ABOUT THE SPEAKER
Martin Ford - Futurist
Martin Ford imagines what the accelerating progress in robotics and artificial intelligence may mean for the economy, job market and society of the future.

Why you should listen

Martin Ford was one of the first analysts to write compellingly about the future of work and economies in the face of the growing automation of everything. He sketches a future that's radically reshaped not just by robots but by the loss of the income-distributing power of human jobs. How will our economic systems need to adapt?

He's the author of two books: Rise of the Robots: Technology and the Threat of a Jobless Future (winner of the 2015 Financial Times/McKinsey Business Book of the Year Award ) and The Lights in the Tunnel: Automation, Accelerating Technology and the Economy of the Future, and he's the founder of a Silicon Valley-based software development firm. He has written about future technology and its implications for the New York Times, Fortune, Forbes, The Atlantic, The Washington Post, Harvard Business Review and The Financial Times

More profile about the speaker
Martin Ford | Speaker | TED.com
TED2017

Martin Ford: How we'll earn money in a future without jobs

馬丁福德: 在沒有工作的未來,我們要如何賺錢?

Filmed:
3,167,458 views

能思考、學習、適應的機器要來了-那可能意味著,會有大量人類失業。我們要怎麼辦?未來學家馬丁福德在這場關於一個爭議想法的坦率演說中,說明了將收入和傳統工作分離開,並制定全體基本收入的好處。
- Futurist
Martin Ford imagines what the accelerating progress in robotics and artificial intelligence may mean for the economy, job market and society of the future. Full bio

Double-click the English transcript below to play the video.

00:12
I'm going to begin開始 with a scary害怕 question:
0
787
2848
一開始,我想先
提出一個駭人的問題:
00:15
Are we headed當家 toward
a future未來 without jobs工作?
1
3659
2750
我們是否正在邁向
一個沒有工作的未來?
00:18
The remarkable卓越 progress進展 that we're seeing眼看
2
6987
2069
我們看到科技的驚人進展,
00:21
in technologies技術 like self-driving自駕車 cars汽車
3
9080
1861
比如自動駕駛的汽車,
00:22
has led to an explosion爆炸
of interest利益 in this question,
4
10965
3065
讓很多人注意到我剛問的問題,
00:26
but because it's something
that's been asked
5
14054
2150
但因為在過去這個問題
已經被問過太多次了,
00:28
so many許多 times in the past過去,
6
16228
1256
00:29
maybe what we should really be asking
7
17508
1840
也許我們真正該問的是,
00:31
is whether是否 this time is really different不同.
8
19372
2900
這次是否真的會有所不同?
00:35
The fear恐懼 that automation自動化
might威力 displace頂替 workers工人
9
23252
2961
恐懼自動化會取代工人,
00:38
and potentially可能 lead
to lots of unemployment失業
10
26237
2117
並可能會導致許多人失業,
00:40
goes back at a minimum最低限度 200 years年份
to the Luddite勒德 revolts起義 in England英國.
11
28378
3888
可追溯回至少兩百年前的
盧德(勒德)份子運動。
00:44
And since以來 then, this concern關心
has come up again and again.
12
32290
3196
從那之後,這種擔憂就
一而再再而三地出現。
00:47
I'm going to guess猜測
13
35510
1161
我猜測,
00:48
that most of you have probably大概 never
heard聽說 of the Triple Revolution革命 report報告,
14
36695
4466
在座大部份人可能從來沒有
聽過「三重革命」報告,
00:53
but this was a very prominent突出 report報告.
15
41185
2293
但它是份非常重要的報告。
00:55
It was put together一起
by a brilliant輝煌 group of people --
16
43502
2531
它是由一群聰明人集思廣義出來的,
00:58
it actually其實 included包括
two Nobel諾貝爾 laureates獲獎者 --
17
46057
3057
實際上還包括兩名諾貝爾得主,
01:01
and this report報告 was presented呈現
to the President主席 of the United聯合的 States狀態,
18
49138
3223
這份報告被呈交給美國總統,
01:04
and it argued爭論 that the US was on the brink邊緣
of economic經濟 and social社會 upheaval動盪
19
52385
5494
報告指出,美國正處在
經濟和社會動亂的邊緣,
01:09
because industrial產業 automation自動化
was going to put millions百萬 of people
20
57903
3102
因為工業自動化
將會讓數百萬人失去工作。
01:13
out of work.
21
61029
1152
01:14
Now, that report報告 was delivered交付
to President主席 Lyndon林登 Johnson約翰遜
22
62205
3657
那份報告被呈交給詹森總統,
01:17
in March遊行 of 1964.
23
65886
1801
當時是 1964 年三月。
01:19
So that's now over 50 years年份,
24
67711
2216
那是至少五十年以前的事,
01:21
and, of course課程, that
hasn't有沒有 really happened發生.
25
69951
2058
當然,報告說的狀況沒有發生。
01:24
And that's been the story故事 again and again.
26
72033
2144
那故事從此不斷重覆上演。
01:26
This alarm報警 has been raised上調 repeatedly反复,
27
74201
2109
警報不斷重覆被發出,
01:28
but it's always been a false alarm報警.
28
76334
2013
但每次都是假警報。
01:30
And because it's been a false alarm報警,
29
78371
1809
因為一直都是假警報,
01:32
it's led to a very conventional常規 way
of thinking思維 about this.
30
80204
2807
就導致對這狀況的慣性思維。
01:35
And that says essentially實質上 that yes,
31
83035
2532
基本上,那思維是:
01:37
technology技術 may可能 devastate蹂躪
entire整個 industries行業.
32
85591
2548
對啊,科技可能會破壞所有產業,
01:40
It may可能 wipe擦拭 out whole整個 occupations職業
and types類型 of work.
33
88163
3732
它有可能會徹底消滅
所有職業和各種工作;
01:43
But at the same相同 time, of course課程,
34
91919
1608
但同時,當然,
01:45
progress進展 is going to lead
to entirely完全 new things.
35
93551
2351
進步也會引來全新的事物。
01:47
So there will be new industries行業
that will arise出現 in the future未來,
36
95926
2962
所以將來會有新的產業出現,
01:50
and those industries行業, of course課程,
will have to hire聘請 people.
37
98912
2858
而那些產業,當然,一定會僱用人。
01:53
There'll有會 be new kinds of work
that will appear出現,
38
101794
2238
將來會出現新類型的工作會,
01:56
and those might威力 be things that today今天
we can't really even imagine想像.
39
104056
3210
可能是我們現今無法想像的。
01:59
And that has been the story故事 so far,
40
107290
1747
目前為止,故事一直是如此,
02:01
and it's been a positive story故事.
41
109061
1494
且一直是很正面的。
02:03
It turns out that the new jobs工作
that have been created創建
42
111095
3325
結果,新創造出來的工作,
02:06
have generally通常 been
a lot better than the old ones那些.
43
114444
2470
一般來說,比舊的工作好很多。
02:08
They have, for example,
been more engaging.
44
116938
2656
比如,新的工作比較吸引人。
02:11
They've他們已經 been in safer更安全,
more comfortable自在 work environments環境,
45
119618
3429
工作環境比較安全、比較舒適,
02:15
and, of course課程, they've他們已經 paid支付 more.
46
123071
1680
當然,薪水也比較高。
02:16
So it has been a positive story故事.
47
124775
1865
所以這個故事一直很正面。
02:18
That's the way things
have played發揮 out so far.
48
126664
2208
目前為止的發展也的確是這樣。
02:21
But there is one particular特定
class of worker工人
49
129292
2948
但特別有一類的工作者,
02:24
for whom the story故事
has been quite相當 different不同.
50
132264
2252
對他們來說,故事相當不同。
02:27
For these workers工人,
51
135938
1150
對這些工作者而言,
02:29
technology技術 has completely全然
decimated元氣大傷 their work,
52
137112
3021
科技可說是大舉毀滅了他們的工作,
02:32
and it really hasn't有沒有 created創建
any new opportunities機會 at all.
53
140157
3214
且完全沒有再創造出
新的機會給他們。
02:35
And these workers工人, of course課程,
54
143395
2195
當然,這些工作者
02:37
are horses馬匹.
55
145614
1288
是馬。
02:38
(Laughter笑聲)
56
146926
1443
(笑聲)
02:40
So I can ask a very provocative挑釁 question:
57
148393
2750
我問一個會引發爭議的問題:
02:43
Is it possible可能 that at some
point in the future未來,
58
151167
3435
有沒有可能,在未來的某個時點,
02:46
a significant重大 fraction分數 of the human人的
workforce勞動力 is going to be made製作 redundant
59
154626
4628
將有一大部份的人類勞動力過剩,
02:51
in the way that horses馬匹 were?
60
159278
1702
就像馬所遭遇的情況。
02:53
Now, you might威力 have a very visceral內臟,
reflexive反思 reaction反應 to that.
61
161485
3000
對那個問題,你可能會有
很本能、反射性的反應。
02:56
You might威力 say, "That's absurd荒誕.
62
164509
1647
你也許會說:「太荒唐了。
02:58
How can you possibly或者 compare比較
human人的 beings眾生 to horses馬匹?"
63
166180
3669
你怎麼能把人類拿來和馬做比較?」
03:02
Horses馬匹, of course課程, are very limited有限,
64
170437
1769
當然,馬非常受限,
03:04
and when cars汽車 and trucks卡車
and tractors拖拉機 came來了 along沿,
65
172230
2893
當汽車、卡車、牽引機
(拖拉機)出現,
03:07
horses馬匹 really had nowhere無處 else其他 to turn.
66
175147
2045
馬就無處可去了。
03:09
People, on the other hand,
are intelligent智能;
67
177844
2360
另一方面,人有智慧;
03:12
we can learn學習, we can adapt適應.
68
180228
1785
我們能學習,我們能適應。
03:14
And in theory理論,
69
182037
1164
理論上,
03:15
that ought應該 to mean that we can
always find something new to do,
70
183225
3127
那應該意味著
我們總能找到新的事情來做,
03:18
and that we can always remain
relevant相應 to the future未來 economy經濟.
71
186376
3306
我們總能與未來的經濟持續相關。
03:21
But here's這裡的 the really
critical危急 thing to understand理解.
72
189706
2437
但要了解非常重要的一點。
03:24
The machines that will threaten威脅
workers工人 in the future未來
73
192790
2865
在未來會威脅到工作者的機器,
03:27
are really nothing like those cars汽車
and trucks卡車 and tractors拖拉機
74
195679
3234
完全不像取代了馬的汽車、
03:30
that displaced流離失所 horses馬匹.
75
198937
1616
卡車、牽引機。
03:32
The future未來 is going to be full充分
of thinking思維, learning學習, adapting適應 machines.
76
200577
4839
未來將會滿是會思考、
學習、適應的機器。
03:37
And what that really means手段
77
205440
1408
那意味著,
03:38
is that technology技術 is finally最後
beginning開始 to encroach侵犯
78
206872
2834
科技最終將會開始侵犯到
03:41
on that fundamental基本的 human人的 capability能力 --
79
209730
2849
基礎的人類能力──
03:44
the thing that makes品牌 us
so different不同 from horses馬匹,
80
212603
2803
讓我們和馬大不相同的能力,
03:47
and the very thing that, so far,
81
215430
2234
也是這能力,讓我們目前為止
03:49
has allowed允許 us to stay ahead
of the march遊行 of progress進展
82
217688
2647
能走在這進步發展的前端
03:52
and remain relevant相應,
83
220359
1189
並保有相關性,
03:53
and, in fact事實, indispensable必不可少
to the economy經濟.
84
221572
3067
事實上,也讓經濟少不了我們。
03:58
So what is it that is really so different不同
85
226407
2495
所以,相對於我們過去所看到的,
04:00
about today's今天的 information信息 technology技術
86
228926
2043
現今的資訊科技到底
04:02
relative相對的 to what we've我們已經 seen看到 in the past過去?
87
230993
1947
有什麼如此不同的地方?
04:04
I would point to three fundamental基本的 things.
88
232964
2653
我要指出根本的三樣。
04:07
The first thing is that we have seen看到
this ongoing不斷的 process處理
89
235641
4409
第一,我們已見到這正在進行的過程
04:12
of exponential指數 acceleration促進.
90
240074
1888
以指數級的速率加速。
04:14
I know you all know about Moore's摩爾定律 law,
91
242420
2095
我知道你們都明白摩爾定律,
04:16
but in fact事實, it's more
broad-based廣泛的 than that;
92
244539
2296
但事實上,它的根基還要更廣;
(註:不止適用於積體電路)
04:18
it extends擴展 in many許多 cases,
for example, to software軟件,
93
246859
3150
在許多情況下,它會延伸,
比如,延伸到軟體,
04:22
it extends擴展 to communications通訊,
bandwidth帶寬 and so forth向前.
94
250033
3000
它也會延伸到通訊、頻寬、等等。
04:25
But the really key thing to understand理解
95
253057
1984
但,需要了解的關鍵點是,
04:27
is that this acceleration促進 has now
been going on for a really long time.
96
255065
3871
這種加速現象已經
發生很長一段時間了。
04:30
In fact事實, it's been going on for decades幾十年.
97
258960
1925
事實上,已經有數十年了。
04:32
If you measure測量 from the late晚了 1950s,
98
260909
2756
如果從 1950 年代末期開始算,
04:35
when the first integrated集成
circuits電路 were fabricated製造,
99
263689
2425
當第一個積體電路被製造出來,
04:38
we've我們已經 seen看到 something on the order訂購
of 30 doublings倍增 in computational計算 power功率
100
266138
4785
從那時起,
我們目睹電腦運算的效能
倍增了大約三十次。
04:42
since以來 then.
101
270947
1156
04:44
That's just an extraordinary非凡 number
of times to double any quantity數量,
102
272127
3688
不論起初的量是多少,
倍增了那麼多次都是很可觀的。
04:47
and what it really means手段
103
275839
1240
它真正的意涵是,
04:49
is that we're now at a point
where we're going to see
104
277103
2524
我們正處在一個時點,
即將要看到很大量的絕對進展,
04:51
just an extraordinary非凡 amount
of absolute絕對 progress進展,
105
279651
2411
04:54
and, of course課程, things are going
to continue繼續 to also accelerate加速
106
282086
2975
當然,這個時間點之後的加速
還是會持續下去。
04:57
from this point.
107
285085
1159
04:58
So as we look forward前鋒
to the coming未來 years年份 and decades幾十年,
108
286268
2540
所以當我們期待未來的
幾年及幾十年,
我們將會看到
05:00
I think that means手段
that we're going to see things
109
288832
2338
我們完全沒準備會看到的事物,
05:03
that we're really not prepared準備 for.
110
291194
1673
我們將會看到讓我們吃驚的事物。
05:04
We're going to see things
that astonish震驚 us.
111
292891
2077
05:06
The second第二 key thing
112
294992
1266
第二個要點是
05:08
is that the machines are,
in a limited有限 sense, beginning開始 to think.
113
296282
3906
機器開始有限的思考。
05:12
And by this, I don't mean human-level人類水平 AIAI,
114
300212
2457
我並不是指人類水平級的人工智慧,
05:14
or science科學 fiction小說
artificial人造 intelligence情報;
115
302693
2936
或科幻小說中的人工智慧;
05:17
I simply只是 mean that machines and algorithms算法
are making製造 decisions決定.
116
305653
4462
我指的只是會決策的機器和演算法。
05:22
They're solving problems問題,
and most importantly重要的, they're learning學習.
117
310139
3860
它們會解決問題,
更重要的是,它們會學習。
05:26
In fact事實, if there's one technology技術
that is truly central中央 to this
118
314023
3303
事實上,有項技術扮演著中心角色,
05:29
and has really become成為
the driving主動 force behind背後 this,
119
317350
3077
同時也是背後的推動力,
05:32
it's machine learning學習,
120
320451
1172
就是機器學習,
05:33
which哪一個 is just becoming變得
this incredibly令人難以置信 powerful強大,
121
321647
2720
它開始變得非常強大、
05:36
disruptive破壞性, scalable可擴展性 technology技術.
122
324391
2638
具顛覆性,是可擴展的技術。
05:39
One of the best最好 examples例子
I've seen看到 of that recently最近
123
327561
2469
近期我看過最好的例子之一,
05:42
was what Google's谷歌的 DeepMindDeepMind
division was able能夠 to do
124
330054
2751
是 Google 的 DeepMind 團隊
用他們開發的 AlphaGo 系統
能夠做到什麼。
05:44
with its AlphaGoAlphaGo system系統.
125
332829
1553
05:46
Now, this is the system系統 that was able能夠
to beat擊敗 the best最好 player播放機 in the world世界
126
334406
4300
這個系統能在古老的圍棋賽中
打敗世界最強的棋手。
05:50
at the ancient game遊戲 of Go.
127
338730
1979
05:52
Now, at least最小 to me,
128
340733
1150
至少對我而言,
05:53
there are two things that really
stand out about the game遊戲 of Go.
129
341907
3117
圍棋比賽有兩點特別突出。
05:57
One is that as you're playing播放 the game遊戲,
130
345048
2296
第一,當你在下圍棋時,
05:59
the number of configurations配置
that the board can be in
131
347368
2866
棋盤上有可能發生的
棋子配置組合數,
06:02
is essentially實質上 infinite無窮.
132
350258
1411
基本上是無限多。
06:03
There are actually其實 more possibilities可能性
than there are atoms原子 in the universe宇宙.
133
351693
3833
可能的組合數,
比宇宙中的原子數還要多。
06:07
So what that means手段 is,
134
355980
1184
那意味著,
06:09
you're never going to be able能夠 to build建立
a computer電腦 to win贏得 at the game遊戲 of Go
135
357188
3597
你永遠不能建造一台
贏得圍棋比賽的電腦,
採用以前建造下西洋棋的
電腦那類的方式,
06:12
the way chess was approached接近, for example,
136
360809
2180
06:15
which哪一個 is basically基本上 to throw
brute-force蠻力 computational計算 power功率 at it.
137
363013
4526
基本上是以蠻力狂加運算的效能。
06:19
So clearly明確地, a much more sophisticated複雜的,
thinking-like思考狀 approach途徑 is needed需要.
138
367563
4177
很顯然,需要有
更精密的類思考方式。
06:24
The second第二 thing
that really stands站立 out is that,
139
372368
3271
第二個特點是,
06:27
if you talk to one
of the championship錦標賽 Go players玩家,
140
375663
2647
如果你和圍棋冠軍賽的棋手交談,
06:30
this person cannot不能 necessarily一定
even really articulate說出 what exactly究竟 it is
141
378334
4485
這個人不見得能明確表達出
06:34
they're thinking思維 about
as they play the game遊戲.
142
382843
2215
他們在比賽時腦中想的是什麼。
06:37
It's often經常 something
that's very intuitive直觀的,
143
385082
2193
通常他們就是非常直覺地在下棋,
06:39
it's almost幾乎 just like a feeling感覺
about which哪一個 move移動 they should make.
144
387299
3322
就像是他們能夠感覺到
下一步棋要怎麼下。
06:42
So given特定 those two qualities氣質,
145
390645
1407
在這兩種特色的前提下,
06:44
I would say that playing播放 Go
at a world世界 champion冠軍 level水平
146
392076
3937
我會說能用世界冠軍的水平來下圍棋
06:48
really ought應該 to be something
that's safe安全 from automation自動化,
147
396037
3238
應該是自動化做不到的事,
06:51
and the fact事實 that it isn't should really
raise提高 a cautionary警示 flag for us.
148
399299
4446
但事實卻不是如此,
這應該要讓我們有所警覺。
06:55
And the reason原因 is that we tend趨向
to draw a very distinct不同 line,
149
403769
3917
原因是,我們都傾向於
畫一條很清楚的線,
06:59
and on one side of that line
are all the jobs工作 and tasks任務
150
407710
3509
線一邊的所有工作和任務
07:03
that we perceive感知 as being存在 on some level水平
fundamentally從根本上 routine常規 and repetitive重複
151
411243
4748
被我們歸類於具有某種程度的
基本例行性、可重覆性、
07:08
and predictable可預測.
152
416015
1350
並且是可被預測的。
07:09
And we know that these jobs工作
might威力 be in different不同 industries行業,
153
417389
2858
我們知道這些工作
可能分屬不同的產業,
07:12
they might威力 be in different不同 occupations職業
and at different不同 skill技能 levels水平,
154
420271
3373
可能是不同的職業,
對技巧的需求也不同;
07:15
but because they are innately天生 predictable可預測,
155
423668
2210
但由於它們先天的可預測性,
07:17
we know they're probably大概 at some point
going to be susceptible易感
156
425902
3127
我們知道,可能在某個時間點,
它們會受機器學習影響,
07:21
to machine learning學習,
157
429053
1177
07:22
and therefore因此, to automation自動化.
158
430254
1419
而被自動化取代掉。
07:23
And make no mistake錯誤 --
that's a lot of jobs工作.
159
431697
2097
別誤會,很多工作都是如此。
07:25
That's probably大概 something
on the order訂購 of roughly大致 half
160
433818
2679
可能在經濟體中有大約一半的工作
07:28
the jobs工作 in the economy經濟.
161
436521
1567
都屬這一類。
07:30
But then on the other side of that line,
162
438112
2159
但在線的另一邊,
07:32
we have all the jobs工作
that require要求 some capability能力
163
440295
4071
是需要某些能力的所有工作,
07:36
that we perceive感知 as being存在 uniquely獨特地 human人的,
164
444390
2372
我們認為是人類獨有的能力,
07:38
and these are the jobs工作
that we think are safe安全.
165
446786
2223
我們認為這些工作是安全的。
07:41
Now, based基於 on what I know
about the game遊戲 of Go,
166
449033
2265
根據我對圍棋的所知,
07:43
I would've會一直 guessed that it really ought應該
to be on the safe安全 side of that line.
167
451322
3703
我會猜測它應該屬於
線的這一邊,安全的這一邊。
07:47
But the fact事實 that it isn't,
and that Google谷歌 solved解決了 this problem問題,
168
455049
3178
但事實是它不在這一邊,
Google 破解了這個問題,
07:50
suggests提示 that that line is going
to be very dynamic動態.
169
458251
2432
意味著那條線是非常動態的。
07:52
It's going to shift轉移,
170
460707
1179
它會移動,
07:53
and it's going to shift轉移 in a way
that consumes消耗 more and more jobs工作 and tasks任務
171
461910
4135
它移動和取代掉
越來越多的工作和任務,
07:58
that we currently目前 perceive感知
as being存在 safe安全 from automation自動化.
172
466069
3017
那些我們目前認為是安全、
不會被自動化的。
08:01
The other key thing to understand理解
173
469921
1657
還要了解另一件重要的事,
08:03
is that this is by no means手段 just about
low-wage低工資 jobs工作 or blue-collar藍領 jobs工作,
174
471602
5138
這現象絕對不會只發生在
低薪或藍領工作上、
08:08
or jobs工作 and tasks任務 doneDONE by people
175
476764
1875
或由相對比較低教育程度的人
08:10
that have relatively相對
low levels水平 of education教育.
176
478663
2104
所做的工作上。
08:12
There's lots of evidence證據 to show顯示
177
480791
1524
有很多證據顯示,
08:14
that these technologies技術 are rapidly急速
climbing攀登 the skills技能 ladder階梯.
178
482339
3160
這些科技所需要的技術
正在快速攀升。
08:17
So we already已經 see an impact碰撞
on professional專業的 jobs工作 --
179
485523
3616
我們已經看到影響力
開始觸及專業工作──
08:21
tasks任務 doneDONE by people like accountants會計師,
180
489163
4435
由類似像會計、
財務分析師、
08:25
financial金融 analysts分析師,
181
493622
1317
記者、
08:26
journalists記者,
182
494963
1296
律師、放射學家這類人
所做的工作任務。
08:28
lawyers律師, radiologists放射科醫生 and so forth向前.
183
496283
2377
08:30
So a lot of the assumptions假設 that we make
184
498684
1938
我們對於這類職業、
08:32
about the kind of occupations職業
and tasks任務 and jobs工作
185
500646
3220
任務、工作,所做的許多假設,
08:35
that are going to be threatened受威脅
by automation自動化 in the future未來
186
503890
2819
在未來將會被自動化給威脅,
往前也將會受到挑戰。
08:38
are very likely容易 to be
challenged挑戰 going forward前鋒.
187
506733
2198
08:40
So as we put these trends趨勢 together一起,
188
508955
1700
當我們整合這些趨勢,
08:42
I think what it shows節目 is that we could
very well end結束 up in a future未來
189
510679
3292
就會顯示
我們未來可能面臨嚴重的失業。
08:45
with significant重大 unemployment失業.
190
513995
1507
08:48
Or at a minimum最低限度,
191
516254
1152
或至少,
08:49
we could face面對 lots of underemployment就業不足
or stagnant wages工資,
192
517430
3781
我們可能會面臨許多大材小用
或者是薪水停滯不前,
08:53
maybe even declining下降 wages工資.
193
521235
2097
甚至可能薪水下降。
08:56
And, of course課程, soaring沖天 levels水平
of inequality不等式.
194
524142
2810
當然,不平等的情況也會加劇。
08:58
All of that, of course課程, is going to put
a terrific了不起 amount of stress強調
195
526976
4033
當然,這一切將會對於社會的結構
09:03
on the fabric of society社會.
196
531033
1917
造成很大的壓力。
09:04
But beyond that, there's also
a fundamental基本的 economic經濟 problem問題,
197
532974
3059
但在那之外,還有個
根本的經濟問題,
09:08
and that arises出現 because jobs工作
are currently目前 the primary mechanism機制
198
536057
5195
問題出現的原因
是目前主要靠著「工作」這機制
09:13
that distributes分配 income收入,
and therefore因此 purchasing購買 power功率,
199
541276
3545
來分配收入、和它帶來的購買力,
09:16
to all the consumers消費者 that buy購買 the products製品
and services服務 we're producing生產.
200
544845
5132
給那些向我們購買
產品與服務的消費者。
09:22
In order訂購 to have a vibrant充滿活力 market市場 economy經濟,
201
550831
2515
為了要有活躍的市場經濟,
09:25
you've got to have
lots and lots of consumers消費者
202
553370
2120
你得要有很多有能力購買
09:27
that are really capable of buying購買
the products製品 and services服務
203
555514
3029
那些被製造出來之產品和服務
09:30
that are being存在 produced生成.
204
558567
1151
的消費者。
09:31
If you don't have that,
then you run the risk風險
205
559742
2386
如果沒有,你要冒的風險就是
09:34
of economic經濟 stagnation停滯,
206
562152
1415
經濟停滯、
09:35
or maybe even a declining下降 economic經濟 spiral螺旋,
207
563591
3669
或甚至下降的經濟螺旋,
09:39
as there simply只是 aren't enough足夠
customers顧客 out there
208
567284
2314
因為就是沒有足夠的客人
09:41
to buy購買 the products製品
and services服務 being存在 produced生成.
209
569622
2459
來購買製出的產品和服務。
09:44
It's really important重要 to realize實現
210
572105
1928
非常重要的是要了解到,
09:46
that all of us as individuals個人 rely依靠
on access訪問 to that market市場 economy經濟
211
574057
6014
我們每個人都仰賴市場經濟,
09:52
in order訂購 to be successful成功.
212
580095
1729
才有可能成功。
09:53
You can visualize想像 that by thinking思維
in terms條款 of one really exceptional優秀 person.
213
581848
4436
視覺化的方式是,你可以
想像一個非常特殊的人。
09:58
Imagine想像 for a moment時刻 you take,
say, Steve史蒂夫 Jobs工作,
214
586308
2988
想像一下,比如你可以選賈伯斯,
10:01
and you drop下降 him
on an island all by himself他自己.
215
589320
2581
你把他丟在一個無人島上。
10:03
On that island, he's going
to be running賽跑 around,
216
591925
2294
在島上,他會到處跑來跑去,
10:06
gathering蒐集 coconuts椰子 just like anyone任何人 else其他.
217
594243
2538
收集椰子,就和所有其他人一樣。
10:08
He's really not going to be
anything special特別,
218
596805
2188
他不會有什麼特別的地方,
10:11
and the reason原因, of course課程,
is that there is no market市場
219
599017
3172
而原因當然是因為,那裡沒有市場
10:14
for him to scale規模
his incredible難以置信 talents人才 across橫過.
220
602213
2786
來讓他發揮他出色的才華。
10:17
So access訪問 to this market市場
is really critical危急 to us as individuals個人,
221
605023
3470
所以對於個人來說,能進入
這個市場是很重要的,
10:20
and also to the entire整個 system系統
in terms條款 of it being存在 sustainable可持續發展.
222
608517
4022
此外,進入這個體制,
在永續面也是很重要的。
10:25
So the question then becomes:
What exactly究竟 could we do about this?
223
613063
3844
於是,問題變成了:
對此,我們到底能做什麼?
10:29
And I think you can view視圖 this
through通過 a very utopian烏托邦 framework骨架.
224
617285
3232
我想,可以透過一個
非常理想化的框架來看此事。
10:32
You can imagine想像 a future未來
where we all have to work less,
225
620541
2643
你可以想像在未來,
我們工作量減少,
10:35
we have more time for leisure閒暇,
226
623208
3001
有比較多休閒時間,
10:38
more time to spend with our families家庭,
227
626233
1928
比較多家庭時間,
10:40
more time to do things that we find
genuinely真正的 rewarding獎勵
228
628185
3255
比較多時間去做我們
真正認為有價值的事,
10:43
and so forth向前.
229
631464
1157
諸如此類。
10:44
And I think that's a terrific了不起 vision視力.
230
632645
1855
我認為那是很棒的遠景。
10:46
That's something that we should
absolutely絕對 strive努力 to move移動 toward.
231
634524
3629
我們絕對應該朝那方向努力。
10:50
But at the same相同 time, I think
we have to be realistic實際,
232
638177
2676
但同時,我認為我們得要實際一點,
10:52
and we have to realize實現
233
640877
1393
我們得要了解,
10:54
that we're very likely容易 to face面對
a significant重大 income收入 distribution分配 problem問題.
234
642294
4860
我們非常有可能會要面臨
一個嚴重的收入分配問題。
10:59
A lot of people are likely容易
to be left behind背後.
235
647178
2967
很多人可能會被扔在後頭。
11:03
And I think that in order訂購
to solve解決 that problem問題,
236
651186
2404
我認為,要解決那個問題,
11:05
we're ultimately最終 going
to have to find a way
237
653614
2098
我們最終得要找到一個方式,
11:07
to decouple脫鉤 incomes收入 from traditional傳統 work.
238
655736
2606
將收入和傳統工作給分離開。
11:10
And the best最好, more straightforward直截了當
way I know to do that
239
658366
2866
如果要這樣做,我所知道
最好、最直接的方法
11:13
is some kind of a guaranteed保證 income收入
or universal普遍 basic基本 income收入.
240
661256
3568
就是某種保障收入
或是全體基本收入。
11:16
Now, basic基本 income收入 is becoming變得
a very important重要 idea理念.
241
664848
2488
基本收入正變成一個很重要的想法。
11:19
It's getting得到 a lot
of traction牽引 and attention注意,
242
667360
2139
它得到許多的注意力和關注,
11:21
there are a lot of important重要
pilot飛行員 projects項目
243
669523
2273
有許多重要的前導計畫
11:23
and experiments實驗 going on
throughout始終 the world世界.
244
671820
2175
及實驗在全世界進行。
11:26
My own擁有 view視圖 is that a basic基本 income收入
is not a panacea萬能藥;
245
674628
3200
我自己的看法是,
基本收入並非萬靈丹;
11:29
it's not necessarily一定
a plug-and-play即插即用 solution,
246
677852
2532
它未必是插電就可以解決的方案,
11:32
but rather, it's a place地點 to start開始.
247
680408
1635
但總是個起始點,
11:34
It's an idea理念 that we can
build建立 on and refine提煉.
248
682067
2782
我們可以從這想法開始,再改善它。
11:36
For example, one thing that I have
written書面 quite相當 a lot about
249
684873
2817
比如,我寫了很多的一個題材,
11:39
is the possibility可能性 of incorporating結合
explicit明確的 incentives獎勵 into a basic基本 income收入.
250
687714
4592
是明確地將獎勵
納入基本收入當中的可行性。
11:44
To illustrate說明 that,
251
692930
1169
讓我解釋一下,
11:46
imagine想像 that you are a struggling奮鬥的
high school學校 student學生.
252
694123
2768
想像你是個讀得很辛苦的高中生。
11:48
Imagine想像 that you are at risk風險
of dropping落下 out of school學校.
253
696915
2834
想像你有可能會被退學。
11:52
And yet然而, suppose假設 you know
that at some point in the future未來,
254
700289
3378
但假設你知道在未來某個時間點,
11:55
no matter what,
255
703691
1224
不論如何,
11:56
you're going to get the same相同
basic基本 income收入 as everyone大家 else其他.
256
704939
3697
你和別人得到的基本收入是一樣的。
12:00
Now, to my mind心神, that creates創建
a very perverse incentive激勵
257
708660
3042
我認為那會在你腦中
產生橫下心來的動機,
12:03
for you to simply只是 give up
and drop下降 out of school學校.
258
711726
2497
使你直接放棄並退學。
12:06
So I would say, let's not
structure結構體 things that way.
259
714247
2505
我會說,咱們
不要設計成那樣的結構。
12:08
Instead代替, let's pay工資 people who graduate畢業
from high school學校 somewhat有些 more
260
716776
5316
而是支付高中畢業生較高的薪水,
12:14
than those who simply只是 drop下降 out.
261
722116
1696
比中綴生要高。
12:16
And we can take that idea理念 of building建造
incentives獎勵 into a basic基本 income收入,
262
724329
3478
我們可以把這個將獎勵
納入基本收入中的想法,
12:19
and maybe extend延伸 it to other areas.
263
727831
1667
也許再延伸至其他的領域。
12:21
For example, we might威力 create創建
an incentive激勵 to work in the community社區
264
729522
3577
比如,我們可以針對
在社區中助人的行為,
12:25
to help others其他,
265
733123
1158
創造一種獎勵;
12:26
or perhaps也許 to do positive
things for the environment環境,
266
734305
3064
或是去獎勵人們
為環境做出正面的貢獻,
12:29
and so forth向前.
267
737393
1170
諸如此類。
12:30
So by incorporating結合 incentives獎勵
into a basic基本 income收入,
268
738587
3011
把獎勵納入到基本收入當中,
12:33
we might威力 actually其實 improve提高 it,
269
741622
1629
我們可能可以改善它,
12:35
and also, perhaps也許, take at least最小
a couple一對 of steps腳步
270
743275
2626
另外,也許也可以更接近
12:37
towards solving another另一個 problem問題
271
745925
2425
解決另一個我認為
12:40
that I think we're quite相當 possibly或者
going to face面對 in the future未來,
272
748374
2944
在未來也很可能要面臨的問題,
12:43
and that is, how do we all find
meaning含義 and fulfillment履行,
273
751342
3752
就是:我們要如何
找到意義和實現人生、
12:47
and how do we occupy佔據 our time
274
755118
2318
以及我們要如何把時間
12:49
in a world世界 where perhaps也許
there's less demand需求 for traditional傳統 work?
275
757460
4349
花在一個也許比較不需求
傳統工作的世界裡?
12:54
So by extending擴展 and refining精製
a basic基本 income收入,
276
762201
2805
透過延伸和改善基本收入,
12:57
I think we can make it look better,
277
765030
2336
我想我們可以讓它看起來更好,
12:59
and we can also, perhaps也許, make it
more politically政治上 and socially社交上 acceptable接受
278
767390
5298
我們也能讓它在政治面
和社會面更容易被接受,
13:04
and feasible可行 --
279
772712
1164
也更可行──
13:05
and, of course課程, by doing that,
280
773900
1474
當然,透過那樣做,
13:07
we increase增加 the odds可能性
that it will actually其實 come to be.
281
775398
3450
我們就會增加實現它的可能性。
13:11
I think one of the most fundamental基本的,
282
779731
2270
我想,對於基本收入這個想法,
13:14
almost幾乎 instinctive直覺的 objections反對
283
782025
2168
或是擴展安全網,
13:16
that many許多 of us have
to the idea理念 of a basic基本 income收入,
284
784217
3453
我們所有人最主要、
13:19
or really to any significant重大
expansion擴張 of the safety安全 net,
285
787694
3732
也最直覺的反對意見,
13:23
is this fear恐懼 that we're going to end結束 up
with too many許多 people
286
791450
3760
就是害怕最後會有太多人
13:27
riding騎術 in the economic經濟 cart大車,
287
795234
1738
爬上這經濟車箱,
13:28
and not enough足夠 people pulling that cart大車.
288
796996
2047
而沒有足夠人去拉這車廂。
13:31
And yet然而, really, the whole整個 point
I'm making製造 here, of course課程,
289
799067
2834
但,其實,我在這裡要說的重點是,
13:33
is that in the future未來,
290
801925
1361
在未來,
13:35
machines are increasingly日益 going
to be capable of pulling that cart大車 for us.
291
803310
3826
機器將會有能力為我們拉車。
13:39
That should give us more options選項
292
807160
1990
那就會讓我們有更多選項,
13:41
for the way we structure結構體
our society社會 and our economy經濟,
293
809174
3811
可用以不同的方式
架構我們的社會和經濟,
13:45
And I think eventually終於, it's going to go
beyond simply只是 being存在 an option選項,
294
813009
3442
我認為,最終它將不只是個選項,
13:48
and it's going to become成為 an imperative勢在必行.
295
816475
1901
而將變成勢在必行。
13:50
The reason原因, of course課程,
is that all of this is going to put
296
818400
2822
當然,因為這一切
將會帶給社會一定程度的壓力,
13:53
such這樣 a degree of stress強調 on our society社會,
297
821246
2014
13:55
and also because jobs工作 are that mechanism機制
298
823284
2514
也因為要靠「工作」這個機制,
13:57
that gets得到 purchasing購買 power功率 to consumers消費者
299
825822
1965
將購買力分配給消費者,
13:59
so they can then drive駕駛 the economy經濟.
300
827811
2516
他們接著才能夠帶動經濟。
14:02
If, in fact事實, that mechanism機制
begins開始 to erode侵蝕 in the future未來,
301
830351
3547
事實上,如果未來那機制開始腐蝕了,
14:05
then we're going to need to replace更換
it with something else其他
302
833922
2815
我們就得要用其他東西來取代它,
14:08
or we're going to face面對 the risk風險
303
836761
1563
不然我們就要面臨
14:10
that our whole整個 system系統 simply只是
may可能 not be sustainable可持續發展.
304
838348
2567
整個體制不夠永續的風險。
14:12
But the bottom底部 line here
is that I really think
305
840939
2382
但這裡的關鍵是,我真的認為
14:15
that solving these problems問題,
306
843345
2436
解決這些問題,
14:17
and especially特別 finding發現 a way
to build建立 a future未來 economy經濟
307
845805
3400
特別是找出方法來建立一種對社會
14:21
that works作品 for everyone大家,
308
849229
2013
每個層級的每個人都
14:23
at every一切 level水平 of our society社會,
309
851266
1861
行得通的未來經濟,
14:25
is going to be one of the most important重要
challenges挑戰 that we all face面對
310
853151
3540
將會是未來幾年和幾十年間,
我們所有人要面臨
的最重大挑戰之一。
14:28
in the coming未來 years年份 and decades幾十年.
311
856715
2043
14:30
Thank you very much.
312
858782
1248
非常謝謝。
14:32
(Applause掌聲)
313
860054
1860
(掌聲)
Translated by Lilian Chiu
Reviewed by Helen Chang

▲Back to top

ABOUT THE SPEAKER
Martin Ford - Futurist
Martin Ford imagines what the accelerating progress in robotics and artificial intelligence may mean for the economy, job market and society of the future.

Why you should listen

Martin Ford was one of the first analysts to write compellingly about the future of work and economies in the face of the growing automation of everything. He sketches a future that's radically reshaped not just by robots but by the loss of the income-distributing power of human jobs. How will our economic systems need to adapt?

He's the author of two books: Rise of the Robots: Technology and the Threat of a Jobless Future (winner of the 2015 Financial Times/McKinsey Business Book of the Year Award ) and The Lights in the Tunnel: Automation, Accelerating Technology and the Economy of the Future, and he's the founder of a Silicon Valley-based software development firm. He has written about future technology and its implications for the New York Times, Fortune, Forbes, The Atlantic, The Washington Post, Harvard Business Review and The Financial Times

More profile about the speaker
Martin Ford | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee