ABOUT THE SPEAKER
Geoffrey West - Theorist
Physicist Geoffrey West believes that complex systems from organisms to cities are in many ways governed by simple laws -- laws that can be discovered and analyzed.

Why you should listen

Trained as a theoretical physicist, Geoffrey West has turned his analytical mind toward the inner workings of more concrete things, like ... animals. In a paper for Science in 1997, he and his team uncovered what he sees as a surprisingly universal law of biology — the way in which heart rate, size and energy consumption are related, consistently, across most living animals. (Though not all animals: “There are always going to be people who say, ‘What about the crayfish?’ " he says. “Well, what about it? Every fundamental law has exceptions. But you still need the law or else all you have is observations that don’t make sense.")

A past president of the multidisciplinary Santa Fe Institute (after decades working  in high-energy physics at Los Alamos and Stanford), West now studies the behavior and development of cities. In his newest work, he proposes that one simple number, population, can predict a stunning array of details about any city, from crime rate to economic activity. It's all about the plumbing, he says, the infrastructure that powers growth or dysfunction. His next target for study: corporations.

He says: "Focusing on the differences [between cities] misses the point. Sure, there are differences, but different from what? We’ve found the what."

More profile about the speaker
Geoffrey West | Speaker | TED.com
TEDGlobal 2011

Geoffrey West: The surprising math of cities and corporations

Geoffrey West: Hirien eta korporazioen matematika harrigarriak

Filmed:
1,583,030 views

Geoffrey West-ek fisikariak asmatu egin ditu matematika-lege erraz batzuek hirien ezaugarriak agintzen dituztela. Aberastasunak, kriminalitateak, mugikortasunak eta hiri baten beste ezaugarri batzuk zenbaki bakar batetik ondoriozta daitezke: populaziotik. TEDGlobal-eko ikaragarrizko hitzaldi honetan, West-ek erakusten du hau nola funtzionatu eta aplikatu erakundeetara eta korporazioetara.
- Theorist
Physicist Geoffrey West believes that complex systems from organisms to cities are in many ways governed by simple laws -- laws that can be discovered and analyzed. Full bio

Double-click the English transcript below to play the video.

00:16
Cities are the crucible of civilization.
0
1000
3000
Hiriak zibilizazioen arragoak dira.
00:19
They have been expanding,
1
4000
2000
Handitu egin dira,
00:21
urbanization has been expanding,
2
6000
2000
urbanizazioak hedatu egin ditu,
00:23
at an exponential rate in the last 200 years
3
8000
2000
tasa esponentzial batera azkenengo 200 urteetan,
00:25
so that by the second part of this century,
4
10000
3000
honela, mende honetako bigarren zatian
00:28
the planet will be completely dominated
5
13000
2000
hiriek zeharo nagusitu zuten
00:30
by cities.
6
15000
3000
Lurra.
00:33
Cities are the origins of global warming,
7
18000
3000
Hirietan mundu mailako berotzea, besteak beste, sortzen dira,
00:36
impact on the environment,
8
21000
2000
kutsadura, gaixotasunak,
00:38
health, pollution, disease,
9
23000
3000
ingurumen-inpaktua,
00:41
finance,
10
26000
2000
finantzak,
00:43
economies, energy --
11
28000
3000
ekonomia, energia ....
00:46
they're all problems
12
31000
2000
Arazo guzti hauek
00:48
that are confronted by having cities.
13
33000
2000
hirien izateak sortuak dira
00:50
That's where all these problems come from.
14
35000
2000
Hortik dator dena.
00:52
And the tsunami of problems that we feel we're facing
15
37000
3000
Aurre egiten dugun arazo-mordoa
00:55
in terms of sustainability questions
16
40000
2000
iraunkortasuna dela eta
00:57
are actually a reflection
17
42000
2000
(honen) isla da
00:59
of the exponential increase
18
44000
2000
urbanizazioaren hazkunde
01:01
in urbanization across the planet.
19
46000
3000
esponentzialarena, mundu osoan zehar.
01:04
Here's some numbers.
20
49000
2000
Hona hemen datu batzuk
01:06
Two hundred years ago, the United States
21
51000
2000
Orain dela 200 urte, Estatu Batuetan
01:08
was less than a few percent urbanized.
22
53000
2000
ehuneko txiki bat soilik hiritartu zen.
01:10
It's now more than 82 percent.
23
55000
2000
Orain %82a hiritartuta dago.
01:12
The planet has crossed the halfway mark a few years ago.
24
57000
3000
Lurrak orain dela urte batzuk lerroa gurutzatu egin du.
01:15
China's building 300 new cities
25
60000
2000
Txinak 300 hiri berrik eraikiko ditu.
01:17
in the next 20 years.
26
62000
2000
hurrengo 20 urteetan.
01:19
Now listen to this:
27
64000
2000
Adi egon:
01:21
Every week for the foreseeable future,
28
66000
3000
astero, aurreikus daitekeen geroan
01:24
until 2050,
29
69000
2000
2050 urte arte,
01:26
every week more than a million people
30
71000
2000
astero, milioi bat pertsona baino gehiago
01:28
are being added to our cities.
31
73000
2000
gure hirietara gehituko dira.
01:30
This is going to affect everything.
32
75000
2000
Honek guztioi eragingo digu.
01:32
Everybody in this room, if you stay alive,
33
77000
2000
Aretoan dauden guztiei, bizirik badaude,
01:34
is going to be affected
34
79000
2000
eragingo die
01:36
by what's happening in cities
35
81000
2000
hirietan gertatutakoak
01:38
in this extraordinary phenomenon.
36
83000
2000
gertakari harrigarriarekin.
01:40
However, cities,
37
85000
3000
Haatik, hiriek,
01:43
despite having this negative aspect to them,
38
88000
3000
ezezko itxurak izan arren,
01:46
are also the solution.
39
91000
2000
irtenbideak ere badauzkate.
01:48
Because cities are the vacuum cleaners and the magnets
40
93000
4000
xurgagailuak eta imanak direlako
01:52
that have sucked up creative people,
41
97000
2000
(hiriek) sortzaileak erakartzen dituzte
01:54
creating ideas, innovation,
42
99000
2000
ideiak, berrikuntzak sortzeko,
01:56
wealth and so on.
43
101000
2000
aberastasuna eta abar.
01:58
So we have this kind of dual nature.
44
103000
2000
(Hiriek) natura dual dute.
02:00
And so there's an urgent need
45
105000
3000
Badago premiazko beharra
02:03
for a scientific theory of cities.
46
108000
4000
hirien teoria zientifikoa sortzeko (beharra)
02:07
Now these are my comrades in arms.
47
112000
3000
Hauexek dira nire gudakideak.
02:10
This work has been done with an extraordinary group of people,
48
115000
2000
Pertsona harrigarrien talde batekin egin dugu lana,
02:12
and they've done all the work,
49
117000
2000
hauek lan osoa egin dute;
02:14
and I'm the great bullshitter
50
119000
2000
neu naiz harroputza
02:16
that tries to bring it all together.
51
121000
2000
dena biltzen dituenak.
02:18
(Laughter)
52
123000
2000
(Algarak)
02:20
So here's the problem: This is what we all want.
53
125000
2000
Hona hemen arazoa; hau da guztiok nahi duguna.
02:22
The 10 billion people on the planet in 2050
54
127000
3000
2050. urteko lurraren 10.000 milioi pertsonek
02:25
want to live in places like this,
55
130000
2000
hau bezalako lekuetan bizi nahi dute,
02:27
having things like this,
56
132000
2000
hauek bezalako gauzekin,
02:29
doing things like this,
57
134000
2000
hauek bezalako gauzak egiten,
02:31
with economies that are growing like this,
58
136000
3000
hau bezala handituz doan ekonomiarekin,
02:34
not realizing that entropy
59
139000
2000
(haiek) konturatu gabe entropiak berak
02:36
produces things like this,
60
141000
2000
hau bezalako gauzak sortzen dituela,
02:38
this, this
61
143000
4000
hau bezalakoak
02:42
and this.
62
147000
2000
eta hau bezalakoa.
02:44
And the question is:
63
149000
2000
Eta gure buruari galdetzen diogu
02:46
Is that what Edinburgh and London and New York
64
151000
2000
Edimburgo, Londres eta New York
02:48
are going to look like in 2050,
65
153000
2000
horrela ikusiko dira 2050. urtean?
02:50
or is it going to be this?
66
155000
2000
edo, horrela?
02:52
That's the question.
67
157000
2000
Hori da gakoa.
02:54
I must say, many of the indicators
68
159000
2000
Nik uste dut, adierazle batzuen arabera,
02:56
look like this is what it's going to look like,
69
161000
3000
horrela ikusiko direla.
02:59
but let's talk about it.
70
164000
3000
Hortaz hitz egin dezagun.
03:02
So my provocative statement
71
167000
3000
Adierazi behar dut
03:05
is that we desperately need a serious scientific theory of cities.
72
170000
3000
hirien premiazko teoria zientifiko bat behar dugula.
03:08
And scientific theory means quantifiable --
73
173000
3000
Teoria zientifikoak esan nahi du neurgarria izatea,
03:11
relying on underlying generic principles
74
176000
3000
printzipio orokorren azpikoren mendekoa dena
03:14
that can be made into a predictive framework.
75
179000
2000
eta predikzioak egiten laguntzen diguna.
03:16
That's the quest.
76
181000
2000
Hori da gakoa.
03:18
Is that conceivable?
77
183000
2000
Posible ote da?
03:20
Are there universal laws?
78
185000
2000
Mundu-mailako legeak badaude?
03:22
So here's two questions
79
187000
2000
Bi galderak daude
03:24
that I have in my head when I think about this problem.
80
189000
2000
burura datozkidanak horretaz pentsatzen dudan bakoitzean.
03:26
The first is:
81
191000
2000
Lehenengoa da:
03:28
Are cities part of biology?
82
193000
2000
Hiriak biologiaren zatiak al dira?
03:30
Is London a great big whale?
83
195000
2000
Londres balea handia izango ote da?
03:32
Is Edinburgh a horse?
84
197000
2000
Edimburgo zaldia izango ote da?
03:34
Is Microsoft a great big anthill?
85
199000
2000
Microsoft izugarrizko inurritegia izango ote da?
03:36
What do we learn from that?
86
201000
2000
Zer ondorioztatzen da hortik?
03:38
We use them metaphorically --
87
203000
2000
Modu metaforikoan hitz egiten,
03:40
the DNA of a company, the metabolism of a city, and so on --
88
205000
2000
Enpresa baten DNA, hiri baten metabolismoa eta hau dena,
03:42
is that just bullshit, metaphorical bullshit,
89
207000
3000
hitzontzikeri metaforikoak besterik ez dira?
03:45
or is there serious substance to it?
90
210000
3000
edo seriotan har daitezke?
03:48
And if that is the case,
91
213000
2000
Eta horrela bada,
03:50
how come that it's very hard to kill a city?
92
215000
2000
zergatik hain zaila den hiri bat akabatzea?
03:52
You could drop an atom bomb on a city,
93
217000
2000
Lehergailu atomikoa bota ahalko diote
03:54
and 30 years later it's surviving.
94
219000
2000
eta 30 urte barru jarraituko du bizirik.
03:56
Very few cities fail.
95
221000
3000
Oso hiri gutxik porrot egiten dute.
03:59
All companies die, all companies.
96
224000
3000
Enpresa guztiek porrot egiten dute.
04:02
And if you have a serious theory, you should be able to predict
97
227000
2000
Teoria on batekin aurretik jakin liteke
04:04
when Google is going to go bust.
98
229000
3000
noiz porrot egingo duen Google-k
04:07
So is that just another version
99
232000
3000
Hori beste bertsio bat izango da
04:10
of this?
100
235000
2000
honekoa?
04:12
Well we understand this very well.
101
237000
2000
Hau oso ondo ulertzen da.
04:14
That is, you ask any generic question about this --
102
239000
2000
Hots, galdera generikoak egiten baditut horretaz:
04:16
how many trees of a given size,
103
241000
2000
zenbat arbola tamainaren arabera?
04:18
how many branches of a given size does a tree have,
104
243000
2000
zenbat halako tamaniako adarrak ditu arbola batek?
04:20
how many leaves,
105
245000
2000
zenbat hosto?
04:22
what is the energy flowing through each branch,
106
247000
2000
zenbat energiak zeharkatzen du adar bakoitza?
04:24
what is the size of the canopy,
107
249000
2000
zer tamaina du bere hosto-kapak?
04:26
what is its growth, what is its mortality?
108
251000
2000
zein da bere hazkundea? zein da heriotza-tasa?
04:28
We have a mathematical framework
109
253000
2000
Eskema matematikoa daukagu
04:30
based on generic universal principles
110
255000
3000
mundu-mailako printzipio generikoetan oinarrituta
04:33
that can answer those questions.
111
258000
2000
galdera guzti horiek konpontzeko.
04:35
And the idea is can we do the same for this?
112
260000
4000
Ideia da: honekin gauza bera egin dezakegu?
04:40
So the route in is recognizing
113
265000
3000
Onarpenarekin lortzen da
04:43
one of the most extraordinary things about life,
114
268000
2000
bizitzaren gauza harrigarrienetariko batena;
04:45
is that it is scalable,
115
270000
2000
hots, bere eskalarekin bat datorrela
04:47
it works over an extraordinary range.
116
272000
2000
oso tarte zabal batean.
04:49
This is just a tiny range actually:
117
274000
2000
Hau oso aplikazio murriztua da, benetan;
04:51
It's us mammals;
118
276000
2000
hauexek gara gu, ugaztunok,
04:53
we're one of these.
119
278000
2000
talde honen parte hartzen dugunok.
04:55
The same principles, the same dynamics,
120
280000
2000
Printzipio berberak, dinamika berbera,
04:57
the same organization is at work
121
282000
2000
antolaketa berberak funtzionatzen du
04:59
in all of these, including us,
122
284000
2000
ugaztun guztietan, gu barne
05:01
and it can scale over a range of 100 million in size.
123
286000
3000
eta 100 milioi aldiz handitu daiteke.
05:04
And that is one of the main reasons
124
289000
3000
Hau da arrazoi inportantenetariko bat adierazteko
05:07
life is so resilient and robust --
125
292000
2000
zeren izaki bizidunak hain gogorrak eta erresilienteak diren,
05:09
scalability.
126
294000
2000
eskalarekin bat etortzeagatik.
05:11
We're going to discuss that in a moment more.
127
296000
3000
Berehala horretaz hitz egingo dugu.
05:14
But you know, at a local level,
128
299000
2000
Jakin badakigu bertako mailan
05:16
you scale; everybody in this room is scaled.
129
301000
2000
dena handitu daitekeela: gela honetako guztiok eskalarekin bat gatoz.
05:18
That's called growth.
130
303000
2000
Hazkundea deitzen dugu.
05:20
Here's how you grew.
131
305000
2000
Begira ezazue nola hazi.
05:22
Rat, that's a rat -- could have been you.
132
307000
2000
Hau arratoia da. Zuetariko bat izan liteke.
05:24
We're all pretty much the same.
133
309000
3000
Oso berdinak gara.
05:27
And you see, you're very familiar with this.
134
312000
2000
Ikus dezakegu hau oso ezaguna zaigula.
05:29
You grow very quickly and then you stop.
135
314000
2000
Izaki bat oso azkar hazten da eta halako batean gelditzen da.
05:31
And that line there
136
316000
2000
Kurba hori
05:33
is a prediction from the same theory,
137
318000
2000
predikzio bat da, teori berekoa,
05:35
based on the same principles,
138
320000
2000
printzipio berdinetan oinarrituta,
05:37
that describes that forest.
139
322000
2000
baso bat deskribatzen den bezalakoa.
05:39
And here it is for the growth of a rat,
140
324000
2000
Hau arratoi baten hazkunde-kurba da.
05:41
and those points on there are data points.
141
326000
2000
Puntuek datu errealak azpimarratzen dituzte.
05:43
This is just the weight versus the age.
142
328000
2000
Horrek erakusten du pisua adinaren arabera.
05:45
And you see, it stops growing.
143
330000
2000
Ikus ezazue nola hazkundea gelditzen den.
05:47
Very, very good for biology --
144
332000
2000
Oso ona biologiarako,
05:49
also one of the reasons for its great resilience.
145
334000
2000
bere erresilientzia handiaren arrazoi inportantenetariko bat dela.
05:51
Very, very bad
146
336000
2000
Baina oso txarto
05:53
for economies and companies and cities
147
338000
2000
ekonomiarako, enpresetarako eta hirietarako
05:55
in our present paradigm.
148
340000
2000
gaur egungo ereduan.
05:57
This is what we believe.
149
342000
2000
Hori da guk uste duguna.
05:59
This is what our whole economy
150
344000
2000
Hau da ekonomia guztiek
06:01
is thrusting upon us,
151
346000
2000
egitera behartzen gaituzten,
06:03
particularly illustrated in that left-hand corner:
152
348000
3000
ezkerrako bazterrean ikus daitekenez,
06:06
hockey sticks.
153
351000
2000
hockey-makilak bezalakoak.
06:08
This is a bunch of software companies --
154
353000
2000
Hau da programazio informatikoen konpaniei buruz
06:10
and what it is is their revenue versus their age --
155
355000
2000
diru-sarrerak ikusten dira adinaren arabera,
06:12
all zooming away,
156
357000
2000
oso azkar aurreratzen dira
06:14
and everybody making millions and billions of dollars.
157
359000
2000
eta guztiek milioika dolar irabazten dituzte.
06:16
Okay, so how do we understand this?
158
361000
3000
Aizue, nola ulertzen da hau guztia?
06:19
So let's first talk about biology.
159
364000
3000
Lehenengo eta behin, biologiari buruz hitz egin dezagun.
06:22
This is explicitly showing you
160
367000
2000
Horrek argi eta garbi erakusten du,
06:24
how things scale,
161
369000
2000
gauzen eskala nola aldatzen den.
06:26
and this is a truly remarkable graph.
162
371000
2000
Oso grafika zinez aipagarria.
06:28
What is plotted here is metabolic rate --
163
373000
3000
Hemen ikusten duguna tasa-metabolikoa da,
06:31
how much energy you need per day to stay alive --
164
376000
3000
zenbat energia behar den egun batean bizirik eusteko,
06:34
versus your weight, your mass,
165
379000
2000
pisu edo masaren arabera,
06:36
for all of us bunch of organisms.
166
381000
3000
gu bezalako izaki bizidunentzat.
06:39
And it's plotted in this funny way by going up by factors of 10,
167
384000
3000
Oso forma arraroa du, hamarreko faktorean handituz;
06:42
otherwise you couldn't get everything on the graph.
168
387000
2000
horrela ez balitz, grafikan ez litzateke sartuko.
06:44
And what you see if you plot it
169
389000
2000
Hau egitean ikusten dena,
06:46
in this slightly curious way
170
391000
2000
forma bitxi horrekin, zera da,
06:48
is that everybody lies on the same line.
171
393000
3000
guztiak lerro berean sartzen direla.
06:51
Despite the fact that this is the most complex and diverse system
172
396000
3000
Sistema hau konplexuena eta diferenteena izan arren
06:54
in the universe,
173
399000
3000
Unibertso osoan,
06:57
there's an extraordinary simplicity
174
402000
2000
guztiz erraza da
06:59
being expressed by this.
175
404000
2000
horrela azaltzean.
07:01
It's particularly astonishing
176
406000
3000
Guztiz harrigarria da
07:04
because each one of these organisms,
177
409000
2000
organismo hauetako bakoitzak
07:06
each subsystem, each cell type, each gene,
178
411000
2000
sistema-azpiko bakoitzak, zelula-mota bakoitzak, gen bakoitzak,
07:08
has evolved in its own unique environmental niche
179
413000
4000
euren txoko ekologiko eboluzionatu du,
07:12
with its own unique history.
180
417000
3000
euren istoria bakarreko propioarekin,
07:15
And yet, despite all of that Darwinian evolution
181
420000
3000
Eta, eboluzio osoa suertatu arren
07:18
and natural selection,
182
423000
2000
eta Darwin-eko hautaketa naturala kontuan hartuta ere bai
07:20
they've been constrained to lie on a line.
183
425000
2000
guztiak lerro batean kokatu egin dira.
07:22
Something else is going on.
184
427000
2000
Eta are gehiago.
07:24
Before I talk about that,
185
429000
2000
Horretaz hitz egin baino lehen,
07:26
I've written down at the bottom there
186
431000
2000
beheko aldean zerbait gehitu dut,
07:28
the slope of this curve, this straight line.
187
433000
2000
zuzen honen aldapa.
07:30
It's three-quarters, roughly,
188
435000
2000
gutxi gorabehera 3/4 da,
07:32
which is less than one -- and we call that sublinear.
189
437000
3000
1 baino gutxiago. Lineal-azpikoa deitzen dugu.
07:35
And here's the point of that.
190
440000
2000
Eta horrek esan nahi du:
07:37
It says that, if it were linear,
191
442000
3000
Lineal izango balitz,
07:40
the steepest slope,
192
445000
2000
aldapa handiagorekin,
07:42
then doubling the size
193
447000
2000
bere tamaina bikoiztean
07:44
you would require double the amount of energy.
194
449000
2000
energia bikoitza behar izango litzateke.
07:46
But it's sublinear, and what that translates into
195
451000
3000
Baina lineal-azpikoa denez, horrek esan nahi du
07:49
is that, if you double the size of the organism,
196
454000
2000
organismoaren tamaina bikoizten bada,
07:51
you actually only need 75 percent more energy.
197
456000
3000
energia gehigarrizko %75a bakarrik behar izango da.
07:54
So a wonderful thing about all of biology
198
459000
2000
Biologiaren aparteko ezaugarria da
07:56
is that it expresses an extraordinary economy of scale.
199
461000
3000
eskala-ekonomia harrigarria existitzen dela.
07:59
The bigger you are systematically,
200
464000
2000
Gero eta sistema handiagoa,
08:01
according to very well-defined rules,
201
466000
2000
araudien arabera,
08:03
less energy per capita.
202
468000
3000
unitate bakoitzeko gero eta energia gutxiago.
08:06
Now any physiological variable you can think of,
203
471000
3000
Aldagai fisiolologikoa imajinagarri batentzat,
08:09
any life history event you can think of,
204
474000
2000
pentsa dezakegun bizitzaren gertakizun batentzat,
08:11
if you plot it this way, looks like this.
205
476000
3000
hau bezalako grafika egiten bada, horrela ikusiko da.
08:14
There is an extraordinary regularity.
206
479000
2000
Harrigarrizko erregulartasuna.
08:16
So you tell me the size of a mammal,
207
481000
2000
Norbaitek ugaztun baten tamaina esaten badit,
08:18
I can tell you at the 90 percent level everything about it
208
483000
3000
erantzungo nioke, %90eko zehaztasunarekin, ugaztun horri buruzko informazio osoa
08:21
in terms of its physiology, life history, etc.
209
486000
4000
bere fisiologiaren eta bizitzaren istorioa, etab.
08:25
And the reason for this is because of networks.
210
490000
3000
Honen azalpena sareak dira.
08:28
All of life is controlled by networks --
211
493000
3000
Sareek dena kontrolatzen dute;
08:31
from the intracellular through the multicellular
212
496000
2000
zelulartekoetatik zelulanitzetara,
08:33
through the ecosystem level.
213
498000
2000
ekosistemen mailak ere bai.
08:35
And you're very familiar with these networks.
214
500000
3000
Zuek ondo ezagutzen dituzue sare horiek.
08:39
That's a little thing that lives inside an elephant.
215
504000
3000
Hau elefante baten barruan bizi den oso gauza txikia da.
08:42
And here's the summary of what I'm saying.
216
507000
3000
Eta hemen dago nik esandakoaren laburpena.
08:45
If you take those networks,
217
510000
2000
Sare hauek hartzen baditut,
08:47
this idea of networks,
218
512000
2000
sareen kontzeptua,
08:49
and you apply universal principles,
219
514000
2000
eta printzipio batzuk ematen badizkiet
08:51
mathematizable, universal principles,
220
516000
2000
zenbatuak eta unibertsalak,
08:53
all of these scalings
221
518000
2000
eskala-aldaketa horiek
08:55
and all of these constraints follow,
222
520000
3000
eta murrizketa horiek betetzen dira,
08:58
including the description of the forest,
223
523000
2000
baso baten deskribapena barne,
09:00
the description of your circulatory system,
224
525000
2000
zirkulazio-sistemakoa
09:02
the description within cells.
225
527000
2000
edo zelularen barrualdekoa.
09:04
One of the things I did not stress in that introduction
226
529000
3000
Sarreran azpimarratu ez dudan ideia bat da
09:07
was that, systematically, the pace of life
227
532000
3000
sistematikoki, bizitzaren erritmoa
09:10
decreases as you get bigger.
228
535000
2000
moteltzen da izaki bat hazi ahala.
09:12
Heart rates are slower; you live longer;
229
537000
3000
Bihotzaren taupadak motelago bihurtzen dira zahartzean,
09:15
diffusion of oxygen and resources
230
540000
2000
oxigenoaren hedatzea
09:17
across membranes is slower, etc.
231
542000
2000
mintzetatik pasatzen diren errekurtsoak ere motelago bihurtzen dira, etab.
09:19
The question is: Is any of this true
232
544000
2000
Galdera da: hau egia izango ote da
09:21
for cities and companies?
233
546000
3000
hirientzat eta enpresentzat?
09:24
So is London a scaled up Birmingham,
234
549000
3000
Londres Birmingham handitua izango ote da?
09:27
which is a scaled up Brighton, etc., etc.?
235
552000
3000
Eta hau Brighton-en handitzea izango ote da, etab?
09:30
Is New York a scaled up San Francisco,
236
555000
2000
New York San Francisco-ren handitzea izango ote da?
09:32
which is a scaled up Santa Fe?
237
557000
2000
Eta hau Santa Fe-ren handitzea?
09:34
Don't know. We will discuss that.
238
559000
2000
Ez dakit. Gero aztertu egingo dugu.
09:36
But they are networks,
239
561000
2000
Baina sareak existitu egiten dira.
09:38
and the most important network of cities
240
563000
2000
Eta hiri baten sarean garrantzi handiena duena,
09:40
is you.
241
565000
2000
zuek zarete.
09:42
Cities are just a physical manifestation
242
567000
3000
Hiriak agerpen fisikoak besterik ez dira
09:45
of your interactions,
243
570000
2000
hirien elkarrenkintzenak
09:47
our interactions,
244
572000
2000
eta gureak;
09:49
and the clustering and grouping of individuals.
245
574000
2000
pilaketak eta izakien elkarteak.
09:51
Here's just a symbolic picture of that.
246
576000
3000
Hau grafika sinbolikoa da.
09:54
And here's scaling of cities.
247
579000
2000
Hemen agertzen dira hiri batzuk eskala desberdinetan.
09:56
This shows that in this very simple example,
248
581000
3000
Adibide arrunt honetan nabaritzen da,
09:59
which happens to be a mundane example
249
584000
2000
garrantzi txikiko adibidea da;
10:01
of number of petrol stations
250
586000
2000
gasolindegien zenbakia
10:03
as a function of size --
251
588000
2000
(hiriaren) tamaniaren arabera,
10:05
plotted in the same way as the biology --
252
590000
2000
biologiaren antzeko taula batean.
10:07
you see exactly the same kind of thing.
253
592000
2000
Berdin-berdina ikusten da.
10:09
There is a scaling.
254
594000
2000
Eskala-efektua badago.
10:11
That is that the number of petrol stations in the city
255
596000
4000
Hots, gasolindegien kopurua
10:15
is now given to you
256
600000
2000
lor daiteke
10:17
when you tell me its size.
257
602000
2000
(hiriaren) tamainaren arabera.
10:19
The slope of that is less than linear.
258
604000
3000
Aldapa lineala baino gutxiagokoa da.
10:22
There is an economy of scale.
259
607000
2000
Eskala-ekonomia dago.
10:24
Less petrol stations per capita the bigger you are -- not surprising.
260
609000
3000
Biztanle bakoitzeko gasolindegi gutxiago, (hiriaren) tamaina handiagoan. Ez da batere harrigarria.
10:27
But here's what's surprising.
261
612000
2000
Baina badator harrigarriena.
10:29
It scales in the same way everywhere.
262
614000
2000
Eskala-aldaketa leku guztietan suertatzen da.
10:31
This is just European countries,
263
616000
2000
Hau da herri europarrentzat,
10:33
but you do it in Japan or China or Colombia,
264
618000
3000
baina Japonian, Txinan edo Kolonbian,
10:36
always the same
265
621000
2000
beti berdin,
10:38
with the same kind of economy of scale
266
623000
2000
eskala-ekonomia berberarekin,
10:40
to the same degree.
267
625000
2000
maila berberarekin.
10:42
And any infrastructure you look at --
268
627000
3000
Guk ikasi genituen azpiegitura-mota guztiak,
10:45
whether it's the length of roads, length of electrical lines --
269
630000
3000
bai errepideen luzera, bai linea elektrikoak,
10:48
anything you look at
270
633000
2000
edozein gaik,
10:50
has the same economy of scale scaling in the same way.
271
635000
3000
eskala-ekonomia bera du, beti berdin.
10:53
It's an integrated system
272
638000
2000
Oso sistema integratua da
10:55
that has evolved despite all the planning and so on.
273
640000
3000
zeinek eboluzionatu duen, plangintzak egin arren.
10:58
But even more surprising
274
643000
2000
Baina are harrigarriagoa da
11:00
is if you look at socio-economic quantities,
275
645000
2000
parametro sozioekonomikoak ikasten direnean,
11:02
quantities that have no analog in biology,
276
647000
3000
datu horiek ez daukate parekotasunik biologian,
11:05
that have evolved when we started forming communities
277
650000
3000
(haiek) eboluzionatu egin dira giza-erkidegoak martxan jarri zirenetik
11:08
eight to 10,000 years ago.
278
653000
2000
orain dela 8.000 edo 10.000 urte.
11:10
The top one is wages as a function of size
279
655000
2000
Lehenegoa da soldatak tamainaren arabera,
11:12
plotted in the same way.
280
657000
2000
grafika berean.
11:14
And the bottom one is you lot --
281
659000
2000
Eta azkena da zuena,
11:16
super-creatives plotted in the same way.
282
661000
3000
sortzeko ahalmena daukaten pertsonena.
11:19
And what you see
283
664000
2000
Nabaritzen dena
11:21
is a scaling phenomenon.
284
666000
2000
eskala-gertakaria da.
11:23
But most important in this,
285
668000
2000
Hemen inportateena da
11:25
the exponent, the analog to that three-quarters
286
670000
2000
3/4 antzeko adierazlea
11:27
for the metabolic rate,
287
672000
2000
tasa metabolikoaren kasuan,
11:29
is bigger than one -- it's about 1.15 to 1.2.
288
674000
2000
(orain) 1 baino gehiagokoa da; gutxi gora behera 1,15-tik 1,2-ra
11:31
Here it is,
289
676000
2000
Hemen dago
11:33
which says that the bigger you are
290
678000
3000
eta gero eta handiagoa denean,
11:36
the more you have per capita, unlike biology --
291
681000
3000
BPG handiagoa dago, biologia ez bezala,
11:39
higher wages, more super-creative people per capita as you get bigger,
292
684000
4000
soldata handiagoak, sortzeko ahalmen daukaten pertsona gehiago
11:43
more patents per capita, more crime per capita.
293
688000
3000
biztanle bakoitzeko patente gehiago, krimen-kopuru gehiago.
11:46
And we've looked at everything:
294
691000
2000
Den-dena aztertu ditugu:
11:48
more AIDS cases, flu, etc.
295
693000
3000
HIES-aren kasuak, gripe, etab
11:51
And here, they're all plotted together.
296
696000
2000
Eta hemen daude grafika bakar batean.
11:53
Just to show you what we plotted,
297
698000
2000
Hemen hauxe sartu ditugu
11:55
here is income, GDP --
298
700000
3000
diru-sarrerak, BPG,
11:58
GDP of the city --
299
703000
2000
hiri baten BPG,
12:00
crime and patents all on one graph.
300
705000
2000
kriminalitatea, patenteak, den-dena grafika berean.
12:02
And you can see, they all follow the same line.
301
707000
2000
Eta, ikusten den bezala, datu guztiak lerro berean inguruan.
12:04
And here's the statement.
302
709000
2000
Hau da adierazpena.
12:06
If you double the size of a city from 100,000 to 200,000,
303
711000
3000
Hiriaren tamaina bikoiztea, 100.000 biztanleetatik 200.000-etara,
12:09
from a million to two million, 10 to 20 million,
304
714000
2000
milio batetik 2 milioetara, 10 milioetatik 20 milioietara,
12:11
it doesn't matter,
305
716000
2000
berdin da,
12:13
then systematically
306
718000
2000
sistematikoki
12:15
you get a 15 percent increase
307
720000
2000
handitzearen %15a lortzen da
12:17
in wages, wealth, number of AIDS cases,
308
722000
2000
soldatetan, aberastasunean, HIESaren kasuetan,
12:19
number of police,
309
724000
2000
polizien zenbakian,
12:21
anything you can think of.
310
726000
2000
edonork imajina lezakeena.
12:23
It goes up by 15 percent,
311
728000
2000
%15-tan gora joaten da.
12:25
and you have a 15 percent savings
312
730000
3000
Aurreztien %15a ere lortzen da
12:28
on the infrastructure.
313
733000
3000
azpiegituretan.
12:31
This, no doubt, is the reason
314
736000
3000
Dudarik gabe hau da arrazoia
12:34
why a million people a week are gathering in cities.
315
739000
3000
zeren aste bakoitzak hirien populazioa milioi batean hazten diren,
12:37
Because they think that all those wonderful things --
316
742000
3000
Gauza harrigarri guzti hauek ...
12:40
like creative people, wealth, income --
317
745000
2000
sortzaileak, aberastasuna, diru-sarrerak,
12:42
is what attracts them,
318
747000
2000
erakargarriak dira
12:44
forgetting about the ugly and the bad.
319
749000
2000
eta txarra eta itsusia ahaztuarazten dituzte.
12:46
What is the reason for this?
320
751000
2000
Eta, zein da arrazoia?
12:48
Well I don't have time to tell you about all the mathematics,
321
753000
3000
Ez daukat denbora nahikorik termino matematikotan hitz egin dezan,
12:51
but underlying this is the social networks,
322
756000
3000
baina hau guztien azpitik sare sozialak daude,
12:54
because this is a universal phenomenon.
323
759000
3000
mundu mailako gertakariak dira.
12:57
This 15 percent rule
324
762000
3000
%15-en arau hau
13:00
is true
325
765000
2000
baliogarria da
13:02
no matter where you are on the planet --
326
767000
2000
lurraren edozein lekutan egon arren
13:04
Japan, Chile,
327
769000
2000
Japonia, Txile,
13:06
Portugal, Scotland, doesn't matter.
328
771000
3000
Portugal, Eskozia, berdin da.
13:09
Always, all the data shows it's the same,
329
774000
3000
Beti, datu guztiek gauza bera erakusten dute,
13:12
despite the fact that these cities have evolved independently.
330
777000
3000
hiri bakoitzaren eboluzioa kontuan hartu arren.
13:15
Something universal is going on.
331
780000
2000
Mundu mailako gertakaria gertatzen da.
13:17
The universality, to repeat, is us --
332
782000
3000
Gu geu unibertsalak gara, berriro esaten dut,
13:20
that we are the city.
333
785000
2000
gu geu hiria gara.
13:22
And it is our interactions and the clustering of those interactions.
334
787000
3000
Gure elkarrenkintzak gara, gure elkarrekintzen elkarketak.
13:25
So there it is, I've said it again.
335
790000
2000
Hemen dago, berriro.
13:27
So if it is those networks and their mathematical structure,
336
792000
3000
Sare guzti horiek dira eta euren egitura matematikoa.
13:30
unlike biology, which had sublinear scaling,
337
795000
3000
Alde batetik biologia bere eskala lineal-azpikoekin,
13:33
economies of scale,
338
798000
2000
bere eskala-ekonomia,
13:35
you had the slowing of the pace of life
339
800000
2000
eta bizitzaren osoan zeharkako erritmo motelagoa
13:37
as you get bigger.
340
802000
2000
hazi ahala.
13:39
If it's social networks with super-linear scaling --
341
804000
2000
Beste aldetik, sare sozialak, euren eskala gain-linealarekin;
13:41
more per capita --
342
806000
2000
biztanle bakoitzeko kantitate handiagorekin;
13:43
then the theory says
343
808000
2000
teoriak esaten du
13:45
that you increase the pace of life.
344
810000
2000
bizi-erritmoa handitzen dela.
13:47
The bigger you are, life gets faster.
345
812000
2000
Hazkundearekin, bizitza arinago doa.
13:49
On the left is the heart rate showing biology.
346
814000
2000
Ezkerrean, bihotzeko erritmoa islatzen da.
13:51
On the right is the speed of walking
347
816000
2000
Eta eskuinean, abiadura ibiltzean
13:53
in a bunch of European cities,
348
818000
2000
hiri europar batzuetan,
13:55
showing that increase.
349
820000
2000
eta handipena ikusten da.
13:57
Lastly, I want to talk about growth.
350
822000
3000
Amaitzeko, hazkundeari buruz hitz egin nahi dut.
14:00
This is what we had in biology, just to repeat.
351
825000
3000
Berriro esango dut: hau da biologian ikusten dena.
14:03
Economies of scale
352
828000
3000
Eskala-ekonomiek
14:06
gave rise to this sigmoidal behavior.
353
831000
3000
S itxurako portaera hori sortzen dute.
14:09
You grow fast and then stop --
354
834000
3000
Azkar hazten gara eta gero gelditzen gara;
14:12
part of our resilience.
355
837000
2000
gure erresilientziaren zatia besterik ez da.
14:14
That would be bad for economies and cities.
356
839000
3000
Hori bai hirientzat, bai ekonomiarentzat txarra izango litzateke.
14:17
And indeed, one of the wonderful things about the theory
357
842000
2000
Baina teoria honen ezaugarri onenetariko bat da
14:19
is that if you have super-linear scaling
358
844000
3000
edonork eskala gain-lineala badu
14:22
from wealth creation and innovation,
359
847000
2000
abarastasunaren sormenarako eta berrikuntzarako,
14:24
then indeed you get, from the same theory,
360
849000
3000
orduan, teoriaren arabera, lortzen da,
14:27
a beautiful rising exponential curve -- lovely.
361
852000
2000
goranzko kurba esponentzial ederra, xarmagarria.
14:29
And in fact, if you compare it to data,
362
854000
2000
Eta datuekin konparatzen bada,
14:31
it fits very well
363
856000
2000
oso ondo egokitzen da
14:33
with the development of cities and economies.
364
858000
2000
hirien eta ekonomiaren garapenarekin.
14:35
But it has a terrible catch,
365
860000
2000
Baina arazo bat dago,
14:37
and the catch
366
862000
2000
hau da
14:39
is that this system is destined to collapse.
367
864000
3000
sistema kolapsatzear dagoela.
14:42
And it's destined to collapse for many reasons --
368
867000
2000
Eta hori arrazoi askorengatik gertatzen da;
14:44
kind of Malthusian reasons -- that you run out of resources.
369
869000
3000
Malthus antzekoak; hots, baliabideak agortuko dira.
14:47
And how do you avoid that? Well we've done it before.
370
872000
3000
Eta nola saihes daiteke? Beno, iraganaldian egin da.
14:50
What we do is,
371
875000
2000
Egin dena da
14:52
as we grow and we approach the collapse,
372
877000
3000
hazi eta kolapsora hurbildu ahala,
14:55
a major innovation takes place
373
880000
3000
garrantzitsuzko berrikuntza agertzen da
14:58
and we start over again,
374
883000
2000
eta berriro hasiko gara.
15:00
and we start over again as we approach the next one, and so on.
375
885000
3000
Eta hurrengora hurbiltzean, hasi berriro eta bata bestearen segidan.
15:03
So there's this continuous cycle of innovation
376
888000
2000
Berrikuntzez beteriko segida hau
15:05
that is necessary
377
890000
2000
beharrezkoa da
15:07
in order to sustain growth and avoid collapse.
378
892000
3000
hazkundea mantentzeko eta kolapsoa saihesteko.
15:10
The catch, however, to this
379
895000
2000
Haatik, arazoa da
15:12
is that you have to innovate
380
897000
2000
berritzea guztiz beharrezkoa dela
15:14
faster and faster and faster.
381
899000
3000
arinago, gero eta arinago.
15:17
So the image
382
902000
2000
Irudi bat erabiliz,
15:19
is that we're not only on a treadmill that's going faster,
383
904000
3000
bizkortzeko makina trostari egon ez ezik,
15:22
but we have to change the treadmill faster and faster.
384
907000
3000
baita aldatu behar dugu ere gero eta maizago.
15:25
We have to accelerate on a continuous basis.
385
910000
3000
Bizkortu behar dugu eten gabe.
15:28
And the question is: Can we, as socio-economic beings,
386
913000
3000
Sekulako galdera da: Posible ote da, izaki sozioekonomikoak izanda,
15:31
avoid a heart attack?
387
916000
3000
bihotzeko krisia saihestea?
15:34
So lastly, I'm going to finish up in this last minute or two
388
919000
3000
Amaitzeko, geratzen zaidan pare bat minutu hauetan,
15:37
asking about companies.
389
922000
2000
enpresei buruz galdetzen dut.
15:39
See companies, they scale.
390
924000
2000
Enpresak eskalara egokitzen dira.
15:41
The top one, in fact, is Walmart on the right.
391
926000
2000
Enpresa hau, ondo ezagututa, Walmart da.
15:43
It's the same plot.
392
928000
2000
Grafika berak
15:45
This happens to be income and assets
393
930000
2000
diru-sarrerak eta aktiboa erakusten ditu
15:47
versus the size of the company as denoted by its number of employees.
394
932000
2000
konpainiaren tamainaren arabera, langile zenbakien arabera.
15:49
We could use sales, anything you like.
395
934000
3000
Salmenten tamaina erabil liteke, edo nahi duguna.
15:52
There it is: after some little fluctuations at the beginning,
396
937000
3000
Hor dago, hasierako gorabehera txiki batzuk gertatu ostean,
15:55
when companies are innovating,
397
940000
2000
enpresek berrikuntzak egiten dituztenean,
15:57
they scale beautifully.
398
942000
2000
gero, eskala jarraitzen dute modu onean.
15:59
And we've looked at 23,000 companies
399
944000
3000
23.000 konpainia ikasi ditugu
16:02
in the United States, may I say.
400
947000
2000
Estatu Batuetan.
16:04
And I'm only showing you a little bit of this.
401
949000
3000
Eta zati txiki bat besterik ez dut erakutsi.
16:07
What is astonishing about companies
402
952000
2000
Egoera honen harrigarriena da
16:09
is that they scale sublinearly
403
954000
3000
lineal-azpiko eskala jarraitzen dutela,
16:12
like biology,
404
957000
2000
biologian bezala,
16:14
indicating that they're dominated,
405
959000
2000
eta horrek esan nahi du (zerbaiten) menpe daudela
16:16
not by super-linear
406
961000
2000
ez gain-linealen (menpe),
16:18
innovation and ideas;
407
963000
3000
berrikuntza eta ideiak;
16:21
they become dominated
408
966000
2000
baina (zerbaiten) menpe daude
16:23
by economies of scale.
409
968000
2000
eskala-ekonomien (menpe).
16:25
In that interpretation,
410
970000
2000
Interpretazio honetan,
16:27
by bureaucracy and administration,
411
972000
2000
burokraziaren eta kudeaketaren menpe,
16:29
and they do it beautifully, may I say.
412
974000
2000
bikain dabiltza.
16:31
So if you tell me the size of some company, some small company,
413
976000
3000
Hots, konpainia txiki baten tamaina esaten badidazue,
16:34
I could have predicted the size of Walmart.
414
979000
3000
Walmart-en tamaina aurretik jakin nezakeen.
16:37
If it has this sublinear scaling,
415
982000
2000
lineal-azpiko eskala hau izanez gero,
16:39
the theory says
416
984000
2000
teoriaren arabera,
16:41
we should have sigmoidal growth.
417
986000
3000
S itxurako hazkundea izango genuke.
16:44
There's Walmart. Doesn't look very sigmoidal.
418
989000
2000
Hor dago Walmart. Ez dirudi S itxurakoa.
16:46
That's what we like, hockey sticks.
419
991000
3000
guri gustatzen zaigun bezala, hockey-makila bezalakoa.
16:49
But you notice, I've cheated,
420
994000
2000
Baina konturatu egin zarete trikimailuak egin nituela,
16:51
because I've only gone up to '94.
421
996000
2000
1994 urte arte bakarrik joan nintzelako.
16:53
Let's go up to 2008.
422
998000
2000
2008 urte arte joan gaitezen.
16:55
That red line is from the theory.
423
1000000
3000
Lerro gorriak teoria jarraitzen du.
16:58
So if I'd have done this in 1994,
424
1003000
2000
Horrela egin banu 1994. urtean
17:00
I could have predicted what Walmart would be now.
425
1005000
3000
gaurko Wallmart-en egoera aurretik jakin nezakeen.
17:03
And then this is repeated
426
1008000
2000
Eta hau errepikatzen da
17:05
across the entire spectrum of companies.
427
1010000
2000
esparru horretako enpresa guztietan.
17:07
There they are. That's 23,000 companies.
428
1012000
3000
Han daude. 23.000 konpainiak.
17:10
They all start looking like hockey sticks,
429
1015000
2000
Hasieran, guztien itxura hockey-makilakoa da,
17:12
they all bend over,
430
1017000
2000
guztiak tolesten dira,
17:14
and they all die like you and me.
431
1019000
2000
eta guzti guztiak hil egiten dira, zuek eta ni bezala.
17:16
Thank you.
432
1021000
2000
Mila esker
17:18
(Applause)
433
1023000
9000
(Txaloak)
Translated by Alvaro Moya
Reviewed by Jone Aliri

▲Back to top

ABOUT THE SPEAKER
Geoffrey West - Theorist
Physicist Geoffrey West believes that complex systems from organisms to cities are in many ways governed by simple laws -- laws that can be discovered and analyzed.

Why you should listen

Trained as a theoretical physicist, Geoffrey West has turned his analytical mind toward the inner workings of more concrete things, like ... animals. In a paper for Science in 1997, he and his team uncovered what he sees as a surprisingly universal law of biology — the way in which heart rate, size and energy consumption are related, consistently, across most living animals. (Though not all animals: “There are always going to be people who say, ‘What about the crayfish?’ " he says. “Well, what about it? Every fundamental law has exceptions. But you still need the law or else all you have is observations that don’t make sense.")

A past president of the multidisciplinary Santa Fe Institute (after decades working  in high-energy physics at Los Alamos and Stanford), West now studies the behavior and development of cities. In his newest work, he proposes that one simple number, population, can predict a stunning array of details about any city, from crime rate to economic activity. It's all about the plumbing, he says, the infrastructure that powers growth or dysfunction. His next target for study: corporations.

He says: "Focusing on the differences [between cities] misses the point. Sure, there are differences, but different from what? We’ve found the what."

More profile about the speaker
Geoffrey West | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee