ABOUT THE SPEAKER
Lux Narayan - Entrepreneur
Lux Narayan is a perpetual learner of various things -- from origami and molecular gastronomy to stand-up and improv comedy.

Why you should listen

Lakshmanan aka Lux Narayan mans the helm of Unmetric, a social media intelligence company that helps digital marketers, social media analysts, and content creators harness social signals to track and analyze competitive content and campaigns, and to create better content and campaigns of their own.

Prior to founding Unmetric, Narayan was a co-founder at Vembu Technologies, an online data backup company. He also helped found and volunteered at ShareMyCake, a non-profit started by his wife that focuses on encouraging children to use their birthdays to channel monetary support towards a cause of their choosing.

As Unmetric's CEO, he leads a team of 70 people distributed across the company's operations in Chennai and New York City.

Outside of work, he is a perpetual learner of various things -- from origami and molecular gastronomy to stand-up and improv comedy. He enjoys reading obituaries and other non-fiction and watching documentaries with bad ratings. Narayan makes time every year for trekking in the Himalayas or scuba diving in tropical waters, and once he learns to fly, he hopes to spend more time off land than on it.

More profile about the speaker
Lux Narayan | Speaker | TED.com
TEDNYC

Lux Narayan: What I learned from 2,000 obituaries

勒克斯·纳拉扬: 我们能从2000份讣告中学到什么

Filmed:
1,705,669 views

勒克斯·纳拉扬的一天以一盘炒鸡蛋和一个问题开始:“今天谁死了?”他为什么要这样做?他分析了纽约时报超过20个月间的2000份讣告,纳拉扬从中收集了概括了那些人一生的成就的简短话语。接下来他将与我们分享,这些不朽的文字在如何生活方面能教会我们什么。
- Entrepreneur
Lux Narayan is a perpetual learner of various things -- from origami and molecular gastronomy to stand-up and improv comedy. Full bio

Double-click the English transcript below to play the video.

00:12
Joseph约瑟夫 Keller凯勒 used to jog慢跑
around the Stanford斯坦福 campus校园,
0
879
4072
约瑟夫·凯勒以前常绕着
斯坦福大学校区慢跑,
00:16
and he was struck来袭 by all the women妇女
jogging跑步 there as well.
1
4975
4717
而他对许多同样在慢跑的女性
感到很震惊。
为什么她们的马尾辫
会那样左右扫来扫去呢?
00:21
Why did their ponytails马尾辫 swing摇摆
from side to side like that?
2
9716
3589
00:25
Being存在 a mathematician数学家,
he set out to understand理解 why.
3
13867
3138
作为一名数学家,他开始探究原因。
00:29
(Laughter笑声)
4
17029
1151
(笑声)
凯勒教授对许多东西都很好奇:
00:30
Professor教授 Keller凯勒 was curious好奇
about many许多 things:
5
18204
2306
为什么茶壶上会沾水,
00:32
why teapots茶壶 dribble运球
6
20534
1967
还有蚯蚓是如何蠕动的。
00:34
or how earthworms蚯蚓 wriggle蠢动.
7
22525
1830
00:36
Until直到 a few少数 months个月 ago,
I hadn't有没有 heard听说 of Joseph约瑟夫 Keller凯勒.
8
24847
3048
在几个月前,
我还从未听说过约瑟夫·凯勒。
我在《纽约时报》上读到了他,
00:40
I read about him in the New York纽约 Times,
9
28581
2852
00:43
in the obituaries讣告.
10
31457
1432
出现在讣告中。
《纽约时报》专门用了
半幅版面来讲述他,
00:44
The Times had half a page
of editorial社论 dedicated专用 to him,
11
32913
3772
这也算是这种影响力的报刊里
级别最高的版面了。
00:48
which哪一个 you can imagine想像 is premium额外费用 space空间
for a newspaper报纸 of their stature身材.
12
36709
3922
00:53
I read the obituaries讣告 almost几乎 every一切 day.
13
41368
2342
我几乎每天都会看讣告。
可以理解的是,
我妻子觉得我相当有病,
00:56
My wife妻子 understandably可以理解的 thinks
I'm rather morbid病态
14
44690
3022
我的每一天从一盘炒鸡蛋开始,
再加一句:“看看今天谁死了。”
00:59
to begin开始 my day with scrambled eggs
and a "Let's see who died死亡 today今天."
15
47736
4400
(笑声)
01:04
(Laughter笑声)
16
52160
1150
01:06
But if you think about it,
17
54025
1292
不过仔细想想,
01:07
the front面前 page of the newspaper报纸
is usually平时 bad news新闻,
18
55341
3413
报纸的头版通常刊登的
都是负面新闻,
暗示着人类的失败。
01:10
and cues线索 man's男人的 failures故障.
19
58778
1975
如果你想在负面新闻中
找到一些好的成就,
01:12
An instance where bad news新闻
cues线索 accomplishment成就
20
60777
2666
就得去末版的讣告里找了。
01:15
is at the end结束 of the paper,
in the obituaries讣告.
21
63467
3235
01:19
In my day job工作,
22
67405
1364
在日常工作时,
01:20
I run a company公司 that focuses重点
on future未来 insights见解
23
68793
2476
我经营一家公司,
致力于提供对未来的预测,
01:23
that marketers营销 can derive派生
from past过去 data数据 --
24
71293
2420
是从过去的企业数据中分析得出的,
算是一种后知后觉的分析。
01:25
a kind of rearview-mirror后视镜 analysis分析.
25
73737
2944
01:29
And we began开始 to think:
26
77092
1155
然后我们开始思考:
要是我们用后知后觉方式
来分析《纽约时报》上的讣告呢?
01:30
What if we held保持 a rearview后视镜 mirror镜子
to obituaries讣告 from the New York纽约 Times?
27
78271
5118
01:36
Were there lessons教训 on how you could get
your obituary讣告 featured精选 --
28
84514
3468
你未来的讣告会怎么写,
它能教会你什么?
01:40
even if you aren't around to enjoy请享用 it?
29
88006
1977
虽然你本人已经没法活着拜读了。
(笑声)
01:42
(Laughter笑声)
30
90007
1484
这样的讣告是不是和炒鸡蛋更配呢?
01:43
Would this go better with scrambled eggs?
31
91515
2628
(笑声)
01:46
(Laughter笑声)
32
94167
1150
01:48
And so, we looked看着 at the data数据.
33
96163
2998
于是,我们研究了数据。
01:51
2,000 editorial社论, non-paid非支付 obituaries讣告
34
99869
4494
2000份由报社编辑的无偿的讣告,
01:56
over a 20-month-月 period
between之间 2015 and 2016.
35
104387
3642
来自2015和2016年里的20个月。
这2000例死亡,或是说2000条生命,
能教给我们什么呢?
02:00
What did these 2,000 deaths死亡 --
rather, lives生活 -- teach us?
36
108053
4824
首先我们研究了用语。
02:04
Well, first we looked看着 at words.
37
112901
2033
这是一个讣告的标题。
02:06
This here is an obituary讣告 headline标题.
38
114958
1761
为了了不起的李光耀先生而写。
02:08
This one is of the amazing惊人 Lee背风处 Kuan Yew红豆杉.
39
116743
2296
如果去掉开头结尾,
02:11
If you remove去掉 the beginning开始 and the end结束,
40
119063
2522
你会看到一段文字优美、
描述准确的叙述辞,
02:13
you're left with a beautifully精美
worded措辞 descriptor描述
41
121609
3334
它尝试用寥寥数语精确描述
个人成就或是一生经历。
02:16
that tries尝试 to, in just a few少数 words,
capture捕获 an achievement成就 or a lifetime一生.
42
124967
4675
仅仅是读这些就已经很令人着迷了。
02:21
Just looking at these is fascinating迷人.
43
129666
2161
这有一些人物描述,
是关于最近两年去世的名人。
02:24
Here are a few少数 famous著名 ones那些,
people who died死亡 in the last two years年份.
44
132301
3295
尝试猜猜他们是谁。
02:27
Try and guess猜测 who they are.
45
135620
1319
颠覆流派传统的艺术家
02:28
[An Artist艺术家 who Defied笑傲 Genre体裁]
46
136963
1440
这是美国歌手“王子”。
02:30
That's Prince王子.
47
138427
1185
二十世纪的拳击巨人
02:32
[Titan泰坦 of Boxing拳击 and the 20th Century世纪]
48
140497
1837
没错。
02:34
Oh, yes.
49
142358
1160
拳王阿里
02:35
[Muhammad穆罕默德 Ali阿里]
50
143542
1224
02:36
[Groundbreaking开创性 Architect建筑师]
51
144790
1546
开创性的建筑师
扎哈·哈迪德。
02:38
Zaha扎哈 Hadid哈迪德.
52
146360
1251
然后我们对这些叙述辞
02:40
So we took these descriptors描述
53
148843
1748
做了一种叫做自然语言处理的操作,
02:42
and did what's called
natural自然 language语言 processing处理,
54
150615
2524
其实就是把文字放进一个程序里,
02:45
where you feed饲料 these into a program程序,
55
153163
1771
它会筛去多余的字词,
02:46
it throws out the superfluous多余 words --
56
154958
1865
例如“这”、“和”,
这种很容易能比划明白的字,
02:48
"the," "and," -- the kind of words
you can mime哑剧 easily容易 in "Charades哑谜," --
57
156847
4223
02:53
and leaves树叶 you with the most
significant重大 words.
58
161094
2193
只把最重要的词语留下。
我们不止对上述4个标题做了处理,
02:55
And we did it not just for these four,
59
163311
1821
而是整整2000份叙述辞。
02:57
but for all 2,000 descriptors描述.
60
165156
2519
呈现的结果如下。
02:59
And this is what it looks容貌 like.
61
167699
1743
03:03
Film电影, theatre剧院, music音乐, dance舞蹈
and of course课程, art艺术, are huge巨大.
62
171004
4827
电影,戏剧,音乐,舞蹈……
当然,还有艺术占比很大。
03:08
Over 40 percent百分.
63
176485
1946
超过四成了。
03:10
You have to wonder奇迹
why in so many许多 societies社会
64
178455
2528
你必须要细想看看,
为何在许多社会中,
我们会坚持让我们的孩子从事
工程、医药、商业、法律等工作,
03:13
we insist咬定 that our kids孩子 pursue追求
engineering工程 or medicine医学 or business商业 or law
65
181007
4435
并认定它们代表着成功。
03:17
to be construed解释 as successful成功.
66
185466
1587
03:19
And while we're talking profession职业,
67
187871
1693
既然我们谈到了职业,
让我们再看看年龄。
03:21
let's look at age年龄 --
68
189588
1151
他们获得成就的平均年龄。
03:22
the average平均 age年龄 at which哪一个
they achieved实现 things.
69
190763
2510
这个数字是37岁。
03:25
That number is 37.
70
193297
1846
03:28
What that means手段 is,
you've got to wait 37 years年份 ...
71
196274
3656
这说明你必须要等上37年,
03:31
before your first significant重大 achievement成就
that you're remembered记得 for --
72
199954
3395
才能首次获得足以让你留名的成就,
这是平均值。
03:35
on average平均 --
73
203373
1151
44年后,在你81岁去世时才会留名,
03:36
44 years年份 later后来, when you
die at the age年龄 of 81 --
74
204548
2478
这也是平均值。
03:39
on average平均.
75
207050
1168
(笑声)
03:40
(Laughter笑声)
76
208242
1001
这说明我们要有耐心。
03:41
Talk about having to be patient患者.
77
209267
1684
(笑声)
03:42
(Laughter笑声)
78
210975
1057
当然这也因职业而异。
03:44
Of course课程, it varies变化 by profession职业.
79
212056
2089
03:46
If you're a sports体育 star,
80
214566
1193
如果你是运动明星,
你多半会在20多岁时进入巅峰。
03:47
you'll你会 probably大概 hit击中
your stride in your 20s.
81
215783
2127
如果你像我一样是个40来岁的人,
03:49
And if you're in your 40s like me,
82
217934
2645
你大概还能在政界搞出点名堂。
03:52
you can join加入 the fun开玩笑 world世界 of politics政治.
83
220603
1991
(笑声)
03:54
(Laughter笑声)
84
222618
1056
政客在45岁左右才做出人生首件,
也许是唯一值得称道的事迹。
03:55
Politicians政治家 do their first and sometimes有时
only commendable值得称道 act法案 in their mid-中-40s.
85
223698
3915
03:59
(Laughter笑声)
86
227637
1257
(笑声)
也许你会好奇"其他"是什么,
04:00
If you're wondering想知道 what "others其他" are,
87
228918
1937
这里有些例子。
04:02
here are some examples例子.
88
230879
1476
04:04
Isn't it fascinating迷人, the things people do
89
232821
2116
这些不是很有趣吗?
人们所做的事情,为人所铭记的事情?
04:06
and the things they're remembered记得 for?
90
234961
1882
麦克斯·波伏娃:放弃科学成为邪教主教
04:08
(Laughter笑声)
91
236867
1752
乔治·德·派尔斯:9位总统的裁缝
卡罗·多达:裸胸娱乐的先驱
04:12
Our curiosity好奇心 was in overdrive疲劳过度,
92
240136
1844
我们的好奇心彻底控制不住了,
我们不满足于仅仅分析叙述辞。
04:14
and we desired期望 to analyze分析
more than just a descriptor描述.
93
242004
3788
04:18
So, we ingested摄入 the entire整个
first paragraph of all 2,000 obituaries讣告,
94
246998
4946
所以我们又分析了
2000份讣告的第一段,
但我们把讣告分为两组来分析:
04:23
but we did this separately分别
for two groups of people:
95
251968
2774
一组是名人,一组是不出名的人。
04:26
people that are famous著名
and people that are not famous著名.
96
254766
2777
名人,例如“王子”、阿里、扎哈·哈迪德,
04:29
Famous著名 people -- Prince王子,
Ali阿里, Zaha扎哈 Hadid哈迪德 --
97
257567
2689
不出名的人,例如乔斯琳·库伯,
04:32
people who are not famous著名
are people like Jocelyn乔斯林 Cooper库珀,
98
260280
4235
加里牧师,
04:36
Reverend牧师 Curry咖喱
99
264539
1154
罗娜·凯利等等。
04:37
or Lorna罗娜 Kelly黄绿色.
100
265717
1169
我敢说大多数名字你都没有听过。
04:38
I'm willing愿意 to bet赌注 you haven't没有 heard听说
of most of their names.
101
266910
3188
他们是杰出的人,有着杰出的成就,
但并不出名。
04:42
Amazing惊人 people, fantastic奇妙 achievements成就,
but they're not famous著名.
102
270122
3812
04:46
So what if we analyze分析
these two groups separately分别 --
103
274720
2788
所以,如果我们分别分析这两组,
出不出名有什么区别?
04:49
the famous著名 and the non-famous非著名?
104
277532
1525
它会告诉我们什么呢?
04:51
What might威力 that tell us?
105
279081
1419
请看吧。
04:52
Take a look.
106
280524
1240
04:56
Two things leap飞跃 out at me.
107
284556
1469
两样东西吸引了我的注意。
04:58
First:
108
286569
1170
第一:
05:00
"John约翰."
109
288106
1198
“约翰”。
(笑声)
05:01
(Laughter笑声)
110
289328
1300
05:03
Anyone任何人 here named命名 John约翰
should thank your parents父母 --
111
291914
3388
所有名叫“约翰”的人要好好感谢父母。
(笑声)
05:07
(Laughter笑声)
112
295326
1329
还要提醒你的孩子
在你死后把你的讣告剪下来。
05:08
and remind提醒 your kids孩子 to cut out
your obituary讣告 when you're gone走了.
113
296679
3082
05:13
And second第二:
114
301061
1356
第二:
05:15
"help."
115
303849
1154
“帮助”。
05:18
We uncovered裸露, many许多 lessons教训
from lives生活 well-led领导有方,
116
306524
3465
我们从这些杰出的生命中,
从这些被文字记录的人身上
学到了好多东西。
05:22
and what those people immortalized永生
in print打印 could teach us.
117
310013
2836
这种过程是对生命万花筒的极好检验,
05:24
The exercise行使 was a fascinating迷人 testament遗嘱
to the kaleidoscope万花筒 that is life,
118
312873
4738
而更加迷人的是,
05:29
and even more fascinating迷人
119
317635
2715
在绝大多数的讣告中,
05:32
was the fact事实 that the overwhelming压倒
majority多数 of obituaries讣告
120
320374
3068
无论主角是否出名,
05:35
featured精选 people famous著名 and non-famous非著名,
121
323466
2998
他们都做了看似不平凡的事。
05:38
who did seemingly似乎 extraordinary非凡 things.
122
326488
2433
他们在生命长河中留下了闪光的点滴。
05:41
They made制作 a positive dent凹痕
in the fabric of life.
123
329574
3110
他们伸出了援手。
05:44
They helped帮助.
124
332708
1237
05:46
So ask yourselves你自己 as you go
back to your daily日常 lives生活:
125
334772
2591
所以在日常生活中请扪心自问:
我该如何用我的才能帮助这个社会?
05:49
How am I using运用 my talents人才 to help society社会?
126
337387
2920
因为这其中最重要的道理就是:
05:52
Because the most powerful强大 lesson here is,
127
340331
2973
如果有更多的人在活着时
多想想如何留下身后名,
05:55
if more people lived生活 their lives生活
trying to be famous著名 in death死亡,
128
343328
4336
这个世界将会更加美好。
05:59
the world世界 would be a much better place地点.
129
347688
2605
06:03
Thank you.
130
351062
1169
谢谢。
(掌声)
06:04
(Applause掌声)
131
352255
2848
Translated by Kaiyue Zhang
Reviewed by Hancheng Li

▲Back to top

ABOUT THE SPEAKER
Lux Narayan - Entrepreneur
Lux Narayan is a perpetual learner of various things -- from origami and molecular gastronomy to stand-up and improv comedy.

Why you should listen

Lakshmanan aka Lux Narayan mans the helm of Unmetric, a social media intelligence company that helps digital marketers, social media analysts, and content creators harness social signals to track and analyze competitive content and campaigns, and to create better content and campaigns of their own.

Prior to founding Unmetric, Narayan was a co-founder at Vembu Technologies, an online data backup company. He also helped found and volunteered at ShareMyCake, a non-profit started by his wife that focuses on encouraging children to use their birthdays to channel monetary support towards a cause of their choosing.

As Unmetric's CEO, he leads a team of 70 people distributed across the company's operations in Chennai and New York City.

Outside of work, he is a perpetual learner of various things -- from origami and molecular gastronomy to stand-up and improv comedy. He enjoys reading obituaries and other non-fiction and watching documentaries with bad ratings. Narayan makes time every year for trekking in the Himalayas or scuba diving in tropical waters, and once he learns to fly, he hopes to spend more time off land than on it.

More profile about the speaker
Lux Narayan | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee