ABOUT THE SPEAKER
Hans Rosling - Global health expert; data visionary
In Hans Rosling’s hands, data sings. Global trends in health and economics come to vivid life. And the big picture of global development—with some surprisingly good news—snaps into sharp focus.

Why you should listen

Even the most worldly and well-traveled among us have had their perspectives shifted by Hans Rosling. A professor of global health at Sweden's Karolinska Institute, his work focused on dispelling common myths about the so-called developing world, which (as he pointed out) is no longer worlds away from the West. In fact, most of the Third World is on the same trajectory toward health and prosperity, and many countries are moving twice as fast as the west did.

What set Rosling apart wasn't just his apt observations of broad social and economic trends, but the stunning way he presented them. Guaranteed: You've never seen data presented like this. A presentation that tracks global health and poverty trends should be, in a word: boring. But in Rosling's hands, data sings. Trends come to life. And the big picture — usually hazy at best — snaps into sharp focus.

Rosling's presentations were grounded in solid statistics (often drawn from United Nations and World Bank data), illustrated by the visualization software he developed. The animations transform development statistics into moving bubbles and flowing curves that make global trends clear, intuitive and even playful. During his legendary presentations, Rosling took this one step farther, narrating the animations with a sportscaster's flair.

Rosling developed the breakthrough software behind his visualizations through his nonprofit Gapminder, founded with his son and daughter-in-law. The free software — which can be loaded with any data — was purchased by Google in March 2007. (Rosling met the Google founders at TED.)

Rosling began his wide-ranging career as a physician, spending many years in rural Africa tracking a rare paralytic disease (which he named konzo) and discovering its cause: hunger and badly processed cassava. He co-founded Médecins sans Frontièrs (Doctors without Borders) Sweden, wrote a textbook on global health, and as a professor at the Karolinska Institut in Stockholm initiated key international research collaborations. He's also personally argued with many heads of state, including Fidel Castro.

Hans Rosling passed away in February 2017. He is greatly missed.


More profile about the speaker
Hans Rosling | Speaker | TED.com
TEDWomen 2010

Hans Rosling: The magic washing machine

Hans Rosling e a mágica máquina de lavar

Filmed:
2,973,428 views

Qual foi a maior invenção da revolução industrial? Hans Rosling defende o caso da máquina de lavar. Com novos gráficos com design da Gapminder, Rosling nos mostra a mágica que acontece quando o crescimento da economia e a eletricidade tornam um chato dia de lavagem em um dia de leitura intelectual.
- Global health expert; data visionary
In Hans Rosling’s hands, data sings. Global trends in health and economics come to vivid life. And the big picture of global development—with some surprisingly good news—snaps into sharp focus. Full bio

Double-click the English transcript below to play the video.

00:15
I was only four years old
0
0
2000
Eu tinha apenas 4 anos
00:17
when I saw my mother load a washing machine
1
2000
3000
quando vi minha mãe colocando roupas em uma máquina de lavar
00:20
for the very first time in her life.
2
5000
3000
pela primeira vez em sua vida.
00:23
That was a great day for my mother.
3
8000
2000
Este foi um grande dia para minha mãe.
00:25
My mother and father had been saving money for years
4
10000
3000
Minha mãe e meu pai juntaram dinheiro por anos
00:28
to be able to buy that machine,
5
13000
2000
para poder comprar aquela máquina.
00:30
and the first day it was going to be used,
6
15000
2000
E no primeiro dia em que seria usada,
00:32
even Grandma was invited
7
17000
2000
até minha avó foi convidada
00:34
to see the machine.
8
19000
2000
para ver a máquina.
00:36
And Grandma was even more excited.
9
21000
3000
E vovó estava ainda mais animada.
00:39
Throughout her life
10
24000
2000
Em toda sua vida
00:41
she had been heating water with firewood,
11
26000
2000
ela esquentava água num fogão a lenha,
00:43
and she had hand washed laundry
12
28000
2000
e ela tinha que lavar à mão a roupa suja
00:45
for seven children.
13
30000
2000
de sete crianças.
00:47
And now she was going to watch
14
32000
3000
E agora ela iria assistir
00:50
electricity do that work.
15
35000
3000
a eletricidade fazer o trabalho.
00:53
My mother carefully opened the door,
16
38000
4000
Minha mãe abriu a tampa com cuidado,
00:57
and she loaded the laundry
17
42000
2000
e colocou a roupa suja
00:59
into the machine,
18
44000
2000
dentro da máquina,
01:01
like this.
19
46000
2000
assim.
01:03
And then, when she closed the door,
20
48000
2000
E então, quando ela fechou a tampa,
01:05
Grandma said, "No, no, no, no.
21
50000
2000
Vovó disse, "Não, não, não, não.
01:07
Let me, let me push the button."
22
52000
3000
Deixe-me, deixe-me apertar o botão."
01:11
And Grandma pushed the button,
23
56000
2000
E vovó apertou o botão,
01:13
and she said, "Oh, fantastic!
24
58000
3000
e disse, "Oh, fantástico.
01:16
I want to see this! Give me a chair!
25
61000
2000
Eu quero ver isso. Dê-me uma cadeira.
01:18
Give me a chair! I want to see it,"
26
63000
2000
Dê-me uma cadeira. Eu quero ver."
01:20
and she sat down in front of the machine,
27
65000
3000
E ela sentou-se em frente a máquina,
01:23
and she watched the entire washing program.
28
68000
4000
e ela assistiu todo o processo de lavagem.
01:27
She was mesmerized.
29
72000
2000
Ela estava hipnotizada.
01:29
To my grandmother,
30
74000
3000
Para minha avó,
01:32
the washing machine was a miracle.
31
77000
3000
a máquina de lavar era um milagre.
01:35
Today, in Sweden and other rich countries,
32
80000
3000
Hoje, na Suécia e em outros países ricos,
01:38
people are using
33
83000
2000
as pessoas estão usando
01:40
so many different machines.
34
85000
2000
tantas máquinas diferentes.
01:42
Look, the homes are full of machines.
35
87000
2000
Vejam, as casas estão cheias de máquinas;
01:44
I can't even name them all.
36
89000
2000
Eu nem sei o nome de todas.
01:46
And they also, when they want to travel,
37
91000
3000
E também, quando as pessoas querem viajar,
01:49
they use flying machines
38
94000
3000
elas utilizam máquinas voadoras
01:52
that can take them to remote destinations.
39
97000
2000
que podem levá-las a destinos remotos.
01:54
And yet, in the world, there are so many people
40
99000
2000
E ainda, no mundo, existem tantas pessoas
01:56
who still heat the water on fire,
41
101000
3000
que ainda esquentam água no fogo,
01:59
and they cook their food on fire.
42
104000
3000
e elas cozinham sua comida no fogo.
02:02
Sometimes they don't even have enough food,
43
107000
2000
Algumas vezes elas nem têm comida suficiente.
02:04
and they live below the poverty line.
44
109000
3000
E elas vivem abaixo da linha de pobreza.
02:07
There are two billion fellow human beings
45
112000
3000
Há 2 bilhões de seres humanos
02:10
who live on less than two dollars a day.
46
115000
2000
que vivem com menos de 2 dólares por dia.
02:12
And the richest people over there --
47
117000
2000
E as pessoas ricas --
02:14
there's one billion people --
48
119000
2000
cerca de um bilhão de pessoas --
02:16
and they live above what I call the "air line,"
49
121000
4000
e elas vivem acima do que eu chamo linha aérea,
02:20
because they spend more than $80 a day
50
125000
3000
porque ela gastam cerca de 80 dólares por dia
02:23
on their consumption.
51
128000
2000
em seu consumo.
02:25
But this is just one, two, three billion people,
52
130000
3000
Mas isto é apenas um, dois, três bilhões de pessoas,
02:28
and obviously there are seven billion people in the world,
53
133000
3000
e obviamente existe cerca de 7 bilhões de pessoas no mundo,
02:31
so there must be one, two, three, four billion people more
54
136000
3000
então deve haver um, dois, três ou quatro bilhões de pessoas a mais,
02:34
who live in between the poverty and the air line.
55
139000
3000
que vivem entre a linha de pobreza e a linha aérea.
02:37
They have electricity,
56
142000
3000
Elas têm eletricidade,
02:40
but the question is, how many have washing machines?
57
145000
3000
mas a questão é, quantas possuem máquinas de lavar?
02:43
I've done the scrutiny of market data,
58
148000
3000
Fiz um exame minucioso dos dados de mercado,
02:46
and I've found that, indeed,
59
151000
2000
e descobri que, na verdade,
02:48
the washing machine has penetrated below the air line,
60
153000
3000
a máquina de lavar penetrou abaixo da linha aérea,
02:51
and today there's an additional one billion people out there
61
156000
3000
e hoje existe um bilhão de pessoas a mais por aí
02:54
who live above the "wash line."
62
159000
3000
que vivem abaixo da linha de lavagem.
02:57
(Laughter)
63
162000
2000
(Risadas)
02:59
And they consume more than $40 per day.
64
164000
4000
E elas consomem mais de 40 dólares por dia.
03:03
So two billion have access to washing machines.
65
168000
3000
Então 2 bilhões têm acesso a máquinas de lavar.
03:06
And the remaining five billion,
66
171000
2000
E os 5 bilhões restantes,
03:08
how do they wash?
67
173000
2000
como elas lavam roupa?
03:10
Or, to be more precise,
68
175000
2000
Ou, para ser mais preciso,
03:12
how do most of the women in the world wash?
69
177000
3000
como a maioria das mulheres no mundo lava roupa?
03:15
Because it remains hard work for women to wash.
70
180000
4000
Porque isto ainda é um trabalho duro para as mulheres.
03:19
They wash like this: by hand.
71
184000
3000
Elas lavam assim: a mão.
03:22
It's a hard, time-consuming labor,
72
187000
4000
É duro, trabalho que consome tempo,
03:26
which they have to do for hours every week.
73
191000
3000
que elas devem fazer por horas toda semana.
03:29
And sometimes they also have to bring water from far away
74
194000
3000
E às vezes elas também têm que carregar água de longe
03:32
to do the laundry at home,
75
197000
2000
até a lavanderia em casa.
03:34
or they have to bring the laundry away to a stream far off.
76
199000
4000
Ou elas têm que carregar a roupa suja até um riacho afastado.
03:38
And they want the washing machine.
77
203000
3000
E elas querem a máquina de lavar.
03:41
They don't want to spend such a large part of their life
78
206000
3000
Elas não querem passar parte tão grande de suas vidas
03:44
doing this hard work
79
209000
2000
fazendo este trabalho duro
03:46
with so relatively low productivity.
80
211000
2000
com relativamente baixa produtividade.
03:48
And there's nothing different in their wish
81
213000
2000
E não há nada de diferente com o desejo delas
03:50
than it was for my grandma.
82
215000
2000
e o da minha avó.
03:52
Look here, two generations ago in Sweden --
83
217000
3000
Vejam aqui, 2 gerações atrás na Suécia --
03:55
picking water from the stream,
84
220000
2000
buscando água de um riacho,
03:57
heating with firewood and washing like that.
85
222000
3000
esquentando no fogo e lavando assim.
04:00
They want the washing machine in exactly the same way.
86
225000
3000
Elas querem a máquina de lavar exatamente da mesma forma.
04:03
But when I lecture to environmentally-concerned students,
87
228000
3000
Mas quando leciono para estudantes ecologicamente conscientes,
04:06
they tell me, "No, everybody in the world cannot have cars and washing machines."
88
231000
4000
eles me dizem, "Não, todos no mundo não podem ter carros e máquinas de lavar."
04:11
How can we tell this woman
89
236000
2000
Como podemos dizer a esta mulher
04:13
that she ain't going to have a washing machine?
90
238000
2000
que ela não terá uma máquina de lavar?
04:15
And then I ask my students,
91
240000
2000
E então perguntei aos meus alunos,
04:17
I've asked them -- over the last two years I've asked,
92
242000
2000
E venho perguntando -- nos últimos 2 anos tenho perguntado,
04:19
"How many of you doesn't use a car?"
93
244000
2000
"Quantos de vocês não usa carro?"
04:21
And some of them proudly raise their hand
94
246000
2000
E alguns deles orgulhosamente levantam a mão
04:23
and say, "I don't use a car."
95
248000
2000
e dizem, "Eu não uso carro."
04:25
And then I put the really tough question:
96
250000
2000
E então eu coloco uma questão realmente difícil:
04:27
"How many of you
97
252000
2000
"Quantos de vocês
04:29
hand-wash your jeans and your bed sheets?"
98
254000
2000
lavam a mão seu jeans e seus lençóis?"
04:31
And no one raised their hand.
99
256000
3000
E ninguém levantou a mão.
04:34
Even the hardcore in the green movement
100
259000
3000
Até o mais extremista no movimento verde
04:37
use washing machines.
101
262000
2000
usa máquinas de lavar.
04:39
(Laughter)
102
264000
4000
(Risadas)
04:43
So how come [this is] something that everyone uses
103
268000
2000
Então como isto pode ser algo que todo mundo usa
04:45
and they think others will not stop it? What is special with this?
104
270000
3000
e eles acham que os outros não irão parar; o que tem de especial sobre isto?
04:48
I had to do an analysis about the energy used in the world.
105
273000
3000
Tive que fazer uma análise sobre o uso de energia no mundo.
04:51
Here we are.
106
276000
2000
Aqui estamos.
04:53
Look here, you see the seven billion people up there:
107
278000
2000
Olhem aqui, vocês podem ver 7 bilhões de pessoas aqui em cima:
04:55
the air people, the wash people,
108
280000
2000
as pessoas da linha aérea, as pessoas que lavam,
04:57
the bulb people and the fire people.
109
282000
3000
as pessoas da lâmpada e as pessoas do fogo.
05:00
One unit like this
110
285000
2000
Uma unidade dessas
05:02
is an energy unit of fossil fuel --
111
287000
3000
é uma unidade de energia de combustível fóssil --
05:05
oil, coal or gas.
112
290000
2000
óleo, carvão ou gás.
05:07
That's what most of electricity and the energy in the world is.
113
292000
3000
Aqui é onde a maior parte da eletricidade e energia do mundo está.
05:11
And it's 12 units used in the entire world,
114
296000
3000
E dessas 12 unidades usadas em todo mundo,
05:14
and the richest one billion, they use six of them.
115
299000
3000
o 1 bilhão mais ricos, usam 6 delas.
05:17
Half of the energy is used by one seventh of the world's population.
116
302000
3000
Metade da energia é usada por 1/7 da população mundial.
05:20
And these ones who have washing machines,
117
305000
2000
E esses que possuem máquinas de lavar,
05:22
but not a house full of other machines,
118
307000
2000
mas não uma casa cheia de outras máquinas,
05:24
they use two.
119
309000
2000
eles usam 2.
05:26
This group uses three, one each.
120
311000
2000
Este grupo usa três, uma cada.
05:28
And they also have electricity.
121
313000
2000
E eles também têm eletricidade.
05:30
And over there they don't even use one each.
122
315000
3000
E lá adiante, eles sequer usam uma cada.
05:33
That makes 12 of them.
123
318000
2000
O que faz 12 deles.
05:35
But the main concern
124
320000
2000
Mas a questão principal
05:37
for the environmentally-interested students -- and they are right --
125
322000
3000
para os estudantes ecologicamente interessados -- e eles estão certos --
05:40
is about the future.
126
325000
2000
é sobre o futuro.
05:42
What are the trends? If we just prolong the trends,
127
327000
3000
Quais são as tendências? Se nós apenas prolongarmos as tendências,
05:45
without any real advanced analysis, to 2050,
128
330000
3000
sem nenhuma análise realmente detalhada, em 2050,
05:48
there are two things that can increase the energy use.
129
333000
3000
existem 2 coisas que podem aumentar o uso de energia.
05:51
First, population growth.
130
336000
2000
Primeiro, o crescimento populacional.
05:53
Second, economic growth.
131
338000
2000
Segundo, o crescimento econômico.
05:55
Population growth will mainly occur among the poorest people here
132
340000
3000
O crescimento populacional acontecerá principalmente entre as pessoas mais pobres,
05:58
because they have high child mortality
133
343000
2000
porque ele possuem alta taxa de mortalidade infantil
06:00
and they have many children per woman.
134
345000
2000
e muitas crianças por mulher.
06:02
And [with] that you will get two extra,
135
347000
2000
E com isso você tem dois extras,
06:04
but that won't change the energy use very much.
136
349000
2000
mas isso não muda muito o uso de energia.
06:06
What will happen is economic growth.
137
351000
3000
O que acontece é crescimento econômico.
06:09
The best of here in the emerging economies --
138
354000
2000
O melhor daqui nas economias emergentes --
06:11
I call them the New East --
139
356000
2000
Eu as chamo Novo Leste --
06:13
they will jump the air line.
140
358000
2000
elas pularão a linha aérea.
06:15
"Wopp!" they will say.
141
360000
2000
"Opa!" eles dirão.
06:17
And they will start to use as much as the Old West are doing already.
142
362000
3000
E eles começarão a usar tanto quanto o Velho Oeste já está usando.
06:20
And these people, they want the washing machine.
143
365000
3000
E estas pessoas, elas querem a máquina de lavar.
06:23
I told you. They'll go there.
144
368000
2000
Eu lhes digo. Elas chegarão lá.
06:25
And they will double their energy use.
145
370000
2000
E elas dobrarão o consumo de energia.
06:27
And we hope that the poor people will get into the electric light.
146
372000
3000
E nós esperamos que as pessoas pobres tenham energia elétrica.
06:30
And they'll get a two-child family without a stop in population growth.
147
375000
2000
E eles chegarão a duas crianças por família sem parar o crescimento populacional.
06:32
But the total energy consumption
148
377000
2000
Mas o total de energia consumida
06:34
will increase to 22 units.
149
379000
2000
crescerá para 22 unidades.
06:36
And these 22 units --
150
381000
3000
E estas 22 unidades
06:39
still the richest people use most of it.
151
384000
3000
ainda serão usadas em sua maioria pelas pessoas mais ricas.
06:43
So what needs to be done?
152
388000
2000
Então o que precisa ser feito?
06:45
Because the risk,
153
390000
2000
Porque o risco,
06:47
the high probability of climate change is real.
154
392000
3000
a alta probabilidade de mudança climática é real.
06:50
It's real.
155
395000
2000
É real.
06:52
Of course they must be more energy-efficient.
156
397000
3000
É claro que eles precisam ser mais eficientes em termos de energia
06:55
They must change behavior in some way.
157
400000
2000
Eles precisam mudar o comportamento de alguma forma.
06:57
They must also start to produce green energy,
158
402000
2000
Eles também devem começar a produzir energia verde,
06:59
much more green energy.
159
404000
2000
muito mais energia verde.
07:01
But until they have the same energy consumption per person,
160
406000
3000
Mas até que eles tenham o mesmo consumo de energia por pessoa,
07:04
they shouldn't give advice to others --
161
409000
2000
eles não deveriam dar conselhos aos outros --
07:06
what to do and what not to do.
162
411000
2000
o que fazer e o que não fazer.
07:08
(Applause)
163
413000
2000
(Aplausos)
07:10
Here we can get more green energy all over.
164
415000
4000
Aqui podemos ter mais energia verde.
07:14
This is what we hope may happen.
165
419000
2000
Isto é o que esperamos que aconteça.
07:16
It's a real challenge in the future.
166
421000
3000
É um desafio real no futuro.
07:19
But I can assure you that this woman in the favela in Rio,
167
424000
3000
Mas eu posso lhes assegurar que esta mulher na favela do Rio,
07:22
she wants a washing machine.
168
427000
2000
quer uma máquina de lavar.
07:24
She's very happy about her minister of energy
169
429000
3000
Ele está muito feliz com seu ministro da energia
07:27
that provided electricity to everyone --
170
432000
2000
que provê eletricidade a todos --
07:29
so happy that she even voted for her.
171
434000
3000
tão feliz que ela até votou nela.
07:32
And she became Dilma Rousseff,
172
437000
2000
E ela se tornou Dilma Rousseff,
07:34
the president-elect
173
439000
2000
a presidenta eleita
07:36
of one of the biggest democracies in the world --
174
441000
2000
de uma das maiores democracias do mundo --
07:38
moving from minister of energy to president.
175
443000
3000
saindo do ministério da energia para a presidência.
07:41
If you have democracy,
176
446000
2000
Se você tem democracia,
07:43
people will vote for washing machines.
177
448000
2000
pessoas votarão pela máquinas de lavar.
07:45
They love them.
178
450000
2000
Elas amam as máquinas de lavar.
07:49
And what's the magic with them?
179
454000
2000
E qual é a mágica delas?
07:51
My mother explained the magic with this machine
180
456000
3000
Minha mãe explicou a mágica desta máquina
07:54
the very, very first day.
181
459000
2000
logo, logo no primeiro dia.
07:56
She said, "Now Hans,
182
461000
2000
Ela disse, "Agora Hans,
07:58
we have loaded the laundry.
183
463000
2000
nós colocamos a roupa suja;
08:00
The machine will make the work.
184
465000
2000
a máquina fará o trabalho.
08:02
And now we can go to the library."
185
467000
2000
E agora nós podemos ir à biblioteca."
08:04
Because this is the magic:
186
469000
2000
Porque está é a mágica:
08:06
you load the laundry,
187
471000
2000
você coloca a roupa suja,
08:08
and what do you get out of the machine?
188
473000
2000
e o que você tira da máquina?
08:10
You get books out of the machines,
189
475000
3000
Você tira livros das máquinas,
08:13
children's books.
190
478000
2000
livros infantis.
08:15
And mother got time to read for me.
191
480000
2000
E mamãe ganhou tempo para ler para mim.
08:17
She loved this. I got the "ABC's" --
192
482000
2000
Ela adorou isso. Eu ganhei "ABC".
08:19
this is where I started my career as a professor,
193
484000
3000
Foi aqui que comecei minha carreira como professor,
08:22
when my mother had time to read for me.
194
487000
2000
quando minha mãe teve tempo de ler para mim.
08:24
And she also got books for herself.
195
489000
2000
E ela também pegou livros para ela.
08:26
She managed to study English
196
491000
2000
Ela conseguiu estudar inglês
08:28
and learn that as a foreign language.
197
493000
2000
e aprendê-lo como língua estrangeira.
08:30
And she read so many novels,
198
495000
2000
E ela leu tantos romances,
08:32
so many different novels here.
199
497000
3000
tantos romances diferentes aqui.
08:35
And we really, we really loved this machine.
200
500000
3000
E nós relamente, relamente amamos essa máquina.
08:39
And what we said, my mother and me,
201
504000
3000
E o que dissemos, minha mãe e eu,
08:42
"Thank you industrialization.
202
507000
3000
"Obrigado industrialização.
08:45
Thank you steel mill.
203
510000
2000
Obrigado siderúrgica.
08:47
Thank you power station.
204
512000
2000
Obrigado hidrelétrica.
08:49
And thank you chemical processing industry
205
514000
3000
E obrigado a indústria de produto químicos
08:52
that gave us time to read books."
206
517000
2000
isto nos deu tempo para ler livros."
08:54
Thank you very much.
207
519000
2000
Muito obrigado.
08:56
(Applause)
208
521000
13000
(Aplausos)
Translated by Christine Veras
Reviewed by Andrea Rojas

▲Back to top

ABOUT THE SPEAKER
Hans Rosling - Global health expert; data visionary
In Hans Rosling’s hands, data sings. Global trends in health and economics come to vivid life. And the big picture of global development—with some surprisingly good news—snaps into sharp focus.

Why you should listen

Even the most worldly and well-traveled among us have had their perspectives shifted by Hans Rosling. A professor of global health at Sweden's Karolinska Institute, his work focused on dispelling common myths about the so-called developing world, which (as he pointed out) is no longer worlds away from the West. In fact, most of the Third World is on the same trajectory toward health and prosperity, and many countries are moving twice as fast as the west did.

What set Rosling apart wasn't just his apt observations of broad social and economic trends, but the stunning way he presented them. Guaranteed: You've never seen data presented like this. A presentation that tracks global health and poverty trends should be, in a word: boring. But in Rosling's hands, data sings. Trends come to life. And the big picture — usually hazy at best — snaps into sharp focus.

Rosling's presentations were grounded in solid statistics (often drawn from United Nations and World Bank data), illustrated by the visualization software he developed. The animations transform development statistics into moving bubbles and flowing curves that make global trends clear, intuitive and even playful. During his legendary presentations, Rosling took this one step farther, narrating the animations with a sportscaster's flair.

Rosling developed the breakthrough software behind his visualizations through his nonprofit Gapminder, founded with his son and daughter-in-law. The free software — which can be loaded with any data — was purchased by Google in March 2007. (Rosling met the Google founders at TED.)

Rosling began his wide-ranging career as a physician, spending many years in rural Africa tracking a rare paralytic disease (which he named konzo) and discovering its cause: hunger and badly processed cassava. He co-founded Médecins sans Frontièrs (Doctors without Borders) Sweden, wrote a textbook on global health, and as a professor at the Karolinska Institut in Stockholm initiated key international research collaborations. He's also personally argued with many heads of state, including Fidel Castro.

Hans Rosling passed away in February 2017. He is greatly missed.


More profile about the speaker
Hans Rosling | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee