三号 ---
11:26
you're going to see a few少数 cases light up.
283
671000
2000
你看到几个病例出现。
11:28
You're going to see kind of blooming怒放 of the flu流感 in the middle中间.
284
673000
2000
在中间你就会看到流感开始爆发。
11:30
Here we are on October十月 the 19th.
285
675000
3000
这儿是十月十九日。
11:33
The slope of the epidemic疫情 curve曲线 is approaching接近 now, in November十一月.
286
678000
2000
传播曲线的坡度开始临近,在十一月。
11:35
Bang, bang, bang, bang, bang -- you're going to see lots of blooming怒放 in the middle中间,
287
680000
3000
砰,砰,砰,砰,砰,你将看到在中间的很多地方爆发,
11:38
and then you're going to see a sort分类 of leveling练级 off,
288
683000
2000
然后你会看到情况稳定下来,
11:40
fewer and fewer cases towards the end结束 of December十二月.
289
685000
3000
到十二月底就越来越少的病例发生。
11:43
And this type类型 of a visualization可视化
290
688000
2000
这样的图形表示
11:45
can show显示 that epidemics流行病 like this take root
291
690000
2000
能显示,像这样的传染病先
11:47
and affect影响 central中央 individuals个人 first,
292
692000
2000
影响中心个体
11:49
before they affect影响 others其他.
293
694000
2000
在影响别人之前。
11:51
Now, as I've been suggesting提示,
294
696000
2000
现在,如我所说,
11:53
this method方法 is not restricted限制 to germs病菌,
295
698000
3000
这个方法并不局限于病毒,
11:56
but actually其实 to anything that spreads利差 in populations人群.
296
701000
2000
实际上可以用于任何在人群中传播的事物。
11:58
Information信息 spreads利差 in populations人群,
297
703000
2000
信息在人群中传播。
12:00
norms规范 can spread传播 in populations人群,
298
705000
2000
规范在人群中传播。
12:02
behaviors行为 can spread传播 in populations人群.
299
707000
2000
行为能在人群中传播
12:04
And by behaviors行为, I can mean things like criminal刑事 behavior行为,
300
709000
3000
我说的行为,就是像犯罪的行为
12:07
or voting表决 behavior行为, or health健康 care关心 behavior行为,
301
712000
3000
或选举行为,或者保健行为,
12:10
like smoking抽烟, or vaccination疫苗接种,
302
715000
2000
像抽烟,或免疫,
12:12
or product产品 adoption采用, or other kinds of behaviors行为
303
717000
2000
或产品推广,或者其他类型的行为
12:14
that relate涉及 to interpersonal人际交往 influence影响.
304
719000
2000
和人际之间影响相关的性为。
12:16
If I'm likely容易 to do something that affects影响 others其他 around me,
305
721000
3000
如果我想做些事情来影响我周围的人,
12:19
this technique技术 can get early warning警告 or early detection发现
306
724000
3000
这个技术能得到早期示警,或早期预测,
12:22
about the adoption采用 within the population人口.
307
727000
3000
关于人群的采纳。
12:25
The key thing is that for it to work,
308
730000
2000
要这个技术起作用,关键在于,
12:27
there has to be interpersonal人际交往 influence影响.
309
732000
2000
人际之间的影响必须存在。
12:29
It cannot不能 be because of some broadcast广播 mechanism机制
310
734000
2000
它不能是像一些传播机制
12:31
affecting影响 everyone大家 uniformly均匀.
311
736000
3000
统一地影响每一个人。
12:35
Now the same相同 insights见解
312
740000
2000
现在同样的观察
12:37
can also be exploited利用 -- with respect尊重 to networks网络 --
313
742000
3000
可以用上 --- 关于网络 ---
12:40
can also be exploited利用 in other ways方法,
314
745000
3000
能够用其他的方法来利用,
12:43
for example, in the use of targeting针对
315
748000
2000
比如,可以用来追踪
12:45
specific具体 people for interventions干预措施.
316
750000
2000
特殊的人群。
12:47
So, for example, most of you are probably大概 familiar
317
752000
2000
比如说,你们大部分人可能听过
12:49
with the notion概念 of herd放牧 immunity免疫.
318
754000
2000
群体免疫的概念。
12:51
So, if we have a population人口 of a thousand people,
319
756000
3000
如果我们有一个一千人的群体,
12:54
and we want to make the population人口 immune免疫的 to a pathogen病原,
320
759000
3000
我们想使这个群体对某种病原体免疫,
12:57
we don't have to immunize免疫 every一切 single person.
321
762000
2000
我们并不需要给每个人打免疫预防针。
12:59
If we immunize免疫 960 of them,
322
764000
2000
如果我们使960人免疫,
13:01
it's as if we had immunized免疫 a hundred [percent百分] of them.
323
766000
3000
效果和使所有人免疫差不多。
13:04
Because even if one or two of the non-immune非免疫 people gets得到 infected感染,
324
769000
3000
因为即使一两个没有免疫的人感染了,
13:07
there's no one for them to infect感染.
325
772000
2000
也没有其他人让他们感染。
13:09
They are surrounded包围 by immunized免疫 people.
326
774000
2000
这两个人周围的人都已经免疫。
13:11
So 96 percent百分 is as good as 100 percent百分.
327
776000
3000
所以百分之96和百分之百效果一样好。
13:14
Well, some other scientists科学家们 have estimated预计
328
779000
2000
一些其他的科学家已经预测了
13:16
what would happen发生 if you took a 30 percent百分 random随机 sample样品
329
781000
2000
可能发生的情况,如果你从这一千人中取百分之三十的随机样本
13:18
of these 1000 people, 300 people and immunized免疫 them.
330
783000
3000
也就是三百个人,并且使他们免疫。
13:21
Would you get any population-level人口水平 immunity免疫?
331
786000
2000
这样能不能使整个群体免疫?
13:23
And the answer回答 is no.
332
788000
3000
答案是不可能。
13:26
But if you took this 30 percent百分, these 300 people
333
791000
2000
但是如果你选择百分之三十的这三百人,
13:28
and had them nominate提名 their friends朋友
334
793000
2000
让他们举出他们的朋友
13:30
and took the same相同 number of vaccine疫苗 doses剂量
335
795000
3000
然后使用同样数量的免疫针
13:33
and vaccinated接种疫苗 the friends朋友 of the 300 --
336
798000
2000
使得这三百人的朋友免疫,
13:35
the 300 friends朋友 --
337
800000
2000
这三百个朋友,
13:37
you can get the same相同 level水平 of herd放牧 immunity免疫
338
802000
2000
你就能达到群体免疫的效果
13:39
as if you had vaccinated接种疫苗 96 percent百分 of the population人口
339
804000
3000
就好像给百分之九十六的人打预防针的效果一样
13:42
at a much greater更大 efficiency效率, with a strict严格 budget预算 constraint约束.
340
807000
3000
同时效率更高,并且花费更少。
13:45
And similar类似 ideas思路 can be used, for instance,
341
810000
2000
同样的想法可以用于,比如说,
13:47
to target目标 distribution分配 of things like bed nets
342
812000
2000
解决像床罩这种物品在发展中国家
13:49
in the developing发展 world世界.
343
814000
2000
的派发和分布。
13:51
If we could understand理解 the structure结构体 of networks网络 in villages村庄,
344
816000
3000
如果我们了解村庄的网络结构,
13:54
we could target目标 to whom to give the interventions干预措施
345
819000
2000
我们就能选择介入的目标
13:56
to foster培育 these kinds of spreads利差.
346
821000
2000
来促进这些过程的进行。
13:58
Or, frankly坦率地说, for advertising广告 with all kinds of products制品.
347
823000
3000
或者,更加直接的说,来促销所有的产品。
14:01
If we could understand理解 how to target目标,
348
826000
2000
如果我们能理解如何选择目标,
14:03
it could affect影响 the efficiency效率
349
828000
2000
就能影响到我们达到目标
14:05
of what we're trying to achieve实现.
350
830000
2000
的效率。
14:07
And in fact事实, we can use data数据
351
832000
2000
实际上,我们能使用来源于各种渠道的
14:09
from all kinds of sources来源 nowadays如今 [to do this].
352
834000
2000
数据[来应用这个方法]。
14:11
This is a map地图 of eight million百万 phone电话 users用户
353
836000
2000
这里是一个欧洲国家八百万人的
14:13
in a European欧洲的 country国家.
354
838000
2000
电话用户的网络图。
14:15
Every一切 dot is a person, and every一切 line线 represents代表
355
840000
2000
每一个点就是一个人,每一条线代表
14:17
a volume of calls电话 between之间 the people.
356
842000
2000
人们之间的通话数量。
14:19
And we can use such这样 data数据, that's being存在 passively被动 obtained获得,
357
844000
3000
我们可以利用这些数据,被动方式得到的数据,
14:22
to map地图 these whole整个 countries国家
358
847000
2000
来描绘整个国家
14:24
and understand理解 who is located位于 where within the network网络.
359
849000
3000
从而了解那些人处在网络的中心。
14:27
Without没有 actually其实 having to query询问 them at all,
360
852000
2000
不用实际上去询问每个人,
14:29
we can get this kind of a structural结构 insight眼光.
361
854000
2000
我们能得到这种的结构。
14:31
And other sources来源 of information信息, as you're no doubt怀疑 aware知道的
362
856000
3000
其他来源的信息,你肯定也知道,
14:34
are available可得到 about such这样 features特征, from email电子邮件 interactions互动,
363
859000
3000
也能提供这样的信息,例如电子邮件交互,
14:37
online线上 interactions互动,
364
862000
2000
在线交流,
14:39
online线上 social社会 networks网络 and so forth向前.
365
864000
3000
在线社交网络,等等。
14:42
And in fact事实, we are in the era时代 of what I would call
366
867000
2000
实际上,我们处在一个我称为
14:44
"massive-passive大规模被动" data数据 collection采集 efforts努力.
367
869000
3000
“大量被动”数据收集的时代。
14:47
They're all kinds of ways方法 we can use massively大规模 collected data数据
368
872000
3000
有很多种不同的方法我们能使用大量收集的数据
14:50
to create创建 sensor传感器 networks网络
369
875000
3000
来建立传感网络
14:53
to follow跟随 the population人口,
370
878000
2000
跟踪人群,
14:55
understand理解 what's happening事件 in the population人口,
371
880000
2000
了解在人群中正在发生的事件,
14:57
and intervene干预 in the population人口 for the better.
372
882000
3000
从而可以更好的介入。
15:00
Because these new technologies技术 tell us
373
885000
2000
因为这些新技术告诉我们
15:02
not just who is talking to whom,
374
887000
2000
不仅仅是那些人与那些人交流,
15:04
but where everyone大家 is,
375
889000
2000
同时也告诉我们每个人处在什么位置,
15:06
and what they're thinking思维 based基于 on what they're uploading上传 on the Internet互联网,
376
891000
3000
根据他们上传到互联网上的东西来知道他们的想法,
15:09
and what they're buying购买 based基于 on their purchases购买.
377
894000
2000
他们的购物记录告诉我们他们买了什么。
15:11
And all this administrative行政的 data数据 can be pulled together一起
378
896000
3000
所有这些管理数据能一起使用处理
15:14
and processed处理 to understand理解 human人的 behavior行为
379
899000
2000
来了解人类的行为
15:16
in a way we never could before.
380
901000
3000
以一种前所未能的方式。
15:19
So, for example, we could use truckers'卡车司机 purchases购买 of fuel汽油.
381
904000
3000
比如说,我们能用卡车司机的购油记录。
15:22
So the truckers卡车司机 are just going about their business商业,
382
907000
2000
卡车司机处理他们的生意
15:24
and they're buying购买 fuel汽油.
383
909000
2000
他们要买汽油作燃料。
15:26
And we see a blip昙花一现 up in the truckers'卡车司机 purchases购买 of fuel汽油,
384
911000
3000
我们看到卡车司机购油数据的零上尖峰信号,
15:29
and we know that a recession不景气 is about to end结束.
385
914000
2000
我们就知道经济衰退大概要结束了。
15:31
Or we can monitor监控 the velocity速度
386
916000
2000
或者我们能监测
15:33
with which哪一个 people are moving移动 with their phones手机 on a highway高速公路,
387
918000
3000
人们在高速公路上带着电话移动的速度,
15:36
and the phone电话 company公司 can see,
388
921000
2000
电话公司能看到,
15:38
as the velocity速度 is slowing减缓 down,
389
923000
2000
如果速度慢下来,
15:40
that there's a traffic交通 jam果酱.
390
925000
2000
那么就发生了交通堵塞。
15:42
And they can feed饲料 that information信息 back to their subscribers用户,
391
927000
3000
他们能把这个信息发给他们的用户,
15:45
but only to their subscribers用户 on the same相同 highway高速公路
392
930000
2000
只发给在同一条高速公路上
15:47
located位于 behind背后 the traffic交通 jam果酱!
393
932000
2000
处于交通堵塞地点之前的用户!
15:49
Or we can monitor监控 doctors医生 prescribing处方 behaviors行为, passively被动,
394
934000
3000
或者我们监测医生开药的行为,以被动的形式,
15:52
and see how the diffusion扩散 of innovation革新 with pharmaceuticals药品
395
937000
3000
看看在医生网络中
15:55
occurs发生 within [networks网络 of] doctors医生.
396
940000
2000
制药公司的新药的发行如何。
15:57
Or again, we can monitor监控 purchasing购买 behavior行为 in people
397
942000
2000
或者,我们能监测人们的购物行为,
15:59
and watch how these types类型 of phenomena现象
398
944000
2000
看看这些种类的现象
16:01
can diffuse扩散 within human人的 populations人群.
399
946000
3000
在人群中是怎样传播的。
16:04
And there are three ways方法, I think,
400
949000
2000
我想,有三种方式,
16:06
that these massive-passive大规模被动 data数据 can be used.
401
951000
2000
这些大量被动的数据能被收集。
16:08
One is fully充分 passive被动,
402
953000
2000
一个方式是完全被动,
16:10
like I just described描述 --
403
955000
2000
如我刚刚描述的 ---
16:12
as in, for instance, the trucker卡车司机 example,
404
957000
2000
例如在卡车司机的例子中,
16:14
where we don't actually其实 intervene干预 in the population人口 in any way.
405
959000
2000
我们不需要以任何方式干涉这个群体的行为。
16:16
One is quasi-active准活跃,
406
961000
2000
另一种是类似于主动的方式,
16:18
like the flu流感 example I gave,
407
963000
2000
比如说像我说的流感的例子,
16:20
where we get some people to nominate提名 their friends朋友
408
965000
3000
我们选一些人来举出他们的朋友
16:23
and then passively被动 monitor监控 their friends朋友 --
409
968000
2000
然后被动地监测他们的朋友 ---
16:25
do they have the flu流感, or not? -- and then get warning警告.
410
970000
2000
他们是不是感染了流感? -- 然后得到示警。
16:27
Or another另一个 example would be,
411
972000
2000
或者另一个例子,
16:29
if you're a phone电话 company公司, you figure数字 out who's谁是 central中央 in the network网络
412
974000
3000
如果你是电话公司,你能弄清楚谁在网络的中心,
16:32
and you ask those people, "Look, will you just text文本 us your fever发热 every一切 day?
413
977000
3000
然后你可以问这些人,“你们能不能把你们每天的发烧情况给我们发过来?
16:35
Just text文本 us your temperature温度."
414
980000
2000
只要发体温度数。”
16:37
And collect搜集 vast广大 amounts of information信息 about people's人们 temperature温度,
415
982000
3000
然后收集人体体温的大量数据,
16:40
but from centrally中央 located位于 individuals个人.
416
985000
2000
但是只是网络中心个体的信息。
16:42
And be able能够, on a large scale规模,
417
987000
2000
这样就能,大面积地,
16:44
to monitor监控 an impending即将到来的 epidemic疫情
418
989000
2000
监测即将来临的传染病
16:46
with very minimal最小 input输入 from people.
419
991000
2000
而只需要人们给出非常少量的信息。
16:48
Or, finally最后, it can be more fully充分 active活性 --
420
993000
2000
最后的一种方式,就更加主动 ---
16:50
as I know subsequent随后 speakers音箱 will also talk about today今天 --
421
995000
2000
我知道随后的演讲者今天会说到的 --
16:52
where people might威力 globally全球 participate参加 in wikis维基,
422
997000
2000
人们在哪儿参与维基,
16:54
or photographing拍摄, or monitoring监控 elections选举,
423
999000
3000
摄影,看选举,
16:57
and upload上载 information信息 in a way that allows允许 us to pool
424
1002000
2000
上载信息,这样可以让我们收集
16:59
information信息 in order订购 to understand理解 social社会 processes流程
425
1004000
2000
数据,来了解社交过程
17:01
and social社会 phenomena现象.
426
1006000
2000
和社会现象。
17:03
In fact事实, the availability可用性 of these data数据, I think,
427
1008000
2000
实际上,我认为,这些数据的可用性,
17:05
heralds传令官 a kind of new era时代
428
1010000
2000
预示了一个新的纪元
17:07
of what I and others其他 would like to call
429
1012000
2000
也就是我们所说的
17:09
"computational计算 social社会 science科学."
430
1014000
2000
“计算社会学”。
17:11
It's sort分类 of like when Galileo伽利略 invented发明 -- or, didn't invent发明 --
431
1016000
3000
这有点像伽利略发明的 -- 不是发明 --
17:14
came来了 to use a telescope望远镜
432
1019000
2000
使用望远镜
17:16
and could see the heavens in a new way,
433
1021000
2000
能用一种新的方式看到天空,
17:18
or Leeuwenhoek列文虎克 became成为 aware知道的 of the microscope显微镜 --
434
1023000
2000
或者莱文胡克开始了解微观世界 ---
17:20
or actually其实 invented发明 --
435
1025000
2000
发明了显微镜 ---
17:22
and could see biology生物学 in a new way.
436
1027000
2000
而能以新的方式审视生物学。
17:24
But now we have access访问 to these kinds of data数据
437
1029000
2000
但现在我们能够得到这些数据
17:26
that allow允许 us to understand理解 social社会 processes流程
438
1031000
2000
这使得我们能了解社交过程
17:28
and social社会 phenomena现象
439
1033000
2000
和社会现象
17:30
in an entirely完全 new way that was never before possible可能.
440
1035000
3000
以一种前所未能的新方式。
17:33
And with this science科学, we can
441
1038000
2000
通过这门科学,我们能
17:35
understand理解 how exactly究竟
442
1040000
2000
准确了解
17:37
the whole整个 comes to be greater更大
443
1042000
2000
整体是怎样优于
17:39
than the sum of its parts部分.
444
1044000
2000
局部的总和。
17:41
And actually其实, we can use these insights见解
445
1046000
2000
我们能用这些知识
17:43
to improve提高 society社会 and improve提高 human人的 well-being福利.
446
1048000
3000
来改善社会和人类的生存。
17:46
Thank you.
447
1051000
2000
谢谢。
Translated by Ming Wu
Reviewed by Alison Xiaoqiao Xie

▲Back to top

ABOUT THE SPEAKER
Nicholas Christakis - Physician, social scientist
Nicholas Christakis explores how the large-scale, face-to-face social networks in which we are embedded affect our lives, and what we can do to take advantage of this fact.

Why you should listen

People aren't merely social animals in the usual sense, for we don't just live in groups. We live in networks -- and we have done so ever since we emerged from the African savannah. Via intricately branching paths tracing out cascading family connections, friendship ties, and work relationships, we are interconnected to hundreds or even thousands of specific people, most of whom we do not know. We affect them and they affect us.

Nicholas Christakis' work examines the biological, psychological, sociological, and mathematical rules that govern how we form these social networks, and the rules that govern how they shape our lives. His work shows how phenomena as diverse as obesity, smoking, emotions, ideas, germs, and altruism can spread through our social ties, and how genes can partially underlie our creation of social ties to begin with. His work also sheds light on how we might take advantage of an understanding of social networks to make the world a better place.

At Yale, Christakis is a Professor of Social and Natural Science, and he directs a diverse research group in the field of biosocial science, primarily investigating social networks. His popular undergraduate course "Health of the Public" is available as a podcast. His book, Connected, co-authored with James H. Fowler, appeared in 2009, and has been translated into 20 languages. In 2009, he was named by Time magazine to its annual list of the 100 most influential people in the world, and also, in 2009 and 2010, by Foreign Policy magazine to its list of 100 top global thinkers

More profile about the speaker
Nicholas Christakis | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee