ABOUT THE SPEAKERS
Eric Berlow - Ecologist
TED Senior Fellow Eric Berlow studies ecology and networks, exposing the interconnectedness of our ecosystems with climate change, government, corporations and more.

Why you should listen

Eric Berlow is an ecologist and network scientist who specializes in not specializing. A TED Senior Fellow, Berlow is recognized for his research on food webs and ecological networks and for creative approaches to complex problems. He was the founding director of the University of California's first environmental science center inside Yosemite National Park, where he continues to develop data-driven approaches to managing natural ecosystems. 

In 2012 Berlow founded Vibrant Data Labs, which builds tools to use data for social good. Berlow's current projects range from helping spark an egalitarian personal data economy to protecting endangered amphibians in Yosemite to crowd-sourcing novel insights about human creativity. Berlow holds a Ph.D. from Oregon State University in marine ecology.

 

 

More profile about the speaker
Eric Berlow | Speaker | TED.com
Sean Gourley - Physicist and military theorist
Sean Gourley, trained as a physicist, has turned his scientific mind to analyzing data about a messier topic: modern war and conflict. He is a TED Fellow.

Why you should listen

Sean Gourley's twin passions are physics (working on nanoscale blue-light lasers and self-assembled quantum nanowires) and politics (he once ran for a national elected office back home in New Zealand).

A Rhodes scholar, he's spent the past five years working at Oxford on complex adaptive systems and collective intelligent systems -- basically, using data to understand the nature of human conflict. As he puts it, "This research has taken me all over the world from the Pentagon, to the House of Lords, the United Nations and most recently to Iraq". Originally from New Zealand, he now lives in San Francisco, where he is the co-founder and CTO of Quid which is building a global intelligence platform. He's a 2009 TED Fellow.

In December 2009, Gourley and his team's research was published in the scientific journal Nature. He is co-founder and CTO of Quid.

More profile about the speaker
Sean Gourley | Speaker | TED.com
TED2013

Eric Berlow and Sean Gourley: Mapping ideas worth spreading

Eric Berlow e Sean Gourley: Representación de ideas de que vale a pena difundir.

Filmed:
1,131,373 views

¿Como son 24.000 ideas xuntas? O ecoloxista Eric Berlow e o físico Sean Gourley aplican algoritmos ó arquivo enteiro de charlas de TEDx, e lévannos a unha estimulante viaxe visual para ensinarnos como as ideas se conectan globalmente.
- Ecologist
TED Senior Fellow Eric Berlow studies ecology and networks, exposing the interconnectedness of our ecosystems with climate change, government, corporations and more. Full bio - Physicist and military theorist
Sean Gourley, trained as a physicist, has turned his scientific mind to analyzing data about a messier topic: modern war and conflict. He is a TED Fellow. Full bio

Double-click the English transcript below to play the video.

00:12
Eric Berlow: I'm an ecologist, and Sean's a physicist,
0
562
3061
Eric Berlow: eu son ecoloxista, Sean é físico,
00:15
and we both study complex networks.
1
3623
2108
e os dous estudamos mecanismos complexos.
00:17
And we met a couple years ago when we discovered
2
5731
1835
Coñecímonos fai dous anos cando descubrimos
00:19
that we had both given a short TED Talk
3
7566
2000
que nos deran unha pequena conferencia en TED
00:21
about the ecology of war,
4
9566
2303
sobre a ecoloxía da guerra,
00:23
and we realized that we were connected
5
11869
1447
e decatámonos de que estabamos unidos
00:25
by the ideas we shared before we ever met.
6
13316
2818
polas ideas que compartiamos mesmo antes de coñecermos.
00:28
And then we thought, you know, there are thousands
7
16134
1556
Entón pensamos, xa sabedes, hai milleiros
00:29
of other talks out there, especially TEDx Talks,
8
17690
2114
de charlas por aí fóra, especialmente charlas de TEDx,
00:31
that are popping up all over the world.
9
19804
2211
que están a aflorar arredor do mundo.
00:34
How are they connected,
10
22015
923
Como están conectadas,
00:34
and what does that global conversation look like?
11
22938
2010
e como pinta esta conversa global?
00:36
So Sean's going to tell you a little bit about how we did that.
12
24948
2810
Sean vai falaros un pouquiño sobre como o fixemos.
00:39
Sean Gourley: Exactly. So we took 24,000 TEDx Talks
13
27758
3767
Sean Gourley: Exactamente. Nós collimos 24.000 conferencias de TEDx
00:43
from around the world, 147 different countries,
14
31525
3046
de todo o mundo, 147 países distintos,
00:46
and we took these talks and we wanted to find
15
34571
2123
e escollemos estas charlas porque queriamos atopar
00:48
the mathematical structures that underly
16
36694
2040
as estruturas matemáticas que esconden
00:50
the ideas behind them.
17
38734
1722
as ideas tras delas.
00:52
And we wanted to do that so we could see how
18
40456
1370
E o queriamos facer para poder ver como
00:53
they connected with each other.
19
41826
2053
conectan as unhas coas outras.
00:55
And so, of course, if you're going to do this kind of stuff,
20
43879
1676
Por suposto, se ti vas facer algo coma isto,
00:57
you need a lot of data.
21
45555
956
precisas unha chea de datos.
00:58
So the data that you've got is a great thing called YouTube,
22
46511
3686
A información que ti tes é unha cousa xenial chamada YouTube,
01:02
and we can go down and basically pull
23
50197
1768
a onde nos podemos conectar e basicamente sacar
01:03
all the open information from YouTube,
24
51965
2267
toda a información aberta,
01:06
all the comments, all the views, who's watching it,
25
54232
2349
todos os comentarios, todas as visitas, quen o está a ver,
01:08
where are they watching it, what are they saying in the comments.
26
56581
2779
onde o están a ver, que están a dicir nos comentarios...
01:11
But we can also pull up, using speech-to-text translation,
27
59360
3292
Pero tamén podemos entender, usando a tradución discurso-texto,
01:14
we can pull the entire transcript,
28
62652
2128
podemos obter a transcrición enteira,
01:16
and that works even for people with kind of funny accents like myself.
29
64780
2680
e isto funciona incluso para xente con acentos graciosos coma o meu.
01:19
So we can take their transcript
30
67460
2106
Polo tanto, podemos coller a transcrición
01:21
and actually do some pretty cool things.
31
69566
2098
e facer cousas bastante molonas.
01:23
We can take natural language processing algorithms
32
71664
2160
Podemos coller a linguaxe natural procesando algoritmos
01:25
to kind of read through with a computer, line by line,
33
73824
2629
para facer algo como ler cun ordenador, liña por liña,
01:28
extracting key concepts from this.
34
76453
2359
sacando conceptos clave de eles.
01:30
And we take those key concepts and they sort of form
35
78812
2525
Despois collemos eses conceptos clave e fan algo como
01:33
this mathematical structure of an idea.
36
81337
3565
a estrutura matemática dunha idea.
01:36
And we call that the meme-ome.
37
84902
1757
A isto chamámoslle o meme-ome.
01:38
And the meme-ome, you know, quite simply,
38
86659
2151
O meme-ome, xa sabedes, sinxelamente,
01:40
is the mathematics that underlies an idea,
39
88810
2426
son as matemáticas que subxacen nunha idea,
01:43
and we can do some pretty interesting analysis with it,
40
91236
1932
e podemos facer análisis moi interesantes con isto
01:45
which I want to share with you now.
41
93168
1981
que quero compartir con vós agora.
01:47
So each idea has its own meme-ome,
42
95149
2190
Polo tanto, cada idea ten o seu propio meme-ome,
01:49
and each idea is unique with that,
43
97339
1951
e cada idea é única niso, pero
01:51
but of course, ideas, they borrow from each other,
44
99290
2488
por suposto, as ideas empréstanse cousas unhas ás outras,
01:53
they kind of steal sometimes,
45
101778
1184
ás veces case as rouban,
01:54
and they certainly build on each other,
46
102962
1827
e certamente, constrúense unhas sobre outras.
01:56
and we can go through mathematically
47
104789
1616
Podemos seguir matematicamente
01:58
and take the meme-ome from one talk
48
106405
1840
e sacar o meme-ome dunha charla
02:00
and compare it to the meme-ome from every other talk,
49
108245
2454
e comparalo có meme-ome de todas as outras charlas
02:02
and if there's a similarity between the two of them,
50
110699
1973
e, se hai semellanzas entre dous deles,
02:04
we can create a link and represent that as a graph,
51
112672
3250
podemos crear un vínculo e representalo cun gráfico,
02:07
just like Eric and I are connected.
52
115922
2394
xusto coma Eric e eu estamos conectados.
02:10
So that's theory, that's great.
53
118316
1394
Esta é a teoría, xenial.
02:11
Let's see how it works in actual practice.
54
119710
2526
Imos ver como funciona na práctica.
02:14
So what we've got here now is the global footprint
55
122236
2788
O que temos agora é a pegada global
02:17
of all the TEDx Talks over the last four years
56
125024
2293
de todas as charlas de TEDx dos últimos catro anos
02:19
exploding out around the world
57
127317
1550
que están a explotar ao redor do mundo,
02:20
from New York all the way down to little old New Zealand in the corner.
58
128867
3329
dende Nova York ata a pequena e vella Nova Zelanda alá na esquina.
02:24
And what we did on this is we analyzed the top 25 percent of these,
59
132196
3835
O que fixemos con isto foi analizar o 25 por cento,
02:28
and we started to see where the connections occurred,
60
136031
2534
e comezamos a ver onde se daban as conexións,
02:30
where they connected with each other.
61
138565
1537
onde conectaban unhas con outras.
02:32
Cameron Russell talking about image and beauty
62
140102
1874
Cameron Russell falando sobre imaxe e beleza
02:33
connected over into Europe.
63
141976
1575
conectou toda Europa.
02:35
We've got a bigger conversation about Israel and Palestine
64
143551
2412
Temos unha conversa máis longa sobre Israel e Palestina
02:37
radiating outwards from the Middle East.
65
145963
2255
irradiando cara afora dende Oriente Medio.
02:40
And we've got something a little broader
66
148218
1298
Temos tamén algo máis xeral
02:41
like big data with a truly global footprint
67
149516
2156
como unha fonte de datos cunha pegada global de verdade
02:43
reminiscent of a conversation
68
151672
2179
que alude a unha conversa
02:45
that is happening everywhere.
69
153851
2016
que se dá por todas partes.
02:47
So from this, we kind of run up against the limits
70
155867
2173
Dende aquí, nós coma que corremos contra os límites
02:50
of what we can actually do with a geographic projection,
71
158040
2530
do que actualmente podemos facer cunha proxección xeográfica,
02:52
but luckily, computer technology allows us to go out
72
160570
2052
pero afortunadamente, a tecnoloxía dos ordenadores permítennos saír
02:54
into multidimensional space.
73
162622
1546
ó espazo multimensional.
02:56
So we can take in our network projection
74
164168
1875
Así que podemos coller o noso sistema de proxección,
02:58
and apply a physics engine to this,
75
166043
1750
aplicarlle un mecanismo físico,
02:59
and the similar talks kind of smash together,
76
167793
1885
e as charlas similares farán algo como pegarse unhas a outras,
03:01
and the different ones fly apart,
77
169678
2004
as que sexan diferentes separaranse,
03:03
and what we're left with is something quite beautiful.
78
171682
2072
e o resultado é algo bastante bonito.
03:05
EB: So I want to just point out here that every node is a talk,
79
173754
2957
EB: Eu só quero destacar que cada nóduo é unha charla.
03:08
they're linked if they share similar ideas,
80
176711
2589
Están conectadas entre elas se comparten ideas semellantes
03:11
and that comes from a machine reading
81
179300
2084
e isto vén dado por una lectura mecanizada
03:13
of entire talk transcripts,
82
181384
2067
das transcricións completas das charlas
03:15
and then all these topics that pop out,
83
183451
2231
e, entón, todos os temas que saen á luz
03:17
they're not from tags and keywords.
84
185682
1790
non veñen de etiquetas ou palabras clave.
03:19
They come from the network structure
85
187472
1725
Veñen da rede
03:21
of interconnected ideas. Keep going.
86
189197
2168
de ideas conectadas. Segue.
03:23
SG: Absolutely. So I got a little quick on that,
87
191365
2022
SG: Totalmente. Pode que apure un pouco niso
03:25
but he's going to slow me down.
88
193387
1475
pero el vai frearme.
03:26
We've got education connected to storytelling
89
194862
2034
Temos a educación conectada á narración,
03:28
triangulated next to social media.
90
196896
1643
triangulada de seguido cós medios sociais.
03:30
You've got, of course, the human brain right next to healthcare,
91
198539
2475
Ti tes, por suposto, o cerebro préto da asistencia médica,
03:33
which you might expect,
92
201014
1386
o que debes supor,
03:34
but also you've got video games, which is sort of adjacent,
93
202400
2395
pero tamén tés videoxogos, que é algo así como adxacente,
03:36
as those two spaces interface with each other.
94
204795
2740
xa que estes dous espazos interactúan o un có outro.
03:39
But I want to take you into one cluster
95
207535
1535
Pero quero que formedes parte de algo
03:41
that's particularly important to me, and that's the environment.
96
209070
2868
que é especialmente importante para min: o medio ambiente.
03:43
And I want to kind of zoom in on that
97
211938
1493
Quero acercame a iso
03:45
and see if we can get a little more resolution.
98
213431
2363
e ver se podemos conseguir un pouco máis de resolución.
03:47
So as we go in here, what we start to see,
99
215794
2347
En canto nos adentramos aquí, o que comezamos a ver,
03:50
apply the physics engine again,
100
218141
1504
aplicade o mecanismo da física outra vez,
03:51
we see what's one conversation
101
219645
1676
vemos que unha conversa
03:53
is actually composed of many smaller ones.
102
221321
2560
está formada realmente por moitas conversas máis pequenas.
03:55
The structure starts to emerge
103
223881
1929
A estrutura comeza a saír
03:57
where we see a kind of fractal behavior
104
225810
2070
onde vemos algo parecido a un comportamento fraccional
03:59
of the words and the language that we use
105
227880
1619
das palabras e da linguaxe que usamos
04:01
to describe the things that are important to us
106
229499
1702
para describir as cousas que son importantes para nós
04:03
all around this world.
107
231201
1433
por todo o mundo.
04:04
So you've got food economy and local food at the top,
108
232634
2332
Así que temos a economía alimentaria e a comida local na cima,
04:06
you've got greenhouse gases, solar and nuclear waste.
109
234966
2719
e tamén gases de efecto invernadoiro, e desperdicios solares e nucleares.
04:09
What you're getting is a range of smaller conversations,
110
237685
2631
O que estás a conseguir é unha gama de consversas máis pequenas,
04:12
each connected to each other through the ideas
111
240316
2301
cada unha conectada coa outra a través de ideas
04:14
and the language they share,
112
242617
1301
e da linguaxe que comparten,
04:15
creating a broader concept of the environment.
113
243918
2450
creando un concepto máis amplo do medio ambiente.
04:18
And of course, from here, we can go
114
246368
1532
Por suposto, dende aquí podemos
04:19
and zoom in and see, well, what are young people looking at?
115
247900
3534
fixarnos máis e ver, bueno, ¿en que se está a fixar a xente nova?
04:23
And they're looking at energy technology and nuclear fusion.
116
251434
2345
Estanse a fixar na enerxía, na tecnoloxía e na fusión nuclear.
04:25
This is their kind of resonance
117
253779
1674
Isto é como a repercusión
04:27
for the conversation around the environment.
118
255453
2406
da conversa sobre o medio ambiente.
04:29
If we split along gender lines,
119
257859
1899
Se rompemos coas liñas de xénero,
04:31
we can see females resonating heavily
120
259758
1987
podemos ver mulleres que pisan forte
04:33
with food economy, but also out there in hope and optimism.
121
261745
3645
no campo da economía alimentaria, pero tamén aí fóra en esperanza e optimismo.
04:37
And so there's a lot of exciting stuff we can do here,
122
265390
2482
Hai moitas cousas interesantes que podemos facer aquí,
04:39
and I'll throw to Eric for the next part.
123
267872
1762
e pasareille a testemuña a Eric para a seguinte parte.
04:41
EB: Yeah, I mean, just to point out here,
124
269634
1602
EB: Si, quero dicir, só para remarcar,
04:43
you cannot get this kind of perspective
125
271236
1538
non podes obter este tipo de perspectiva
04:44
from a simple tag search on YouTube.
126
272774
3360
dende unha soa busca en YouTube.
04:48
Let's now zoom back out to the entire global conversation
127
276134
4188
Imos agora volver atrás e fixarnos no total da conversa global
04:52
out of environment, and look at all the talks together.
128
280322
2534
sobre o medio ambiente, e ver todas as charlas xuntas.
04:54
Now often, when we're faced with this amount of content,
129
282856
2927
A miúdo, cando nos enfrontamos a tal cantidade de contido,
04:57
we do a couple of things to simplify it.
130
285783
2431
facemos un par de cousas para facelo máis sinxelo.
05:00
We might just say, well,
131
288214
1314
Debemos dicir, bueno,
05:01
what are the most popular talks out there?
132
289528
2829
¿cales son as charlas máis coñecidas por aí?
05:04
And a few rise to the surface.
133
292357
1397
E unhas poucas suben á superficie.
05:05
There's a talk about gratitude.
134
293754
1828
Hai unha charla sobre aprecio.
05:07
There's another one about personal health and nutrition.
135
295582
3344
Hai outra sobre saúde e nutrición.
05:10
And of course, there's got to be one about porn, right?
136
298926
2929
E por suposto, ten que haber outra sobre porno, ¿verdade?
05:13
And so then we might say, well, gratitude, that was last year.
137
301855
3234
E despois debemos dicir, bueno, aprecio, isto foi o ano pasado.
05:17
What's trending now? What's the popular talk now?
138
305089
2522
¿Que se leva agora? ¿Cal é a charla máis popular agora?
05:19
And we can see that the new, emerging, top trending topic
139
307611
3321
E vemos que o novo, emerxente tema de moda
05:22
is about digital privacy.
140
310932
2666
é sobre privacidade dixital.
05:25
So this is great. It simplifies things.
141
313598
1693
Isto é xenial. Isto simplicfica as cousas,
05:27
But there's so much creative content
142
315291
1827
Pero hai demasiado contido creativo
05:29
that's just buried at the bottom.
143
317118
1921
que simplemente foi soterrado.
05:31
And I hate that. How do we bubble stuff up to the surface
144
319039
3318
Eu odio iso. ¿Como facemos que saia á superficie
05:34
that's maybe really creative and interesting?
145
322357
2458
algo que pode ser realmente creativo e interesante?
05:36
Well, we can go back to the network structure of ideas
146
324815
2931
Bueno, podemos volver á rede de estrutura das ideas
05:39
to do that.
147
327746
1430
para iso.
05:41
Remember, it's that network structure
148
329176
2114
Recorda, esta é a rede
05:43
that is creating these emergent topics,
149
331290
2268
que crea os temas emerxentes.
05:45
and let's say we could take two of them,
150
333558
1515
Digamos que podemos coller dous deles,
05:47
like cities and genetics, and say, well, are there any talks
151
335073
3047
como cidades e xenética, e dicir ben, ¿hai aquí algunha charla
05:50
that creatively bridge these two really different disciplines.
152
338120
2569
que una creativamente estas dúas disciplinas tan diferentes?
05:52
And that's -- Essentially, this kind of creative remix
153
340689
2275
E isto é -- esencialmente, este tipo de remix creativo
05:54
is one of the hallmarks of innovation.
154
342964
1840
é un selo distintivo da innovación.
05:56
Well here's one by Jessica Green
155
344804
1606
Mirade, aquí temos un de Jessica Green
05:58
about the microbial ecology of buildings.
156
346410
2379
sobre a ecoloxía microbiana dos edificios.
06:00
It's literally defining a new field.
157
348789
2010
Está literalmente definindo un novo campo de traballo.
06:02
And we could go back to those topics and say, well,
158
350799
2103
E nós poderiamos volver a eses tópicos e dicir, vale,
06:04
what talks are central to those conversations?
159
352902
2768
que charlas son primordiais para esas conversas?
06:07
In the cities cluster, one of the most central
160
355670
1690
No conxunto de charlas sobre cidades, unha das primordiais
06:09
was one by Mitch Joachim about ecological cities,
161
357360
3952
era unha de Mitch Joachim sobre cidades ecolóxicas,
06:13
and in the genetics cluster,
162
361312
1720
e das charlas sobre xenética,
06:15
we have a talk about synthetic biology by Craig Venter.
163
363032
3193
temos unha sobre bioloxía sintética de Craig Venter.
06:18
These are talks that are linking many talks within their discipline.
164
366225
3353
Estas son charlas que están a unir outras moitas charlas da súa disciplina.
06:21
We could go the other direction and say, well,
165
369578
1843
Podemos ir noutra dirección e dicir está ben,
06:23
what are talks that are broadly synthesizing
166
371421
2272
son charlas que sintetizan ampliamente
06:25
a lot of different kinds of fields.
167
373693
1448
unha morea de campos distintos.
06:27
We used a measure of ecological diversity to get this.
168
375141
2533
Usamos a medida de diversidade ecolóxica para conseguilo.
06:29
Like, a talk by Steven Pinker on the history of violence,
169
377674
2736
Como por exemplo, unha charla de Steven Pinker sobre a historia da violencia,
06:32
very synthetic.
170
380410
1180
moi sintético.
06:33
And then, of course, there are talks that are so unique
171
381590
2078
E logo, por suposto, hai charlas que son tan únicas
06:35
they're kind of out in the stratosphere, in their own special place,
172
383668
3090
que están como na estratosfera, no seu propio sitio especial,
06:38
and we call that the Colleen Flanagan index.
173
386758
2514
e a iso chamámoslle a lista Colleen Flanagan.
06:41
And if you don't know Colleen, she's an artist,
174
389272
3034
Se non coñecedes a Colleen, é unha artista,
06:44
and I asked her, "Well, what's it like out there
175
392306
1543
e un día pregunteille, "¿como é todo ahí fóra
06:45
in the stratosphere of our idea space?"
176
393849
1672
na estratosfera da nosa idea de espazo?"
06:47
And apparently it smells like bacon.
177
395521
3255
E aparentemente cheira a panceta.
06:50
I wouldn't know.
178
398776
1791
Eu non o sabería.
06:52
So we're using these network motifs
179
400567
2248
Polo tanto, estamos a usar a idea central da rede
06:54
to find talks that are unique,
180
402815
1186
para atopar charlas que sexan únicas,
06:56
ones that are creatively synthesizing a lot of different fields,
181
404001
2710
unhas que sintetizan de forma creativa unha morea de campos distintos,
06:58
ones that are central to their topic,
182
406711
1659
outras que se centran no seu tema,
07:00
and ones that are really creatively bridging disparate fields.
183
408370
3374
e outras que abranguen campos disparatados.
07:03
Okay? We never would have found those with our obsession
184
411744
2102
¿Vale? Xamáis os atopariamos de non ser pola nosa obsesión
07:05
with what's trending now.
185
413846
2313
co que está de moda agora.
07:08
And all of this comes from the architecture of complexity,
186
416159
2886
E todo isto vén dado pola arquitectura da complexidade,
07:11
or the patterns of how things are connected.
187
419045
2960
ou polos patróns que conectan as cousas.
07:14
SG: So that's exactly right.
188
422005
1625
SG: Isto é totalmente certo.
07:15
We've got ourselves in a world
189
423630
2479
Metémonos nun mundo
07:18
that's massively complex,
190
426109
2044
excesivamente complexo,
07:20
and we've been using algorithms to kind of filter it down
191
428153
2867
e estivemos a usar algo como algoritmos para filtralo dalgunha maneira
07:23
so we can navigate through it.
192
431020
1786
e así poder navegar nel.
07:24
And those algorithms, whilst being kind of useful,
193
432806
2338
Estes algoritmos, aínda que útiles,
07:27
are also very, very narrow, and we can do better than that,
194
435144
3476
tamén son moi limitados, e podemos facelo mellor
07:30
because we can realize that their complexity is not random.
195
438620
2566
porque podemos decatarmos de que a súa complexidade non é casual.
07:33
It has mathematical structure,
196
441186
1954
Ten unha estrutura matemática,
07:35
and we can use that mathematical structure
197
443140
1803
e podemos usar esta estrutura
07:36
to go and explore things like the world of ideas
198
444943
2214
para explorar cousas como o mundo das ideas
07:39
to see what's being said, to see what's not being said,
199
447157
3000
para ver o que se está a dicir, o que non;
07:42
and to be a little bit more human
200
450157
1407
para ser un pouquiño máis humanos
07:43
and, hopefully, a little smarter.
201
451564
1867
e, con sorte, un pouquiño máis listos.
07:45
Thank you.
202
453431
966
Grazas.
07:46
(Applause)
203
454397
4220
(Aplausos)
Translated by Laura Rodríguez
Reviewed by Alicia Ferreiro

▲Back to top

ABOUT THE SPEAKERS
Eric Berlow - Ecologist
TED Senior Fellow Eric Berlow studies ecology and networks, exposing the interconnectedness of our ecosystems with climate change, government, corporations and more.

Why you should listen

Eric Berlow is an ecologist and network scientist who specializes in not specializing. A TED Senior Fellow, Berlow is recognized for his research on food webs and ecological networks and for creative approaches to complex problems. He was the founding director of the University of California's first environmental science center inside Yosemite National Park, where he continues to develop data-driven approaches to managing natural ecosystems. 

In 2012 Berlow founded Vibrant Data Labs, which builds tools to use data for social good. Berlow's current projects range from helping spark an egalitarian personal data economy to protecting endangered amphibians in Yosemite to crowd-sourcing novel insights about human creativity. Berlow holds a Ph.D. from Oregon State University in marine ecology.

 

 

More profile about the speaker
Eric Berlow | Speaker | TED.com
Sean Gourley - Physicist and military theorist
Sean Gourley, trained as a physicist, has turned his scientific mind to analyzing data about a messier topic: modern war and conflict. He is a TED Fellow.

Why you should listen

Sean Gourley's twin passions are physics (working on nanoscale blue-light lasers and self-assembled quantum nanowires) and politics (he once ran for a national elected office back home in New Zealand).

A Rhodes scholar, he's spent the past five years working at Oxford on complex adaptive systems and collective intelligent systems -- basically, using data to understand the nature of human conflict. As he puts it, "This research has taken me all over the world from the Pentagon, to the House of Lords, the United Nations and most recently to Iraq". Originally from New Zealand, he now lives in San Francisco, where he is the co-founder and CTO of Quid which is building a global intelligence platform. He's a 2009 TED Fellow.

In December 2009, Gourley and his team's research was published in the scientific journal Nature. He is co-founder and CTO of Quid.

More profile about the speaker
Sean Gourley | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee