ABOUT THE SPEAKER
Torsten Reil - Animating neurobiologist
By coding computer simulations with biologically modeled nervous systems, Torsten Reil and his company NaturalMotion breathe life into the animated characters inhabiting the most eye-poppingly realistic games and movies around.

Why you should listen
From modeling the mayhem of equine combat in Lord of the Rings: Return of the King to animating Liberty City gun battles in Grand Theft Auto IV, Torsten Reil's achievements are all over the map these days. Software that he helped create (with NaturalMotion, the imaging company he co-founded) has revolutionized computer animation of human and animal avatars, giving rise to some of the most breathtakingly real sequences in the virtual world of video games and movies- and along the way given valuable insight into the way human beings move their bodies.

Reil was a neural researcher working on his Masters at Oxford, developing computer simulations of nervous systems based on genetic algorithms-  programs that actually used natural selection to evolve their own means of locomotion. It didn't take long until he realized the commercial potential of these lifelike characters. In 2001 he capitalized on this lucrative adjunct to his research, and cofounded NaturalMotion. Since then the company has produced motion simulation programs like Euphoria and Morpheme, state of the art packages designed to drastically cut the time and expense of game development, and create animated worlds as real as the one outside your front door. Animation and special effects created with Endorphin (NaturalMotion's first animation toolkit) have lent explosive action to films such as Troy and Poseidon, and NaturalMotion's software is also being used by LucasArts in video games such as the hotly anticipated Indiana Jones.

But there are serious applications aside from the big screen and the XBox console: NaturalMotion has also worked under a grant from the British government to study the motion of a cerebral palsy patient, in hopes of finding therapies and surgeries that dovetail with the way her nervous system is functioning.
More profile about the speaker
Torsten Reil | Speaker | TED.com
TED2003

Torsten Reil: Animate characters by evolving them

托司登•里爾 — 研究生物學以製作動畫

Filmed:
363,842 views

托司登•里爾 (Torsten Reil) 介紹了一項能夠模擬人類生物科技,模擬身體及其神經控制系統,這項科技可以以從裡到外都模擬,如骨頭,肌肉以及神經系統。這是他2003年在Ted的演講,你可以在GTA4看到這項技術。
- Animating neurobiologist
By coding computer simulations with biologically modeled nervous systems, Torsten Reil and his company NaturalMotion breathe life into the animated characters inhabiting the most eye-poppingly realistic games and movies around. Full bio

Double-click the English transcript below to play the video.

00:15
I'm going to talk about a technology技術 that we're developing發展 at Oxford牛津 now,
0
3000
4000
我將向各位介紹一項目前我們正在牛津研究發展的科技
00:19
that we think is going to change更改 the way that
1
7000
3000
我們認為它將改變
00:22
computer電腦 games遊戲 and Hollywood好萊塢 movies電影 are being存在 made製作.
2
10000
3000
電玩和好萊塢電影的製作方式。
00:26
That technology技術 is simulating模擬 humans人類.
3
14000
3000
這一項科技就是模擬人類,
00:29
It's simulated模擬 humans人類 with a simulated模擬 body身體
4
17000
3000
它以模擬的人類身體
00:32
and a simulated模擬 nervous緊張 system系統 to control控制 that body身體.
5
20000
3000
及用以控制那身體的模擬神經系統來模擬人類。
00:36
Now, before I talk more about that technology技術,
6
24000
3000
在往下介紹這項科技之前,
00:39
let's have a quick look at what human人的 characters人物 look like
7
27000
3000
先讓我們看一下現在電玩裡頭
00:42
at the moment時刻 in computer電腦 games遊戲.
8
30000
3000
人物運動的樣子。
00:45
This is a clip from a game遊戲 called "Grand盛大 Theft盜竊 Auto汽車 3."
9
33000
3000
這是俠盜獵車手 3 的片段,
00:48
We already已經 saw that briefly簡要地 yesterday昨天.
10
36000
2000
昨天我們有稍微看了一些。
00:50
And what you can see is -- it is actually其實 a very good game遊戲.
11
38000
3000
就如你看到的, 它是一個非常棒的遊戲。
00:53
It's one of the most successful成功 games遊戲 of all time.
12
41000
3000
所有最成功遊戲的其中一個。
00:56
But what you'll你會 see is that all the animations動畫 in this game遊戲 are very repetitive重複.
13
44000
4000
不過你可以看出遊戲中動畫人物的動作不斷地重覆,
01:00
They pretty漂亮 much look the same相同.
14
48000
2000
它們看起來都一樣。
01:02
I've made製作 him run into a wall here, over and over again.
15
50000
3000
這個角色撞上牆之後,
01:05
And you can see he looks容貌 always the same相同.
16
53000
2000
一直重覆一樣的動作。
01:07
The reason原因 for that is that these characters人物
17
55000
3000
主要的原因是這些角色
01:10
are actually其實 not real真實 characters人物.
18
58000
2000
並不是真實的人物。
01:12
They are a graphical圖形 visualization可視化 of a character字符.
19
60000
4000
他們是一個角色的圖像視覺呈現結果。
01:16
To produce生產 these animations動畫, an animator動畫製作者 at a studio工作室 has to anticipate預料
20
64000
5000
遊戲公司裡的動畫師必需先預測
01:21
what's going to happen發生 in the actual實際 game遊戲,
21
69000
3000
遊戲中的情節,
01:24
and then has to animate活躍 that particular特定 sequence序列.
22
72000
3000
並針對特定橋段繪製,才能製作出這些動畫。
01:27
So, he or she sits坐鎮 down, animates動畫 it, and tries嘗試 to anticipate預料 what's going to happen發生,
23
75000
4000
因此動畫師只是坐在那,埋頭繪製並企圖預測將會發生的事,
01:31
and then these particular特定 animations動畫 are just played發揮 back
24
79000
3000
而這些動畫成果會在遊戲的
01:34
at appropriate適當 times in the computer電腦 game遊戲.
25
82000
3000
適當時候播放。
01:37
Now, the result結果 of that is that you can't have real真實 interactivity互動.
26
85000
5000
但這麼做的結果是玩家無法擁有真實的互動。
01:42
All you have is animations動畫 that are played發揮 back
27
90000
3000
你只能不斷看到
01:45
at more or less the appropriate適當 times.
28
93000
2000
相同的動作
01:47
It also means手段 that games遊戲 aren't really going to be as surprising奇怪 as they could be,
29
95000
5000
這也表示遊戲中不會發生驚喜角色
01:52
because you only get out of it, at least最小 in terms條款 of the character字符,
30
100000
3000
只能做預設的內容
01:55
what you actually其實 put into it.
31
103000
2000
你當時放了什麼在裡面
01:57
There's no real真實 emergence緊急情況 there.
32
105000
2000
因為裡面沒有真實的結合
01:59
And thirdly第三, as I said, most of the animations動畫 are very repetitive重複 because of that.
33
107000
4000
所以大部份的動作只能反覆
02:03
Now, the only way to get around that
34
111000
2000
避免的唯一方法就是實際地
02:05
is to actually其實 simulate模擬 the human人的 body身體
35
113000
2000
模擬人體
02:07
and to simulate模擬 that bit of the nervous緊張 system系統 of the brain that controls控制 that body身體.
36
115000
5000
模擬控制的神經系統
02:12
And maybe, if I could have you for a quick demonstration示範
37
120000
3000
可以請你上來做個簡單示範嗎
02:15
to show顯示 what the difference區別 is --
38
123000
2000
看看哪裡不一樣
02:17
because, I mean, it's very, very trivial不重要的.
39
125000
4000
這是一個微不足道的現象
02:21
If I push Chris克里斯 a bit, like this, for example, he'll地獄 react應對 to it.
40
129000
3000
如果我推Chris一下,他會產生反應
02:24
If I push him from a different不同 angle角度, he'll地獄 react應對 to it differently不同,
41
132000
3000
如果我從另一個角度推,他會有不同反應
02:27
and that's because he has a physical物理 body身體,
42
135000
2000
這是因為他有一個真實的身體
02:29
and because he has the motor發動機 skills技能 to control控制 that body身體.
43
137000
3000
和控制身體的能力
02:32
It's a very trivial不重要的 thing.
44
140000
2000
這是一個微不足道的
02:34
It's not something you get in computer電腦 games遊戲 at the moment時刻, at all.
45
142000
2000
這是一個與電玩無關的小事
02:36
Thank you very much. Chris克里斯 Anderson安德森: That's it?
46
144000
2000
謝謝你就這樣。就這樣嗎?
02:38
Torsten托斯滕 Reil雷爾: That's it, yes.
47
146000
2000
是的
02:40
So, that's what we're trying to simulate模擬 --
48
148000
1000
卻正是我們要模擬的
02:41
not Chris克里斯 specifically特別, I should say, but humans人類 in general一般.
49
149000
4000
不是模擬Chris 而是模擬人體
02:46
Now, we started開始 working加工 on this a while ago at Oxford牛津 University大學,
50
154000
5000
我們在牛津大學開始一段時間了
02:51
and we tried試著 to start開始 very simply只是.
51
159000
2000
一切從最簡單的事開始
02:53
What we tried試著 to do was teach a stick figure數字 how to walk步行.
52
161000
3000
也就是教這個火柴人走路
02:56
That stick figure數字 is physically物理 stimulated刺激. You can see it here on the screen屏幕.
53
164000
3000
它已經完全地模擬人體
02:59
So, it's subject學科 to gravity重力, has joints關節, etc等等.
54
167000
3000
會受到地心引力影響也有關節
03:02
If you just run the simulation模擬, it will just collapse坍方, like this.
55
170000
3000
一旦啟動模擬它就會像這樣跌倒,就像這樣
03:05
The tricky狡猾 bit is now to put an AIAI controller調節器 in it
56
173000
4000
困難的部份是加入控制
03:09
that actually其實 makes品牌 it work.
57
177000
2000
也就是人工智慧讓它動起來
03:11
And for that, we use the neural神經 network網絡, which哪一個 we based基於 on
58
179000
3000
我們用在神經系統上的是
03:14
that part部分 of the nervous緊張 system系統 that we have in our spine脊柱
59
182000
2000
脊椎上控制走路的
03:16
that controls控制 walking步行 in humans人類.
60
184000
2000
神經網絡
03:18
It's called the central中央 pattern模式 generator發電機.
61
186000
2000
叫中樞模式產生器
03:20
So, we simulated模擬 that as well, and then the really tricky狡猾 bit
62
188000
3000
我們同樣模擬了這套網絡,但真正困難的是
03:23
is to teach that network網絡 how to walk步行.
63
191000
2000
訓練網絡走路
03:25
For that we used artificial人造 evolution演化 -- genetic遺傳 algorithms算法.
64
193000
4000
為此我們使用人工演化以取得自然的演算法
03:29
We heard聽說 about those already已經 yesterday昨天,
65
197000
2000
我們昨天已聽過這個主題演講
03:31
and I suppose假設 that most of you are familiar with that already已經.
66
199000
3000
我想大部份的人都蠻熟悉了
03:34
But, just briefly簡要地, the concept概念 is that
67
202000
2000
但是,簡單地來說, 它的概念
03:36
you create創建 a large number of different不同 individuals個人 --
68
204000
3000
就是要產生大量不同的個體
03:39
neural神經 networks網絡, in this case案件 --
69
207000
2000
以這個例子來說
03:41
all of which哪一個 are random隨機 at the beginning開始.
70
209000
2000
起初所有個體都是亂數產生
03:43
You hook these up -- in this case案件, to the virtual虛擬 muscles肌肉
71
211000
2000
再將它們連結火柴人的虛擬肌肉
03:45
of that two-legged兩足 creature生物 here --
72
213000
3000
火柴人的虛擬肌肉
03:48
and hope希望 that it does something interesting有趣.
73
216000
3000
希望它可以做出有趣的事
03:51
At the beginning開始, they're all going to be very boring無聊.
74
219000
2000
一開始挺無聊的
03:53
Most of them won't慣於 move移動 at all,
75
221000
2000
大部份火柴人不會動
03:55
but some of them might威力 make a tiny step.
76
223000
2000
但有些會走小步路
03:57
Those are then selected by the algorithm算法,
77
225000
2000
這些演算法就會被選用
03:59
reproduced轉載 with mutation突變 and recombinations重組 to introduce介紹 sex性別 as well.
78
227000
4000
加上突變和重組之後進行繁殖
04:03
And you repeat重複 that process處理 over and over again,
79
231000
2000
接下來不斷重覆這些步驟
04:05
until直到 you have something that walks散步 --
80
233000
2000
直到它能像這樣走直線
04:07
in this case案件, in a straight直行 line, like this.
81
235000
2000
這就是它背後的概念
04:09
So that was the idea理念 behind背後 this.
82
237000
2000
現在我們開始示範
04:11
When we started開始 this, I set up the simulation模擬 one evening晚間.
83
239000
3000
我在前一天晚上設定完畢
04:14
It took about three to four hours小時 to run the simulation模擬.
84
242000
3000
花幾個小時執行模擬運算
04:17
I got up the next下一個 morning早上, went to the computer電腦 and looked看著 at the results結果,
85
245000
4000
隔天早晨回來檢查成果
04:21
and was hoping希望 for something that walked in a straight直行 line,
86
249000
3000
我希望能看到它走直線
04:24
like I've just demonstrated證明,
87
252000
2000
就像我所證明的一樣
04:26
and this is what I got instead代替.
88
254000
2000
但這卻是我得到的
04:28
(Laughter笑聲)
89
256000
10000
(笑聲)
04:38
So, it was back to the drawing畫畫 board for us.
90
266000
3000
結果它變成關節
04:42
We did get it to work eventually終於,
91
270000
3000
所以我們做了些許調整
04:45
after tweaking扭捏 a bit here and there.
92
273000
2000
最後還是成功了
04:47
And this is an example of a successful成功 evolutionary發展的 run.
93
275000
3000
人工演化成功地運行
04:50
So, what you'll你會 see in a moment時刻 is a very simple簡單 biped兩足動物
94
278000
3000
待會將看到一個簡易的雙足生物
04:53
that's learning學習 how to walk步行 using運用 artificial人造 evolution演化.
95
281000
3000
藉由人工演化學習如何走路
04:56
At the beginning開始, it can't walk步行 at all,
96
284000
2000
一開始它完全不會走路
04:58
but it will get better and better over time.
97
286000
2000
但是有愈來愈進步
05:02
So, this is the one that can't walk步行 at all.
98
290000
3000
這個完全不能走路
05:05
(Laughter笑聲)
99
293000
6000
(笑聲)
05:11
Now, after five generations of applying應用 evolutionary發展的 process處理,
100
299000
3000
然後我們改變演算法
05:14
the genetic遺傳 algorithm算法 is getting得到 a tiny bit better.
101
302000
3000
在演化的第五次演算它有點好轉
05:17
(Laughter笑聲)
102
305000
8000
(笑聲)
05:25
Generation 10 and it'll它會 take a few少數 steps腳步 more --
103
313000
2000
第十次演算能夠往前走幾步
05:31
still not quite相當 there.
104
319000
2000
但還是沒有成功
05:34
But now, after generation 20, it actually其實 walks散步 in a straight直行 line without falling落下 over.
105
322000
5000
到了第二十次演算它完全成功,不但能走直線也不會跌倒
05:40
That was the real真實 breakthrough突破 for us.
106
328000
3000
對我們來說是一個突破
05:43
It was, academically學術上, quite相當 a challenging具有挑戰性的 project項目,
107
331000
3000
這是一個很有挑戰性的計劃
05:46
and once一旦 we had reached到達 that stage階段, we were quite相當 confident信心
108
334000
3000
一旦發展到下個階段,我們相當有信心
05:49
that we could try and do other things as well with this approach途徑 --
109
337000
3000
我們相信能以同樣的方法,讓它做其他事
05:52
actually其實 simulating模擬 the body身體
110
340000
2000
模擬人體
05:54
and simulating模擬 that part部分 of the nervous緊張 system系統 that controls控制 it.
111
342000
3000
及其控制神經系統
05:57
Now, at this stage階段, it also became成為 clear明確 that this could be very exciting扣人心弦
112
345000
3000
到了這個階段對電玩和線上遊戲
06:00
for things like computer電腦 games遊戲 or online線上 worlds世界.
113
348000
3000
無疑地是一個興奮的消息
06:03
What you see here is the character字符 standing常設 there,
114
351000
2000
你們可以看到一個角色站在那兒
06:05
and there's an obstacle障礙 that we put in its way.
115
353000
2000
在那裡我們放了一個障礙物
06:07
And what you see is, it's going to fall秋季 over the obstacle障礙.
116
355000
5000
它會在絆到障礙物時跌倒
06:12
Now, the interesting有趣 bit is, if I move移動 the obstacle障礙 a tiny bit to the right,
117
360000
3000
現在有趣的是,如果現在我把障礙物挪右邊一點
06:15
which哪一個 is what I'm doing now, here,
118
363000
2000
就跟我現在做的一樣
06:17
it will fall秋季 over it in a completely全然 different不同 way.
119
365000
4000
它會以完全不同的方式跌倒
06:24
And again, if you move移動 the obstacle障礙 a tiny bit, it'll它會 again fall秋季 differently不同.
120
372000
5000
再把障礙物挪右邊一點,它還是會以不同的方式跌倒
06:29
(Laughter笑聲)
121
377000
2000
(笑聲)
06:31
Now, what you see, by the way, at the top最佳 there,
122
379000
2000
對了,畫面上方顯示的是
06:33
are some of the neural神經 activations激活 being存在 fed美聯儲 into the virtual虛擬 muscles肌肉.
123
381000
3000
虛擬肌肉系統的神經運動
06:36
Okay. That's the video視頻. Thanks謝謝.
124
384000
2000
以上就是我的示範影片。謝謝
06:38
Now, this might威力 look kind of trivial不重要的, but it's actually其實 very important重要
125
386000
3000
這或許微不足道但卻很重要
06:41
because this is not something you get at the moment時刻
126
389000
2000
現在的虛擬的世界
06:43
in any interactive互動 or any virtual虛擬 worlds世界.
127
391000
2000
並沒有達到互動
06:48
Now, at this stage階段, we decided決定 to start開始 a company公司 and move移動 this further進一步,
128
396000
3000
發展到這個階段,我們決定要開一家公司繼續發展下去
06:51
because obviously明顯 this was just a very simple簡單, blocky塊狀 biped兩足動物.
129
399000
3000
這不過是一個簡單的雙足生物
06:54
What we really wanted was a full充分 human人的 body身體.
130
402000
2000
我們的目標要模擬人體全身
06:56
So we started開始 the company公司.
131
404000
1000
所以我們開了一家公司
06:57
We hired僱用 a team球隊 of physicists物理學家, software軟件 engineers工程師 and biologists生物學家
132
405000
5000
聘了物理學家軟體工程師生物學家
07:02
to work on this, and the first thing we had to work on
133
410000
3000
第一個任務就是
07:05
was to create創建 the human人的 body身體, basically基本上.
134
413000
4000
建造一個人體
07:09
It's got to be relatively相對 fast快速, so you can run it on a normal正常 machine,
135
417000
3000
它得輕巧以便在一般機器上執行
07:12
but it's got to be accurate準確 enough足夠, so it looks容貌 good enough足夠, basically基本上.
136
420000
3000
外觀也要準確好看
07:15
So we put quite相當 a bit of biomechanical生物力學 knowledge知識 into this thing,
137
423000
3000
我們也加了不少生化科技進去
07:18
and tried試著 to make it as realistic實際 as possible可能.
138
426000
4000
盡力把它做得精巧
07:22
What you see here on the screen屏幕 right now
139
430000
2000
你們現在看到的是
07:24
is a very simple簡單 visualization可視化 of that body身體.
140
432000
2000
簡易的外型可以輕易地加上頭髮衣物等
07:26
I should add that it's very simple簡單 to add things like hair頭髮, clothes衣服, etc等等.,
141
434000
4000
我應該要加一些簡單的東西,如頭髮、衣服等等
07:30
but what we've我們已經 doneDONE here is use a very simple簡單 visualization可視化,
142
438000
3000
我們現在只是用簡單的方式
07:33
so you can concentrate集中 on the movement運動.
143
441000
2000
所以你們可以專注在它的動作
07:35
Now, what I'm going to do right now, in a moment時刻,
144
443000
3000
我們現在要做的是
07:38
is just push this character字符 a tiny bit and we'll see what happens發生.
145
446000
3000
輕推它一下,看看會怎麼樣
07:46
Nothing really interesting有趣, basically基本上.
146
454000
2000
沒什麼有趣的事發生
07:48
It falls下降 over, but it falls下降 over like a rag抹布 doll娃娃, basically基本上.
147
456000
3000
它像個布娃娃一樣跌倒
07:51
The reason原因 for that is that there's no intelligence情報 in it.
148
459000
3000
因為還沒有為它加入人工智慧
07:54
It becomes interesting有趣 when you put artificial人造 intelligence情報 into it.
149
462000
4000
如果加上會產生有趣的結果
07:58
So, this character字符 now has motor發動機 skills技能 in the upper body身體 --
150
466000
4000
現在它的上半身可以做很多動作
08:02
nothing in the legs yet然而, in this particular特定 one.
151
470000
2000
下半身則未放入任何東西
08:04
But what it will do -- I'm going to push it again.
152
472000
3000
我現在再次推倒它
08:07
It will realize實現 autonomously自主 that it's being存在 pushed.
153
475000
2000
它知道自己被推了
08:09
It's going to stick out its hands.
154
477000
2000
它會伸出手
08:11
It's going to turn around into the fall秋季, and try and catch抓住 the fall秋季.
155
479000
3000
轉身試圖不摔倒
08:20
So that's what you see here.
156
488000
2000
就像這樣
08:22
Now, it gets得到 really interesting有趣
157
490000
2000
把人工智慧加到下半身
08:24
if you then add the AIAI for the lower降低 part部分 of the body身體 as well.
158
492000
4000
會更有趣
08:28
So here, we've我們已經 got the same相同 character字符.
159
496000
2000
現在使用同一個角色
08:30
I'm going to push it a bit harder更難 now,
160
498000
2000
當我更用力地推它
08:32
harder更難 than I just pushed Chris克里斯.
161
500000
2000
就像我推Chris一樣
08:34
But what you'll你會 see is -- it's going to receive接收 a push now from the left.
162
502000
4000
它會試圖抵抗左邊來的力量
08:41
What you see is it takes steps腳步 backwards向後,
163
509000
2000
你們可以看到它先退了一步
08:43
it tries嘗試 to counter-balance抗衡,
164
511000
2000
試著保持平衡
08:45
it tries嘗試 to look at the place地點 where it thinks it's going to land土地.
165
513000
4000
眼睛還會看向
08:49
I'll show顯示 you this again.
166
517000
2000
我再播一次
08:51
And then, finally最後 hits點擊 the floor地板.
167
519000
3000
最後它才跌倒
08:55
Now, this becomes really exciting扣人心弦
168
523000
3000
這是非常有趣的
08:58
when you push that character字符 in different不同 directions方向, again, just as I've doneDONE.
169
526000
5000
如果你把它推向不同的方向,就像我剛剛做的一樣
09:03
That's something that you cannot不能 do right now.
170
531000
4000
這是現在的遊戲做不到的
09:07
At the moment時刻, you only have empty computer電腦 graphics圖像 in games遊戲.
171
535000
3000
這裡頭可沒有預設動作
09:10
What this is now is a real真實 simulation模擬. That's what I want to show顯示 you now.
172
538000
3000
這才是真實的模擬,也就是我現在要展示的
09:13
So, here's這裡的 the same相同 character字符 with the same相同 behavior行為 I've just shown顯示 you,
173
541000
3000
再次現在使用同一個角色
09:16
but now I'm just going to push it from different不同 directions方向.
174
544000
2000
我把它推到不同方向
09:18
First, starting開始 with a push from the right.
175
546000
2000
第一次是往右推
09:23
This is all slow motion運動, by the way, so we can see what's going on.
176
551000
3000
這些是慢動作影片讓你們能看清楚
09:26
Now, the angle角度 will have changed a tiny bit,
177
554000
3000
現在角度變了
09:29
so you can see that the reaction反應 is different不同.
178
557000
4000
它倒下的方向也變了
09:33
Again, a push, now this time from the front面前.
179
561000
3000
下一次我從前面推
09:37
And you see it falls下降 differently不同.
180
565000
2000
看它跌倒的方式不一樣
09:39
And now from the left --
181
567000
2000
從左邊推
09:43
and it falls下降 differently不同.
182
571000
2000
它跌倒的方式也不同
09:45
That was really exciting扣人心弦 for us to see that.
183
573000
2000
我們對此結果感到十分高興
09:47
That was the first time we've我們已經 seen看到 that.
184
575000
2000
這是本計畫結果第一次公開
09:49
This is the first time the public上市 sees看到 this as well,
185
577000
2000
我們還沒有讓任何人看過
09:51
because we have been in stealth隱形 mode模式.
186
579000
2000
因為我們是祕密進行的
09:53
I haven't沒有 shown顯示 this to anybody任何人 yet然而.
187
581000
2000
我還沒有把這個給任何人看過
09:55
Now, just a fun開玩笑 thing:
188
583000
2000
現在來點有趣的
09:57
what happens發生 if you put that character字符 --
189
585000
2000
它會發生的事是
09:59
this is now a wooden version of it, but it's got the same相同 AIAI in it --
190
587000
2000
這是木頭人的版本有相同的智慧
10:01
but if you put that character字符 on a slippery surface表面, like ice.
191
589000
2000
如果把它放到平滑的冰面
10:03
We just did that for a laugh, just to see what happens發生.
192
591000
3000
我們這麼試只想看點滑稽的東西
10:06
(Laughter笑聲)
193
594000
1000
(笑聲)
10:07
And this is what happens發生.
194
595000
2000
而結果是這樣
10:09
(Laughter笑聲)
195
597000
3000
(笑聲)
10:12
(Applause掌聲)
196
600000
3000
(掌聲)
10:15
It's nothing we had to do about this.
197
603000
2000
我們不需要在它身上做什麼
10:17
We just took this character字符 that I just talked about,
198
605000
2000
只是把它
10:19
put it on a slippery surface表面, and this is what you get out of it.
199
607000
3000
放在平滑表面就能得到這個結果
10:22
And that's a really fascinating迷人 thing about this approach途徑.
200
610000
3000
這就是我們的模擬方法神奇之處
10:26
Now, when we went to film電影 studios工作室 and games遊戲 developers開發商
201
614000
3000
當這項技術介紹給電玩公司時
10:29
and showed顯示 them that technology技術, we got a very good response響應.
202
617000
3000
介紹給電玩公司時,我們得到很好的回應
10:32
And what they said was, the first thing they need immediately立即 is virtual虛擬 stuntmen特技.
203
620000
4000
他們的第一個反應是用在特技演員
10:36
Because stunts特技 are obviously明顯 very dangerous危險, they're very expensive昂貴,
204
624000
4000
因為特技很危險很貴
10:40
and there are a lot of stunt特技 scenes場景 that you cannot不能 do, obviously明顯,
205
628000
2000
還有更多的特技鏡頭是做不到的
10:42
because you can't really allow允許 the stuntman替身演員 to be seriously認真地 hurt傷害.
206
630000
3000
因為不能讓特技演員受傷
10:45
So, they wanted to have a digital數字 version of a stuntman替身演員
207
633000
3000
所以他們想要數位的特技演員
10:48
and that's what we've我們已經 been working加工 on for the past過去 few少數 months個月.
208
636000
2000
這正是我們過去幾個月來的工作
10:50
And that's our first product產品 that we're going to release發布 in a couple一對 of weeks.
209
638000
5000
我們很榮幸能在幾個星期內發表
10:55
So, here are just a few少數 very simple簡單 scenes場景 of the guy just being存在 kicked.
210
643000
5000
這裡有幾個簡單的鏡頭,一個傢伙被踢
11:00
That's what people want. That's what we're giving them.
211
648000
2000
那是他們要的,這是我們給的
11:02
(Laughter笑聲)
212
650000
7000
(笑聲)
11:09
You can see, it's always reacting反應.
213
657000
2000
你們可以看到不停地表演
11:11
This is not a dead body身體. This is a body身體 who basically基本上, in this particular特定 case案件,
214
659000
4000
一點都不僵硬,在這個鏡頭
11:15
feels感覺 the force and tries嘗試 to protect保護 its head.
215
663000
2000
他試著平衡也會保護自己的頭
11:17
Only, I think it's quite相當 a big blow打擊 again.
216
665000
2000
另一個鏡頭又是一記重擊
11:19
You feel kind of sorry for that thing,
217
667000
2000
你們或許為木頭人感到難過
11:21
and we've我們已經 seen看到 it so many許多 times now that
218
669000
2000
但我們已經看了太多遍了
11:23
we don't really care關心 any more.
219
671000
2000
現在可是一點感覺也沒有
11:25
(Laughter笑聲)
220
673000
1000
(笑聲)
11:26
There are much worse更差 videos視頻 than this, by the way, which哪一個 I have taken採取 out, but ...
221
674000
4000
後面還有很多更痛的鏡頭我得拿掉
11:31
Now, here's這裡的 another另一個 one.
222
679000
2000
另一個
11:33
What people wanted as a behavior行為 was to have an explosion爆炸,
223
681000
4000
人們想要的是在爆炸之後
11:37
a strong強大 force applied應用的 to the character字符,
224
685000
2000
角色在空中
11:39
and have the character字符 react應對 to it in midair半空中.
225
687000
2000
如何反應強大的力量
11:41
So that you don't have a character字符 that looks容貌 limp跛行,
226
689000
2000
它看起來不可以軟綿綿的
11:43
but actually其實 a character字符 that you can use in an action行動 film電影 straight直行 away,
227
691000
3000
它得是可以用在電影裡的角色
11:46
that looks容貌 kind of alive in midair半空中 as well.
228
694000
2000
能飛在空中看起來有活力
11:48
So this character字符 is going to be hit擊中 by a force,
229
696000
2000
現在這個角色會被用力一擊
11:50
it's going to realize實現 it's in the air空氣,
230
698000
2000
它會發現自己在空中
11:52
and it's going to try and, well,
231
700000
3000
而試著抓住些什麼
11:55
stick out its arm in the direction方向 where it's landing降落.
232
703000
2000
它被推出去然後著地
11:59
That's one angle角度; here's這裡的 another另一個 angle角度.
233
707000
3000
這是一個拍攝角度,還有另一個角度
12:02
We now think that the realism現實主義 we're achieving實現 with this
234
710000
2000
我們認為達到這個程度
12:04
is good enough足夠 to be used in films影片.
235
712000
2000
就已經可以用在電影上
12:06
And let's just have a look at a slightly different不同 visualization可視化.
236
714000
3000
現在我們來看點不一樣的的圖像
12:09
This is something I just got last night
237
717000
2000
這是我昨天拿到的影片
12:11
from an animation動畫 studio工作室 in London倫敦, who are using運用 our software軟件
238
719000
3000
一家倫敦動畫公司正在試用我們軟體
12:14
and experimenting試驗 with it right now.
239
722000
2000
現在正在試驗中
12:16
So this is exactly究竟 the same相同 behavior行為 that you saw,
240
724000
3000
它會做一樣的動作
12:19
but in a slightly better rendered呈現 version.
241
727000
4000
算圖看起來比較漂亮
12:23
So if you look at the character字符 carefully小心,
242
731000
3000
仔細看身體每一部份
12:26
you see there are lots of body身體 movements運動 going on,
243
734000
2000
都有反應動作
12:28
none沒有 of which哪一個 you have to animate活躍 like in the old days.
244
736000
2000
不再像以往得親自調動畫
12:30
Animators動畫師 had to actually其實 animate活躍 them.
245
738000
2000
現在動作
12:32
This is all happening事件 automatically自動 in the simulation模擬.
246
740000
2000
都能自動模擬出來
12:34
This is a slightly different不同 angle角度,
247
742000
2000
從不同角度看
12:39
and again a slow motion運動 version of this.
248
747000
2000
用慢動作再看一次
12:41
This is incredibly令人難以置信 quick. This is happening事件 in real真實 time.
249
749000
4000
這非常快即時運算馬上就能看到
12:45
You can run this simulation模擬 in real真實 time, in front面前 of your eyes眼睛,
250
753000
2000
你可以執行模擬
12:47
change更改 it, if you want to, and you get the animation動畫 straight直行 out of it.
251
755000
3000
馬上調整得到結果
12:50
At the moment時刻, doing something like this by hand
252
758000
2000
如果手動調動畫
12:52
would take you probably大概 a couple一對 of days.
253
760000
2000
大概會花去好幾天
12:55
This is another另一個 behavior行為 they requested要求.
254
763000
3000
他們還要求另一個動作
12:58
I'm not quite相當 sure why, but we've我們已經 doneDONE it anyway無論如何.
255
766000
2000
不知道為什麼但我們還要做了
13:00
It's a very simple簡單 behavior行為 that shows節目 you the power功率 of this approach途徑.
256
768000
2000
它是很簡單的動作
13:02
In this case案件, the character's角色 hands
257
770000
2000
這個角色的手
13:04
are fixed固定 to a particular特定 point in space空間,
258
772000
2000
被固定在一個地方
13:06
and all we've我們已經 told the character字符 to do is to struggle鬥爭.
259
774000
3000
可以看出角色在掙扎
13:09
And it looks容貌 organic有機. It looks容貌 realistic實際.
260
777000
3000
看起來不生硬還令人有點不舒服
13:12
You feel kind of sorry for the guy.
261
780000
2000
如果你們為他感到同情
13:14
It's even worse更差 -- and that is another另一個 video視頻 I just got last night --
262
782000
3000
接下來的畫面更糟,這是我昨晚拿到的片段
13:17
if you render給予 that a bit more realistically現實.
263
785000
2000
算圖之後看來更真實了
13:23
Now, I'm showing展示 this to you just to show顯示 you
264
791000
2000
只是想讓你們看看
13:25
how organic有機 it actually其實 can feel, how realistic實際 it can look.
265
793000
2000
它多麼地寫實
13:27
And this is all a physical物理 simulation模擬 of the body身體,
266
795000
3000
這全是真實模擬的結果
13:30
using運用 AIAI to drive駕駛 virtual虛擬 muscles肌肉 in that body身體.
267
798000
3000
用人工智慧驅動虛擬的肌肉
13:35
Now, one thing which哪一個 we did for a laugh was
268
803000
3000
最後要介紹的是較複雜的特技
13:38
to create創建 a slightly more complex複雜 stunt特技 scene現場,
269
806000
2000
一個最有名的特技鏡頭是
13:40
and one of the most famous著名 stunts特技 is the one where James詹姆士 Bond
270
808000
3000
007的腳被彈力繩綁住
13:43
jumps跳躍 off a dam in Switzerland瑞士 and then is caught抓住 by a bungee蹦極.
271
811000
4000
從瑞士一個水壩一躍而下
13:48
Got a very short clip here.
272
816000
2000
這裡有一個簡短的片段
13:54
Yes, you can just about see it here.
273
822000
2000
就如同你看到的一樣
13:56
In this case案件, they were using運用 a real真實 stunt特技 man. It was a very dangerous危險 stunt特技.
274
824000
3000
當時用真人演出十分危險
13:59
It was just voted, I think in the Sunday星期日 Times, as one of the most impressive有聲有色 stunts特技.
275
827000
3000
它被週日時報票選為最令人印象深刻的特技
14:02
Now, we've我們已經 just tried試著 and -- looked看著 at our character字符 and asked ourselves我們自己,
276
830000
3000
我看到這一幕時自問
14:05
"Can we do that ourselves我們自己 as well?"
277
833000
2000
能不能做到
14:07
Can we use the physical物理 simulation模擬 of the character字符,
278
835000
2000
實際模擬身體
14:09
use artificial人造 intelligence情報,
279
837000
2000
利用人工智慧
14:11
put that artificial人造 intelligence情報 into the character字符,
280
839000
2000
並且放入人工智慧
14:13
drive駕駛 virtual虛擬 muscles肌肉, simulate模擬 the way he jumps跳躍 off the dam,
281
841000
4000
模擬它綁著彈跳繩
14:17
and then skydive跳傘 afterwards之後,
282
845000
2000
高空跳下水壩
14:19
and have him caught抓住 by a bungee蹦極 afterwards之後?
283
847000
2000
捕捉它跳下的畫面
14:21
We did that. It took about altogether just two hours小時,
284
849000
3000
總共花了二個小時產生模擬
14:24
pretty漂亮 much, to create創建 the simulation模擬.
285
852000
2000
接近真實創造了模擬
14:26
And that's what it looks容貌 like, here.
286
854000
2000
結果看起來是這樣的
14:37
Now, this could do with a bit more work. It's still very early stages階段,
287
865000
3000
它只是初步階段還需要一些調整
14:40
and we pretty漂亮 much just did this for a laugh,
288
868000
2000
我們會這樣握只是要讓大家笑一笑
14:42
just to see what we'd星期三 get out of it.
289
870000
2000
看看到底可以得到什麼東西
14:44
But what we found發現 over the past過去 few少數 months個月
290
872000
2000
過去幾個月來
14:46
is that this approach途徑 -- that we're pretty漂亮 much standard標準 upon --
291
874000
3000
我們發現這個方法
14:49
is incredibly令人難以置信 powerful強大.
292
877000
2000
非常強大
14:51
We are ourselves我們自己 surprised詫異 what you actually其實 get out of the simulations模擬.
293
879000
4000
對於模擬的結果令人感到吃驚
14:55
There's very often經常 very surprising奇怪 behavior行為 that you didn't predict預測 before.
294
883000
4000
有些結果是我們沒有預期的
14:59
There's so many許多 things we can do with this right now.
295
887000
2000
現在它可以做很多事
15:01
The first thing, as I said, is going to be virtual虛擬 stuntmen特技.
296
889000
3000
第一虛擬特技演員
15:04
Several一些 studios工作室 are using運用 this software軟件 now to produce生產 virtual虛擬 stuntmen特技,
297
892000
4000
有7家公司已經開始使用這套軟體做數位替身
15:08
and they're going to hit擊中 the screen屏幕 quite相當 soon不久, actually其實,
298
896000
2000
很快會在大銀幕上看到
15:10
for some major重大的 productions製作.
299
898000
2000
為知名的產品做模擬
15:12
The second第二 thing is video視頻 games遊戲.
300
900000
3000
第二電玩
15:15
With this technology技術, video視頻 games遊戲 will look different不同 and they will feel very different不同.
301
903000
4000
用這項科技會使電玩看起來大不同
15:19
For the first time, you'll你會 have actors演員 that really feel very interactive互動,
302
907000
3000
將是第一次角色具有互動感
15:22
that have real真實 bodies身體 that really react應對.
303
910000
2000
它們有真實的身體對周遭做出反應
15:24
I think that's going to be incredibly令人難以置信 exciting扣人心弦.
304
912000
3000
我覺得這真的令人興奮
15:27
Probably大概 starting開始 with sports體育 games遊戲,
305
915000
2000
或許從運動遊戲開始
15:29
which哪一個 are going to become成為 much more interactive互動.
306
917000
2000
將變得更有互動感
15:31
But I particularly尤其 am really excited興奮
307
919000
1000
特別希望看到這科技
15:32
about using運用 this technology技術 in online線上 worlds世界,
308
920000
3000
用在線上世界
15:35
like there, for example, that Tom湯姆 Melcher梅爾徹 has shown顯示 us.
309
923000
3000
像是剛才看到的"There"
15:38
The degree of interactivity互動 you're going to get
310
926000
2000
互動程度將會和現在的遊戲
15:40
is totally完全 different不同, I think, from what you're getting得到 right now.
311
928000
3000
大不同
15:44
A third第三 thing we are looking at and very interested有興趣 in is simulation模擬.
312
932000
4000
第三是模擬
15:49
We've我們已經 been approached接近 by several一些 simulation模擬 companies公司,
313
937000
2000
我們接到很多模擬公司的詢問
15:51
but one project項目 we're particularly尤其 excited興奮 about, which哪一個 we're starting開始 next下一個 month,
314
939000
3000
其中一項計畫特別令我感到興趣,這個計畫下個月就要開始
15:54
is to use our technology技術 -- and in particular特定, the walking步行 technology技術 --
315
942000
4000
它將使用我們行走的技術
15:58
to help aid援助 surgeons外科醫生 who work on children孩子 with cerebral顱內 palsy麻痺,
316
946000
4000
幫助兒童腦性麻痺開刀的外科醫生
16:02
to predict預測 the outcome結果 of operations操作 on these children孩子.
317
950000
3000
預測孩子手術的結果
16:05
As you probably大概 know,
318
953000
2000
你們知道
16:07
it's very difficult to predict預測 what the outcome結果 of an operation手術 is
319
955000
3000
矯正腦性麻痺患者的行走的手術結果
16:10
if you try and correct正確 the gait步態.
320
958000
2000
是很難預測的
16:12
The classic經典 quote引用 is, I think, it's unpredictable不可預料的 at best最好,
321
960000
3000
我覺得這是現下最難的
16:15
is what people think right now, is the outcome結果.
322
963000
3000
是人們的想法
16:18
Now, what we want to do with our software軟件 is allow允許 our surgeons外科醫生 to have a tool工具.
323
966000
4000
我們會提供醫師另一套工具
16:22
We're going to simulate模擬 the gait步態 of a particular特定 child兒童
324
970000
3000
模擬小朋友的步行
16:25
and the surgeon外科醫生 can then work on that simulation模擬
325
973000
3000
手術可以依照模擬的結果去進行
16:28
and try out different不同 ways方法 to improve提高 that gait步態,
326
976000
2000
所以他可以在手術之前進行模擬
16:30
before he actually其實 commits提交 to an actual實際 surgery手術.
327
978000
3000
從不同的矯正結果中找出最好的,再進行手術
16:33
That's one project項目 we're particularly尤其 excited興奮 about,
328
981000
2000
這就是我們特別興奮的計劃
16:35
and that's going to start開始 next下一個 month.
329
983000
2000
它下個月就會開始
16:39
Just finally最後, this is only just the beginning開始.
330
987000
3000
最後,這只是一開始的結果
16:42
We can only do several一些 behaviors行為 right now.
331
990000
2000
我們現在只能做出幾個行為模式
16:44
The AIAI isn't good enough足夠 to simulate模擬 a full充分 human人的 body身體.
332
992000
3000
現在它的人工智慧還無法模擬全身
16:47
The body身體 yes, but not all the motor發動機 skills技能 that we have.
333
995000
3000
可以做出軀體但是還沒能做出所有動作
16:50
And, I think, we're only there if we can have something like ballet芭蕾舞 dancing跳舞.
334
998000
3000
不過很快它就能做出芭蕾的動作
16:53
Right now, we don't have that
335
1001000
2000
雖然現在我們沒有芭蕾舞動作
16:55
but I'm very sure that we will be able能夠 to do that at some stage階段.
336
1003000
2000
但是我知道總有一天我們可以做出來的
16:57
We do have one unintentional無意 dancer舞蹈家 actually其實,
337
1005000
3000
事實上我們不小心模擬出芭蕾舞蹈
17:00
the last thing I'm going to show顯示 you.
338
1008000
2000
這裡有一個偶然的成果是我最後想展示給大家看的
17:02
This was an AIAI contour輪廓 that was produced生成 and evolved進化 --
339
1010000
3000
這個角色被創造時有加入人工智慧
17:05
half-evolved半演變, I should say -- to produce生產 balance平衡, basically基本上.
340
1013000
3000
來創造平衡
17:08
So, you kick the guy and the guy's傢伙 supposed應該 to counter-balance抗衡.
341
1016000
3000
當你踢它的時候它會去取得平衡
17:11
That's what we thought was going to come out of this.
342
1019000
3000
這是我們想像會是這樣的結果
17:14
But this is what emerged出現 out of it, in the end結束.
343
1022000
2000
但是最後卻得到這樣的結果
17:17
(Music音樂)
344
1025000
10000
(音樂)
17:27
Bizarrely奇怪的是, this thing doesn't have a head. I'm not quite相當 sure why.
345
1035000
3000
我也不知道為什麼沒有把頭放進去
17:31
So, this was not something we actually其實 put in there.
346
1039000
2000
這不是我們設定的
17:33
He just started開始 to create創建 that dance舞蹈 himself他自己.
347
1041000
4000
這些動作都是自己發生的
17:37
He's actually其實 a better dancer舞蹈家 than I am, I have to say.
348
1045000
3000
他比我還會跳舞, 我必須承認
17:41
And what you see after a while --
349
1049000
2000
如同你所看到的
17:43
I think he even goes into a climax高潮 right at the end結束.
350
1051000
2000
最後的動作是最精彩的部份
17:49
And I think -- there you go.
351
1057000
3000
然後, 你看
17:52
(Laughter笑聲)
352
1060000
2000
(笑聲)
17:54
So, that all happened發生 automatically自動. We didn't put that in there.
353
1062000
2000
這不是我們有意設計的動作
17:56
That's just the simulation模擬 creating創建 this itself本身, basically基本上.
354
1064000
3000
它完全是模擬的成果
17:59
So it's just --
355
1067000
2000
所以這是--
18:01
(Applause掌聲)
356
1069000
1000
(掌聲)
18:02
Thanks謝謝.
357
1070000
2000
謝謝
18:05
Not quite相當 John約翰 Travolta特拉沃爾塔 yet然而, but we're working加工 on that as well,
358
1073000
3000
還不能像John Travolta那麼厲害, 但是我們會繼續努力
18:08
so thanks謝謝 very much for your time.
359
1076000
2000
謝謝大家的時間
18:10
Thanks謝謝.
360
1078000
1000
謝謝
18:11
(Applause掌聲)
361
1079000
1000
(掌聲)
18:12
CACA: Incredible難以置信. That was really incredible難以置信.
362
1080000
2000
Chris Anderson: 真的是很令人驚嘆
18:14
TRTR: Thanks謝謝.
363
1082000
1000
Torsten Reil:謝謝

▲Back to top

ABOUT THE SPEAKER
Torsten Reil - Animating neurobiologist
By coding computer simulations with biologically modeled nervous systems, Torsten Reil and his company NaturalMotion breathe life into the animated characters inhabiting the most eye-poppingly realistic games and movies around.

Why you should listen
From modeling the mayhem of equine combat in Lord of the Rings: Return of the King to animating Liberty City gun battles in Grand Theft Auto IV, Torsten Reil's achievements are all over the map these days. Software that he helped create (with NaturalMotion, the imaging company he co-founded) has revolutionized computer animation of human and animal avatars, giving rise to some of the most breathtakingly real sequences in the virtual world of video games and movies- and along the way given valuable insight into the way human beings move their bodies.

Reil was a neural researcher working on his Masters at Oxford, developing computer simulations of nervous systems based on genetic algorithms-  programs that actually used natural selection to evolve their own means of locomotion. It didn't take long until he realized the commercial potential of these lifelike characters. In 2001 he capitalized on this lucrative adjunct to his research, and cofounded NaturalMotion. Since then the company has produced motion simulation programs like Euphoria and Morpheme, state of the art packages designed to drastically cut the time and expense of game development, and create animated worlds as real as the one outside your front door. Animation and special effects created with Endorphin (NaturalMotion's first animation toolkit) have lent explosive action to films such as Troy and Poseidon, and NaturalMotion's software is also being used by LucasArts in video games such as the hotly anticipated Indiana Jones.

But there are serious applications aside from the big screen and the XBox console: NaturalMotion has also worked under a grant from the British government to study the motion of a cerebral palsy patient, in hopes of finding therapies and surgeries that dovetail with the way her nervous system is functioning.
More profile about the speaker
Torsten Reil | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee