ABOUT THE SPEAKERS
Eric Berlow - Ecologist
TED Senior Fellow Eric Berlow studies ecology and networks, exposing the interconnectedness of our ecosystems with climate change, government, corporations and more.

Why you should listen

Eric Berlow is an ecologist and network scientist who specializes in not specializing. A TED Senior Fellow, Berlow is recognized for his research on food webs and ecological networks and for creative approaches to complex problems. He was the founding director of the University of California's first environmental science center inside Yosemite National Park, where he continues to develop data-driven approaches to managing natural ecosystems. 

In 2012 Berlow founded Vibrant Data Labs, which builds tools to use data for social good. Berlow's current projects range from helping spark an egalitarian personal data economy to protecting endangered amphibians in Yosemite to crowd-sourcing novel insights about human creativity. Berlow holds a Ph.D. from Oregon State University in marine ecology.

 

 

More profile about the speaker
Eric Berlow | Speaker | TED.com
Sean Gourley - Physicist and military theorist
Sean Gourley, trained as a physicist, has turned his scientific mind to analyzing data about a messier topic: modern war and conflict. He is a TED Fellow.

Why you should listen

Sean Gourley's twin passions are physics (working on nanoscale blue-light lasers and self-assembled quantum nanowires) and politics (he once ran for a national elected office back home in New Zealand).

A Rhodes scholar, he's spent the past five years working at Oxford on complex adaptive systems and collective intelligent systems -- basically, using data to understand the nature of human conflict. As he puts it, "This research has taken me all over the world from the Pentagon, to the House of Lords, the United Nations and most recently to Iraq". Originally from New Zealand, he now lives in San Francisco, where he is the co-founder and CTO of Quid which is building a global intelligence platform. He's a 2009 TED Fellow.

In December 2009, Gourley and his team's research was published in the scientific journal Nature. He is co-founder and CTO of Quid.

More profile about the speaker
Sean Gourley | Speaker | TED.com
TED2013

Eric Berlow and Sean Gourley: Mapping ideas worth spreading

Eric Berlow and Sean Gourley: Hartezimi i ideve qe vlejne per t'u perhapur.

Filmed:
1,131,373 views

Si duken 24.000 ide? Ekologjisti Eric Berlow dhe fizikanti Sean Gourley aplikojne algoritme ne tere arkiven e fjalimeve TEDx, duke na sjell ne nje udhetim vizual nxites per te na treguar si lidhen idete globalisht.
- Ecologist
TED Senior Fellow Eric Berlow studies ecology and networks, exposing the interconnectedness of our ecosystems with climate change, government, corporations and more. Full bio - Physicist and military theorist
Sean Gourley, trained as a physicist, has turned his scientific mind to analyzing data about a messier topic: modern war and conflict. He is a TED Fellow. Full bio

Double-click the English transcript below to play the video.

00:12
Eric Berlow: I'm an ecologist, and Sean's a physicist,
0
562
3061
Eric Berlow: Une jam nje ekolog dhe Sean eshte nje fizikant,
00:15
and we both study complex networks.
1
3623
2108
se bashku ne studiojme rrjete te nderlikuara.
00:17
And we met a couple years ago when we discovered
2
5731
1835
Jemi njohur disa vjet me pare kur zbuluam
00:19
that we had both given a short TED Talk
3
7566
2000
se na eshte dhene nga nje fjalim TED i shkurter
00:21
about the ecology of war,
4
9566
2303
mbi ekologjine e luftes,
00:23
and we realized that we were connected
5
11869
1447
dhe zbuluam se na bashkonin
00:25
by the ideas we shared before we ever met.
6
13316
2818
idete qe ndanim para se te njiheshim.
00:28
And then we thought, you know, there are thousands
7
16134
1556
Me pas menduam, se mund te kete me mijera
00:29
of other talks out there, especially TEDx Talks,
8
17690
2114
fjalime te tjera atje, mbi te gjitha fjalime te TEDx,
00:31
that are popping up all over the world.
9
19804
2211
qe po shfaqen ne te gjithe boten.
00:34
How are they connected,
10
22015
923
Si jane te lidhura ato ,
00:34
and what does that global conversation look like?
11
22938
2010
dhe si ngjason biseda globale?
00:36
So Sean's going to tell you a little bit about how we did that.
12
24948
2810
Sean do ju tregoje pak se si e beme ate.
00:39
Sean Gourley: Exactly. So we took 24,000 TEDx Talks
13
27758
3767
Sean Gourley: Pikerisht. Ne morem 24.000 fjalime TEDx
00:43
from around the world, 147 different countries,
14
31525
3046
nga e gjithe bota, 147 shtete te ndryshme,
00:46
and we took these talks and we wanted to find
15
34571
2123
ajo cka donim te gjenim ne keto fjalime ishte
00:48
the mathematical structures that underly
16
36694
2040
strukturat matematikore qe fshehin
00:50
the ideas behind them.
17
38734
1722
idete pas tyre.
00:52
And we wanted to do that so we could see how
18
40456
1370
Dhe donin ta benim kete ne menyre qe te shihnim
00:53
they connected with each other.
19
41826
2053
se si lidheshin ato mes tyre.
00:55
And so, of course, if you're going to do this kind of stuff,
20
43879
1676
Dhe sigurisht, nese do te besh dicka te tille,
00:57
you need a lot of data.
21
45555
956
te duhen shume te dhena.
00:58
So the data that you've got is a great thing called YouTube,
22
46511
3686
Dhe te dhenat qe ti ke eshte nje dicka e madhe qe quhet YouTube,
01:02
and we can go down and basically pull
23
50197
1768
ku mund te nxjerrim
01:03
all the open information from YouTube,
24
51965
2267
te gjithe informacionin e hapur nga YouTube,
01:06
all the comments, all the views, who's watching it,
25
54232
2349
te gjitha komentet, shikimet, kush po e sheh ate,
01:08
where are they watching it, what are they saying in the comments.
26
56581
2779
ku po e shohin dhe cfare po thone ne komente.
01:11
But we can also pull up, using speech-to-text translation,
27
59360
3292
Por mund edhe te nxjerrim, duke perdorur perkthimet nga te folurit ne tekste,
01:14
we can pull the entire transcript,
28
62652
2128
mund te perdorim te gjithe kopjen e shkruar,
01:16
and that works even for people with kind of funny accents like myself.
29
64780
2680
dhe kjo funksionon dhe per njerezit me dialekt pak qesharak si ky i imi.
01:19
So we can take their transcript
30
67460
2106
Pra ne mund te marim kopjen e shkruar
01:21
and actually do some pretty cool things.
31
69566
2098
dhe realisht te bejme disa gjera shume interesante.
01:23
We can take natural language processing algorithms
32
71664
2160
Mund te marim algoritme natyrore te perpunimit te gjuhes
01:25
to kind of read through with a computer, line by line,
33
73824
2629
per te lexuar me nje kompjuter, rrjesht pas rrjeshti,
01:28
extracting key concepts from this.
34
76453
2359
duke nxjerre koncepte kyce nga kjo.
01:30
And we take those key concepts and they sort of form
35
78812
2525
I marim keto koncepte kyce qe perbejne
01:33
this mathematical structure of an idea.
36
81337
3565
strukturen matematikore te nje ideje.
01:36
And we call that the meme-ome.
37
84902
1757
Dhe kete e quajme meme-ome.
01:38
And the meme-ome, you know, quite simply,
38
86659
2151
Meme-ome, shume thjesht
01:40
is the mathematics that underlies an idea,
39
88810
2426
eshte matematika ne bazen e nje ideje,
01:43
and we can do some pretty interesting analysis with it,
40
91236
1932
dhe mund te bejme nje analize shume interesante me te,
01:45
which I want to share with you now.
41
93168
1981
te cilen dua ta ndaj me ju.
01:47
So each idea has its own meme-ome,
42
95149
2190
Pra cdo ide ka meme-ome e vet,
01:49
and each idea is unique with that,
43
97339
1951
dhe cdo ide eshte unike,
01:51
but of course, ideas, they borrow from each other,
44
99290
2488
por sigurisht, idete, huazojne nga njera tjetra,
01:53
they kind of steal sometimes,
45
101778
1184
madje dhe vjedhin nga njera-tjetra ndonjehere,
01:54
and they certainly build on each other,
46
102962
1827
dhe sigurisht ndertohen mbi njera tjetren
01:56
and we can go through mathematically
47
104789
1616
keshtu mund te vazhdojme matematikisht
01:58
and take the meme-ome from one talk
48
106405
1840
dhe te marim meme-ome nga nje fjalim
02:00
and compare it to the meme-ome from every other talk,
49
108245
2454
dhe ta krahasojme ate me meme-ome me cdo fjalim tjeter,
02:02
and if there's a similarity between the two of them,
50
110699
1973
dhe nese ka ngjashmeri mes dy nga ato,
02:04
we can create a link and represent that as a graph,
51
112672
3250
mund te krijojme nje lidhje si grafik,
02:07
just like Eric and I are connected.
52
115922
2394
ashtu sic jam i lidhur une me Eric.
02:10
So that's theory, that's great.
53
118316
1394
Pra kjo eshte teori. Kjo eshte e mrekullueshme.
02:11
Let's see how it works in actual practice.
54
119710
2526
Le te shohim si funksionon ne praktike.
02:14
So what we've got here now is the global footprint
55
122236
2788
Ajo cka kemi ketu eshte gjurma globale
02:17
of all the TEDx Talks over the last four years
56
125024
2293
nga te gjitha fjalimet e TEDx per kater vitet e fundit
02:19
exploding out around the world
57
127317
1550
qe shperthejne ne bote
02:20
from New York all the way down to little old New Zealand in the corner.
58
128867
3329
nga New York deri ne Zelanden e Re ketu ne qoshe.
02:24
And what we did on this is we analyzed the top 25 percent of these,
59
132196
3835
Ajo cka beme ketu ishte analiza e 25 perqind te ketyre,
02:28
and we started to see where the connections occurred,
60
136031
2534
dhe filluam te shikonim se ku shfaqeshin lidhjet,
02:30
where they connected with each other.
61
138565
1537
atje ku bashkoheshin me njera tjetren.
02:32
Cameron Russell talking about image and beauty
62
140102
1874
Cameron Russell duke folur mbi imazhin dhe bukurine
02:33
connected over into Europe.
63
141976
1575
lidhet me te gjithe Europen.
02:35
We've got a bigger conversation about Israel and Palestine
64
143551
2412
Kemi nje diskutim me te madh mbi Israelin dhe Palestinen
02:37
radiating outwards from the Middle East.
65
145963
2255
e cila perhapet drejt Lindjes se Mesme.
02:40
And we've got something a little broader
66
148218
1298
Dhe kemi dicka me te gjere
02:41
like big data with a truly global footprint
67
149516
2156
si te dhena te medha me gjurme te verteta globale
02:43
reminiscent of a conversation
68
151672
2179
e cila ngjason me nje bisede
02:45
that is happening everywhere.
69
153851
2016
qe po ndodh kudo.
02:47
So from this, we kind of run up against the limits
70
155867
2173
Nga kjo, u gjendem disi kundrejt limiteve
02:50
of what we can actually do with a geographic projection,
71
158040
2530
nga cka mund te bejme realisht me projektimin gjeografik,
02:52
but luckily, computer technology allows us to go out
72
160570
2052
por fatmiresisht, teknologjia kompjuterike na lejon te dalim
02:54
into multidimensional space.
73
162622
1546
ne nje hapesire shume dimensionale.
02:56
So we can take in our network projection
74
164168
1875
Keshtu mund te marim projektin tone te rrjetit
02:58
and apply a physics engine to this,
75
166043
1750
dhe te aplikojme nje motor fizike ne kete,
02:59
and the similar talks kind of smash together,
76
167793
1885
keshtu fjalimet e ngjashme pak a shume perplasen me njera tjetren,
03:01
and the different ones fly apart,
77
169678
2004
kurse ato te ndryshmet vecohen,
03:03
and what we're left with is something quite beautiful.
78
171682
2072
dhe ajo cka na mbetet eshte dicka shume e bukur.
03:05
EB: So I want to just point out here that every node is a talk,
79
173754
2957
EB: Dua te nenvizoj ketu se cdo nyje eshte nje fjalim,
03:08
they're linked if they share similar ideas,
80
176711
2589
ato lidhen nese ndajne te njejtat ide,
03:11
and that comes from a machine reading
81
179300
2084
dhe kjo del nga nje mekanizem lexues
03:13
of entire talk transcripts,
82
181384
2067
i kopjes se shkruar ne teresi,
03:15
and then all these topics that pop out,
83
183451
2231
dhe me pas te gjitha subjektet qe ndahen,
03:17
they're not from tags and keywords.
84
185682
1790
nuk jane nga etiketimet ose fjalet kyce.
03:19
They come from the network structure
85
187472
1725
Ato vine nga struktura e rrjetit
03:21
of interconnected ideas. Keep going.
86
189197
2168
te ideve te nderlidhura. Vazhdo.
03:23
SG: Absolutely. So I got a little quick on that,
87
191365
2022
SG. Absolutisht. U nxitova pak aty,
03:25
but he's going to slow me down.
88
193387
1475
por ai do me ngadalsoje pak.
03:26
We've got education connected to storytelling
89
194862
2034
Kemi edukimin qe lidhet me tregimet
03:28
triangulated next to social media.
90
196896
1643
ne trekendesh me median sociale.
03:30
You've got, of course, the human brain right next to healthcare,
91
198539
2475
Keni sigurisht, trurin e njeriut prane kujdesit shendetesor,
03:33
which you might expect,
92
201014
1386
ku mund ta prisni,
03:34
but also you've got video games, which is sort of adjacent,
93
202400
2395
por gjithashtu keni dhe lojrat elektronike e cila eshte afer,
03:36
as those two spaces interface with each other.
94
204795
2740
ndersa keto dy hapesira interferojne me njera tjetren.
03:39
But I want to take you into one cluster
95
207535
1535
Por dua tju terheq ne nje grumbull
03:41
that's particularly important to me, and that's the environment.
96
209070
2868
qe eshte ne vecanti shume i rendesishem per mua, dhe ky eshte mjedisi.
03:43
And I want to kind of zoom in on that
97
211938
1493
Dhe dua ta zmadhoj pak ketu
03:45
and see if we can get a little more resolution.
98
213431
2363
dhe te shohim nese mund te marim nje rezolucion pak me te larte.
03:47
So as we go in here, what we start to see,
99
215794
2347
Pra duke u futur ketu, ajo cka fillojme te shohim,
03:50
apply the physics engine again,
100
218141
1504
duke aplikuar perseri motorin e fizikes,
03:51
we see what's one conversation
101
219645
1676
shohim se nje bisede
03:53
is actually composed of many smaller ones.
102
221321
2560
aktualisht eshte e perbere nga disa me te vogla.
03:55
The structure starts to emerge
103
223881
1929
Struktura fillon te shfaqet
03:57
where we see a kind of fractal behavior
104
225810
2070
ku shohim nje sjellje disi fraktale
03:59
of the words and the language that we use
105
227880
1619
e fjaleve dhe gjuhes qe perdorim
04:01
to describe the things that are important to us
106
229499
1702
per te pershkruar gjera qe jane interesante per ne
04:03
all around this world.
107
231201
1433
ne kete bote.
04:04
So you've got food economy and local food at the top,
108
232634
2332
Kemi ekonomine e ushqimit dhe ushqimin lokal ne skaj,
04:06
you've got greenhouse gases, solar and nuclear waste.
109
234966
2719
kemi gazrat e serrave, mbetjet diellore dhe berthamore.
04:09
What you're getting is a range of smaller conversations,
110
237685
2631
Ajo cka merrni eshte nje linje bisedash me te vogla,
04:12
each connected to each other through the ideas
111
240316
2301
te lidhura me njera tjetren ndermjet ideve
04:14
and the language they share,
112
242617
1301
dhe gjuhes qe ato ndajne,
04:15
creating a broader concept of the environment.
113
243918
2450
duke krijuar nje koncept me te gjere mbi mjedisin.
04:18
And of course, from here, we can go
114
246368
1532
Dhe sigurisht nga ketu, mund te shkojme
04:19
and zoom in and see, well, what are young people looking at?
115
247900
3534
dhe te zmadhojme e shohim, se cfare shohin te rinjte?
04:23
And they're looking at energy technology and nuclear fusion.
116
251434
2345
Ata shohin teknologjine energjitike dhe fusionin berthamor.
04:25
This is their kind of resonance
117
253779
1674
Kjo eshte rezonanca e tyre
04:27
for the conversation around the environment.
118
255453
2406
per bisedat mbi mjedisin.
04:29
If we split along gender lines,
119
257859
1899
Nese do ndajme linjat gjinore,
04:31
we can see females resonating heavily
120
259758
1987
mund te shohim se gjinia femerore anon me shume
04:33
with food economy, but also out there in hope and optimism.
121
261745
3645
ne ekonomine ushqimore, por gjithashtu ne shprese dhe optimizem.
04:37
And so there's a lot of exciting stuff we can do here,
122
265390
2482
Dhe keshtu kemi disa gjera shume interesante qe mund te bejme ketu,
04:39
and I'll throw to Eric for the next part.
123
267872
1762
dhe do tja kaloj Eric per pjesen tjeter.
04:41
EB: Yeah, I mean, just to point out here,
124
269634
1602
EB: Po, dua te them thjesht per te theksuar
04:43
you cannot get this kind of perspective
125
271236
1538
nuk mund ta maresh kete perspektive
04:44
from a simple tag search on YouTube.
126
272774
3360
nga nje etiketim i thjeshte ne YouTube.
04:48
Let's now zoom back out to the entire global conversation
127
276134
4188
Tani le te zmadhojme te gjitha bisedat globale
04:52
out of environment, and look at all the talks together.
128
280322
2534
nga mjedisi, dhe te shohim gjithe fjalimet bashke.
04:54
Now often, when we're faced with this amount of content,
129
282856
2927
Shpesh ne hasim kete sasi permbajtjeje,
04:57
we do a couple of things to simplify it.
130
285783
2431
dhe kryejme disa gjera per ti thjeshtuar.
05:00
We might just say, well,
131
288214
1314
Edhe mund te themi, ne rregull,
05:01
what are the most popular talks out there?
132
289528
2829
cilat jane fjalimet me te njohura aty?
05:04
And a few rise to the surface.
133
292357
1397
Dhe disa dalin ne siperfaqe.
05:05
There's a talk about gratitude.
134
293754
1828
Ekziston nje fjalim mbi mirenjohjen.
05:07
There's another one about personal health and nutrition.
135
295582
3344
Eshte dhe nje tjeter mbi shendetin personal dhe ushqimin.
05:10
And of course, there's got to be one about porn, right?
136
298926
2929
Dhe sigurisht duhet te kete dhe nje mbi pornografine apo jo?
05:13
And so then we might say, well, gratitude, that was last year.
137
301855
3234
Dhe atehere mund te themi, mirenjohja ishte vitin e kaluar.
05:17
What's trending now? What's the popular talk now?
138
305089
2522
Por cfare eshte ne qarkullim tani? Cili eshte fjalimi me i njohur tani?
05:19
And we can see that the new, emerging, top trending topic
139
307611
3321
Dhe mund te shohim se subjekti me ne qarkullim
05:22
is about digital privacy.
140
310932
2666
eshte ai mbi privatesine dixhitale.
05:25
So this is great. It simplifies things.
141
313598
1693
Pra kjo eshte e mrekullueshme. Kjo i thjeshton gjerat.
05:27
But there's so much creative content
142
315291
1827
Por ka kaq shume subjekte me krijuese
05:29
that's just buried at the bottom.
143
317118
1921
te cilat jane te varrosura ne fund.
05:31
And I hate that. How do we bubble stuff up to the surface
144
319039
3318
Dhe une e urrej kete. Si mund te nxjerrim ne siperfaqe gjera
05:34
that's maybe really creative and interesting?
145
322357
2458
te cilat mund te jene krijuese dhe interesante?
05:36
Well, we can go back to the network structure of ideas
146
324815
2931
Mund ti kthehemi struktures se rrjetit te ideve
05:39
to do that.
147
327746
1430
per ta bere.
05:41
Remember, it's that network structure
148
329176
2114
Mbani mend, eshte ajo strukture rrjeti
05:43
that is creating these emergent topics,
149
331290
2268
e cila krijon subjektet ne zhvillim,
05:45
and let's say we could take two of them,
150
333558
1515
dhe le te themi qe mund te marrim dy nga ato,
05:47
like cities and genetics, and say, well, are there any talks
151
335073
3047
si qytete dhe gjenetika dhe te themi, a ekzistojne fjalime
05:50
that creatively bridge these two really different disciplines.
152
338120
2569
qe krijimtarisht lidh keto dy disiplina vertet te ndryshme.
05:52
And that's -- Essentially, this kind of creative remix
153
340689
2275
Dhe kjo eshte --Ne thelb, ky lloj remiksi kreativ
05:54
is one of the hallmarks of innovation.
154
342964
1840
eshte nje nga shenjat dalluese te risis.
05:56
Well here's one by Jessica Green
155
344804
1606
Ketu kemi nje nga Jessica Green
05:58
about the microbial ecology of buildings.
156
346410
2379
mbi ekologjine mikrobiale te ndertesave.
06:00
It's literally defining a new field.
157
348789
2010
Kjo percakton vertet nje fushe te re.
06:02
And we could go back to those topics and say, well,
158
350799
2103
Dhe mund ti kthehemi ketyre subjekteve duke thene
06:04
what talks are central to those conversations?
159
352902
2768
cilat fjalime kryesojne ne keto biseda?
06:07
In the cities cluster, one of the most central
160
355670
1690
Ne grumbullin e qyteteve, nje nga me kryesoret
06:09
was one by Mitch Joachim about ecological cities,
161
357360
3952
eshte njera nga Mitch Joachim mbi ekologjine e qyteteve,
06:13
and in the genetics cluster,
162
361312
1720
dhe ne grumbullin e gjenetikes,
06:15
we have a talk about synthetic biology by Craig Venter.
163
363032
3193
kemi nje fjalim mbi biologjine sintetike nga Craig Venter.
06:18
These are talks that are linking many talks within their discipline.
164
366225
3353
Keto jane fjalime te cilat permbajne shume fjalime ne disiplinen e tyre.
06:21
We could go the other direction and say, well,
165
369578
1843
Mund te shkojme ne nje tjeter drejtim e te themi
06:23
what are talks that are broadly synthesizing
166
371421
2272
cilat jane fjalimet qe gjeresisht sintetizojne
06:25
a lot of different kinds of fields.
167
373693
1448
shume fusha te ndryshme.
06:27
We used a measure of ecological diversity to get this.
168
375141
2533
Ne perdorem nje mates mbi diversitetin ekologjik per ta marr kete.
06:29
Like, a talk by Steven Pinker on the history of violence,
169
377674
2736
Si fjalimi i Steven Pinker mbi historine e dhunes,
06:32
very synthetic.
170
380410
1180
shume sintetike.
06:33
And then, of course, there are talks that are so unique
171
381590
2078
Sigurisht keto jane fjalime shume te vecanta
06:35
they're kind of out in the stratosphere, in their own special place,
172
383668
3090
qe pak a shume jane jashte stratosferes ne vendin e tyre te vecante,
06:38
and we call that the Colleen Flanagan index.
173
386758
2514
dhe ne e quajme ate indeksi Colleen Flanagan.
06:41
And if you don't know Colleen, she's an artist,
174
389272
3034
Ne rast se nuk e njihni Collen, ajo eshte nje artiste,
06:44
and I asked her, "Well, what's it like out there
175
392306
1543
dhe une e pyeta ate, "Si eshte te jesh aty jashte
06:45
in the stratosphere of our idea space?"
176
393849
1672
ne stratosferen e hapesires se ideve?"
06:47
And apparently it smells like bacon.
177
395521
3255
Dhe me sa duket kishte nje ere si proshute e tymosur.
06:50
I wouldn't know.
178
398776
1791
Nuk kisha si ta dija.
06:52
So we're using these network motifs
179
400567
2248
Pra ne perdorim keto modele rrjeti
06:54
to find talks that are unique,
180
402815
1186
per te gjetur fjalime te vecanta,
06:56
ones that are creatively synthesizing a lot of different fields,
181
404001
2710
ato te cilat jane te sintetizuara krijimtarisht nga shume fusha te ndryshme,
06:58
ones that are central to their topic,
182
406711
1659
ato te cilat kryesojne subjektin e tyre,
07:00
and ones that are really creatively bridging disparate fields.
183
408370
3374
dhe ato te cilat lidhin krijimtarisht fusha te pangjashme.
07:03
Okay? We never would have found those with our obsession
184
411744
2102
Ne nuk mund ti gjenim ato kurre me manine
07:05
with what's trending now.
185
413846
2313
se cfare eshte ne qarkullim tani.
07:08
And all of this comes from the architecture of complexity,
186
416159
2886
Dhe e gjitha kjo vjen nga arkitektura e kompleksitetit,
07:11
or the patterns of how things are connected.
187
419045
2960
ose te modeleve te se si gjerat jane te lidhura.
07:14
SG: So that's exactly right.
188
422005
1625
SG: Kjo eshte ekzaktesisht e vertete.
07:15
We've got ourselves in a world
189
423630
2479
Jemi ne nje bote
07:18
that's massively complex,
190
426109
2044
e cila eshte masivisht komplekse,
07:20
and we've been using algorithms to kind of filter it down
191
428153
2867
dhe ne kemi perdorur algoritme per ta filtrurar ate
07:23
so we can navigate through it.
192
431020
1786
ne menyre qe ne te mund te lundrojme ne te.
07:24
And those algorithms, whilst being kind of useful,
193
432806
2338
Dhe keto algoritme ndersa jane shume te dobishme dhe te mira
07:27
are also very, very narrow, and we can do better than that,
194
435144
3476
jane gjithashtu dhe shume te kufizuara, dhe ne mund te bejme me shume se aq,
07:30
because we can realize that their complexity is not random.
195
438620
2566
sepse mund te kuptojme qe kompleksiteti i tyre nuk eshte i rastesishem.
07:33
It has mathematical structure,
196
441186
1954
Ka nje strukture matematikore,
07:35
and we can use that mathematical structure
197
443140
1803
dhe mund ta perdorim ate strukture matematikore
07:36
to go and explore things like the world of ideas
198
444943
2214
per te zbuluar gjera si boten e ideve
07:39
to see what's being said, to see what's not being said,
199
447157
3000
per te pare se cfare po thuhet, dhe cfare nuk po thuhet,
07:42
and to be a little bit more human
200
450157
1407
dhe per te qene pak me njerezor
07:43
and, hopefully, a little smarter.
201
451564
1867
dhe me shprese, pak me te zgjuar.
07:45
Thank you.
202
453431
966
Faleminderit.
07:46
(Applause)
203
454397
4220
(Duartrokitje)
Translated by Alisa Xholi
Reviewed by Helena Bedalli

▲Back to top

ABOUT THE SPEAKERS
Eric Berlow - Ecologist
TED Senior Fellow Eric Berlow studies ecology and networks, exposing the interconnectedness of our ecosystems with climate change, government, corporations and more.

Why you should listen

Eric Berlow is an ecologist and network scientist who specializes in not specializing. A TED Senior Fellow, Berlow is recognized for his research on food webs and ecological networks and for creative approaches to complex problems. He was the founding director of the University of California's first environmental science center inside Yosemite National Park, where he continues to develop data-driven approaches to managing natural ecosystems. 

In 2012 Berlow founded Vibrant Data Labs, which builds tools to use data for social good. Berlow's current projects range from helping spark an egalitarian personal data economy to protecting endangered amphibians in Yosemite to crowd-sourcing novel insights about human creativity. Berlow holds a Ph.D. from Oregon State University in marine ecology.

 

 

More profile about the speaker
Eric Berlow | Speaker | TED.com
Sean Gourley - Physicist and military theorist
Sean Gourley, trained as a physicist, has turned his scientific mind to analyzing data about a messier topic: modern war and conflict. He is a TED Fellow.

Why you should listen

Sean Gourley's twin passions are physics (working on nanoscale blue-light lasers and self-assembled quantum nanowires) and politics (he once ran for a national elected office back home in New Zealand).

A Rhodes scholar, he's spent the past five years working at Oxford on complex adaptive systems and collective intelligent systems -- basically, using data to understand the nature of human conflict. As he puts it, "This research has taken me all over the world from the Pentagon, to the House of Lords, the United Nations and most recently to Iraq". Originally from New Zealand, he now lives in San Francisco, where he is the co-founder and CTO of Quid which is building a global intelligence platform. He's a 2009 TED Fellow.

In December 2009, Gourley and his team's research was published in the scientific journal Nature. He is co-founder and CTO of Quid.

More profile about the speaker
Sean Gourley | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee