ABOUT THE SPEAKERS
Eric Berlow - Ecologist
TED Senior Fellow Eric Berlow studies ecology and networks, exposing the interconnectedness of our ecosystems with climate change, government, corporations and more.

Why you should listen

Eric Berlow is an ecologist and network scientist who specializes in not specializing. A TED Senior Fellow, Berlow is recognized for his research on food webs and ecological networks and for creative approaches to complex problems. He was the founding director of the University of California's first environmental science center inside Yosemite National Park, where he continues to develop data-driven approaches to managing natural ecosystems. 

In 2012 Berlow founded Vibrant Data Labs, which builds tools to use data for social good. Berlow's current projects range from helping spark an egalitarian personal data economy to protecting endangered amphibians in Yosemite to crowd-sourcing novel insights about human creativity. Berlow holds a Ph.D. from Oregon State University in marine ecology.

 

 

More profile about the speaker
Eric Berlow | Speaker | TED.com
Sean Gourley - Physicist and military theorist
Sean Gourley, trained as a physicist, has turned his scientific mind to analyzing data about a messier topic: modern war and conflict. He is a TED Fellow.

Why you should listen

Sean Gourley's twin passions are physics (working on nanoscale blue-light lasers and self-assembled quantum nanowires) and politics (he once ran for a national elected office back home in New Zealand).

A Rhodes scholar, he's spent the past five years working at Oxford on complex adaptive systems and collective intelligent systems -- basically, using data to understand the nature of human conflict. As he puts it, "This research has taken me all over the world from the Pentagon, to the House of Lords, the United Nations and most recently to Iraq". Originally from New Zealand, he now lives in San Francisco, where he is the co-founder and CTO of Quid which is building a global intelligence platform. He's a 2009 TED Fellow.

In December 2009, Gourley and his team's research was published in the scientific journal Nature. He is co-founder and CTO of Quid.

More profile about the speaker
Sean Gourley | Speaker | TED.com
TED2013

Eric Berlow and Sean Gourley: Mapping ideas worth spreading

Eric Berlow 和 Sean Gourley: 图示值得传播的思想

Filmed:
1,131,373 views

24000个演讲,到底是怎样的?生态学家Eric Berlow和物理学家Sean Gourley对整个TEDx演讲运用了一种算法,用一场视觉的盛宴告诉我们,这些全球性的演讲是如何联系在一起的。
- Ecologist
TED Senior Fellow Eric Berlow studies ecology and networks, exposing the interconnectedness of our ecosystems with climate change, government, corporations and more. Full bio - Physicist and military theorist
Sean Gourley, trained as a physicist, has turned his scientific mind to analyzing data about a messier topic: modern war and conflict. He is a TED Fellow. Full bio

Double-click the English transcript below to play the video.

00:12
Eric埃里克 Berlow伯娄: I'm an ecologist生态学家, and Sean's肖恩的 a physicist物理学家,
0
562
3061
Eric Berlow: 我是一个生态学家,而Sean是个物理学家,
00:15
and we both study研究 complex复杂 networks网络.
1
3623
2108
我们都在研究一些复杂的网络系统。
00:17
And we met会见 a couple一对 years年份 ago when we discovered发现
2
5731
1835
几年前我们见了次面
00:19
that we had both given特定 a short TEDTED Talk
3
7566
2000
发现我们都曾在TED
00:21
about the ecology生态 of war战争,
4
9566
2303
做过关于战争生态学的演讲,
00:23
and we realized实现 that we were connected连接的
5
11869
1447
然后发现,即便没见过彼此,
00:25
by the ideas思路 we shared共享 before we ever met会见.
6
13316
2818
我们也因那些共同的想法联系在一起了。
00:28
And then we thought, you know, there are thousands数千
7
16134
1556
我们觉得,你们也知道,TED有成千上万个演讲,
00:29
of other talks会谈 out there, especially特别 TEDx的TEDx Talks会谈,
8
17690
2114
其中TEDx的演讲特别多,
00:31
that are popping up all over the world世界.
9
19804
2211
已经遍布世界各地了。
00:34
How are they connected连接的,
10
22015
923
他们是如何联系在一起的,
00:34
and what does that global全球 conversation会话 look like?
11
22938
2010
这种跨越国界的对话会是怎样的?
00:36
So Sean's肖恩的 going to tell you a little bit about how we did that.
12
24948
2810
下面就由Sean为大家讲一下我们所做的事。
00:39
Sean肖恩 Gourley葛丽: Exactly究竟. So we took 24,000 TEDx的TEDx Talks会谈
13
27758
3767
Sean Gourley: 没错,我们从世界各地147个国家
00:43
from around the world世界, 147 different不同 countries国家,
14
31525
3046
挑选了24,000个TEDx演讲。
00:46
and we took these talks会谈 and we wanted to find
15
34571
2123
在这些演讲中,我们想要找到
00:48
the mathematical数学的 structures结构 that underlyunderly
16
36694
2040
一种数学结构
00:50
the ideas思路 behind背后 them.
17
38734
1722
来揭示视频背后的思想。
00:52
And we wanted to do that so we could see how
18
40456
1370
我们想通过这样做来找出
00:53
they connected连接的 with each other.
19
41826
2053
这些演讲是如何联系在一起的。
00:55
And so, of course课程, if you're going to do this kind of stuff东东,
20
43879
1676
当然,如果想要完成这个目标
00:57
you need a lot of data数据.
21
45555
956
得需要很多数据。
00:58
So the data数据 that you've got is a great thing called YouTubeYouTube的,
22
46511
3686
这些数据就是来自伟大的YouTube,
01:02
and we can go down and basically基本上 pull
23
50197
1768
我们能深入到YouTube,把它
01:03
all the open打开 information信息 from YouTubeYouTube的,
24
51965
2267
所有公开的信息都找出来,
01:06
all the comments注释, all the views意见, who's谁是 watching观看 it,
25
54232
2349
包括评论、点击率、浏览者信息
01:08
where are they watching观看 it, what are they saying in the comments注释.
26
56581
2779
浏览的地点、评论的具体内容。
01:11
But we can also pull up, using运用 speech-to-text语音到文本 translation翻译,
27
59360
3292
但我们也能直接地,通过演讲内容翻译成文本的方式,
01:14
we can pull the entire整个 transcript抄本,
28
62652
2128
能获取整个字幕文本。
01:16
and that works作品 even for people with kind of funny滑稽 accents口音 like myself.
29
64780
2680
这方法对像我一样有搞笑口音的人也是行得通的。
01:19
So we can take their transcript抄本
30
67460
2106
然后我们拿着这些文本
01:21
and actually其实 do some pretty漂亮 cool things.
31
69566
2098
做一些很酷的事情。
01:23
We can take natural自然 language语言 processing处理 algorithms算法
32
71664
2160
我们让电脑用自然语言处理算法
01:25
to kind of read through通过 with a computer电脑, line线 by line线,
33
73824
2629
去逐行地阅读文本,
01:28
extracting提取 key concepts概念 from this.
34
76453
2359
从中提取关键思想。
01:30
And we take those key concepts概念 and they sort分类 of form形成
35
78812
2525
这些关键思想后会形成
01:33
this mathematical数学的 structure结构体 of an idea理念.
36
81337
3565
该样的思想数学结构。
01:36
And we call that the meme-ome米姆,青梅.
37
84902
1757
我们称之为“文化基因集合”。
01:38
And the meme-ome米姆,青梅, you know, quite相当 simply只是,
38
86659
2151
所谓文化基因集合,其实很简单,
01:40
is the mathematics数学 that underliesunderlies an idea理念,
39
88810
2426
就是一种解释思想的数学,
01:43
and we can do some pretty漂亮 interesting有趣 analysis分析 with it,
40
91236
1932
在此之上我们能做一些很有趣的分析,
01:45
which哪一个 I want to share分享 with you now.
41
93168
1981
现在就和大家分享一下这些分析。
01:47
So each idea理念 has its own拥有 meme-ome米姆,青梅,
42
95149
2190
每种思想都有它独自的文化基因集合,
01:49
and each idea理念 is unique独特 with that,
43
97339
1951
每个文化基因集合也不尽相同,
01:51
but of course课程, ideas思路, they borrow from each other,
44
99290
2488
当然,思想嘛,总是大同小异的,
01:53
they kind of steal sometimes有时,
45
101778
1184
有时也会相互借鉴,
01:54
and they certainly当然 build建立 on each other,
46
102962
1827
当然也会有所发展,
01:56
and we can go through通过 mathematically数学
47
104789
1616
我们能从数学层面去检查
01:58
and take the meme-ome米姆,青梅 from one talk
48
106405
1840
然后从演讲里提取文化基因集合,
02:00
and compare比较 it to the meme-ome米姆,青梅 from every一切 other talk,
49
108245
2454
然后和其他视频的文化基因集合做比较,
02:02
and if there's a similarity相似 between之间 the two of them,
50
110699
1973
如果这两者中有相似之处,
02:04
we can create创建 a link链接 and represent代表 that as a graph图形,
51
112672
3250
我们就能建立一种联系,用图表来表示,
02:07
just like Eric埃里克 and I are connected连接的.
52
115922
2394
就像Eric和我的联系。
02:10
So that's theory理论, that's great.
53
118316
1394
理论上就这样,挺好的。
02:11
Let's see how it works作品 in actual实际 practice实践.
54
119710
2526
那让我们看看在实际中它是如何运作的。
02:14
So what we've我们已经 got here now is the global全球 footprint脚印
55
122236
2788
我们现在看到的就是一个全球分布图
02:17
of all the TEDx的TEDx Talks会谈 over the last four years年份
56
125024
2293
代表过去四年
02:19
exploding爆炸 out around the world世界
57
127317
1550
全球所有的TEDx演讲出现的轨迹,
02:20
from New York纽约 all the way down to little old New Zealand新西兰 in the corner.
58
128867
3329
从纽约一直到在地球板块角落小小的古老的新西兰。
02:24
And what we did on this is we analyzed分析 the top最佳 25 percent百分 of these,
59
132196
3835
然后我们分析了前25%的演讲,
02:28
and we started开始 to see where the connections连接 occurred发生,
60
136031
2534
开始意识到联系是在哪里产生的了以及
02:30
where they connected连接的 with each other.
61
138565
1537
他们是在哪里相互联系的。
02:32
Cameron卡梅伦 Russell罗素 talking about image图片 and beauty美女
62
140102
1874
Cameron Russell讲了欧洲各地相互联系的图像和美。
02:33
connected连接的 over into Europe欧洲.
63
141976
1575
Cameron Russell讲了欧洲各地相互联系的图像和美。
02:35
We've我们已经 got a bigger conversation会话 about Israel以色列 and Palestine巴勒斯坦
64
143551
2412
关于以色列和巴勒斯坦联系的交流更多,
02:37
radiating散热 outwards向外 from the Middle中间 East.
65
145963
2255
是从中东开始的。
02:40
And we've我们已经 got something a little broader更广泛
66
148218
1298
我们也有一些全球范围内的比较广泛的对话,
02:41
like big data数据 with a truly global全球 footprint脚印
67
149516
2156
就像一种遍布全球的大数据,反映了某特定话题。
02:43
reminiscent让人联想起 of a conversation会话
68
151672
2179
就像一种遍布全球的大数据,反映了某特定话题。
02:45
that is happening事件 everywhere到处.
69
153851
2016
就像一种遍布全球的大数据,反映了某特定话题。
02:47
So from this, we kind of run up against反对 the limits范围
70
155867
2173
所以从这里,我们似乎碰上了瓶颈,
02:50
of what we can actually其实 do with a geographic地理 projection投影,
71
158040
2530
这些地理投影到底能做什么,
02:52
but luckily, computer电脑 technology技术 allows允许 us to go out
72
160570
2052
幸运的是,电脑技术能让我们跳出常规框架
02:54
into multidimensional多维 space空间.
73
162622
1546
进入多维空间。
02:56
So we can take in our network网络 projection投影
74
164168
1875
因此,我们能利用我们的网状投影
02:58
and apply应用 a physics物理 engine发动机 to this,
75
166043
1750
使用物理引擎
02:59
and the similar类似 talks会谈 kind of smash粉碎 together一起,
76
167793
1885
将类似的演讲一起做离心运动,
03:01
and the different不同 ones那些 fly apart距离,
77
169678
2004
不同的则会飞离,
03:03
and what we're left with is something quite相当 beautiful美丽.
78
171682
2072
剩下的就是很美的东西。
03:05
EBEB: So I want to just point out here that every一切 node节点 is a talk,
79
173754
2957
EB:我只想说明一下,每个节点就是一个演讲,
03:08
they're linked关联 if they share分享 similar类似 ideas思路,
80
176711
2589
如果他们内容类似,就会连在一起
03:11
and that comes from a machine reading
81
179300
2084
这一些都由一个机器去读取
03:13
of entire整个 talk transcripts成绩单,
82
181384
2067
所有演讲的字幕文本,
03:15
and then all these topics主题 that pop流行的 out,
83
183451
2231
所有这些弹出来的标题,
03:17
they're not from tags标签 and keywords关键字.
84
185682
1790
他们不是取自标签或者关键字。
03:19
They come from the network网络 structure结构体
85
187472
1725
他们是取自相互联系思想的网络结构。你继续
03:21
of interconnected互联 ideas思路. Keep going.
86
189197
2168
他们是取自相互联系思想的网络结构。你继续
03:23
SGSG: Absolutely绝对. So I got a little quick on that,
87
191365
2022
SG:好的。我其实说得有点快了,
03:25
but he's going to slow me down.
88
193387
1475
他只是想我讲慢一点。
03:26
We've我们已经 got education教育 connected连接的 to storytelling评书
89
194862
2034
现在我们看到“教育”是和“'讲故事”
03:28
triangulated三角 next下一个 to social社会 media媒体.
90
196896
1643
还有“社交媒体”形成的三角架构。
03:30
You've got, of course课程, the human人的 brain right next下一个 to healthcare卫生保健,
91
198539
2475
还有,当然,“人类大脑”紧挨着“医疗保健”,
03:33
which哪一个 you might威力 expect期望,
92
201014
1386
这估计在预料中,
03:34
but also you've got video视频 games游戏, which哪一个 is sort分类 of adjacent,
93
202400
2395
但同时还有“电子游戏”似乎在和
03:36
as those two spaces空间 interface接口 with each other.
94
204795
2740
这两个联系在一起的又有一定的重叠。
03:39
But I want to take you into one cluster
95
207535
1535
但我想让你们看一个群
03:41
that's particularly尤其 important重要 to me, and that's the environment环境.
96
209070
2868
这对我尤其重要,那就是“环境”。
03:43
And I want to kind of zoom放大 in on that
97
211938
1493
我们放大一点
03:45
and see if we can get a little more resolution解析度.
98
213431
2363
看看能不能清晰一点。
03:47
So as we go in here, what we start开始 to see,
99
215794
2347
放大之后,我们将看到的
03:50
apply应用 the physics物理 engine发动机 again,
100
218141
1504
再次代入物理引擎,
03:51
we see what's one conversation会话
101
219645
1676
就可以看到一个话题
03:53
is actually其实 composed of many许多 smaller ones那些.
102
221321
2560
其实由很多小话题组成的。
03:55
The structure结构体 starts启动 to emerge出现
103
223881
1929
这个结构开始显现出
03:57
where we see a kind of fractal分形 behavior行为
104
225810
2070
一些我们所用遣词造句
03:59
of the words and the language语言 that we use
105
227880
1619
的分形行为的地方以及在全球人们用来形容重要事物的语言。
04:01
to describe描述 the things that are important重要 to us
106
229499
1702
的分形行为的地方以及在全球人们用来形容重要事物的语言。
04:03
all around this world世界.
107
231201
1433
的分形行为的地方以及在全球人们用来形容重要事物的语言。
04:04
So you've got food餐饮 economy经济 and local本地 food餐饮 at the top最佳,
108
232634
2332
所以“食品经济”和“当地食品”在顶端,
04:06
you've got greenhouse温室 gases气体, solar太阳能 and nuclear waste浪费.
109
234966
2719
“温室气体”,“太阳能和核能浪费”也在前列。
04:09
What you're getting得到 is a range范围 of smaller conversations对话,
110
237685
2631
你能看到一系列小的话题,
04:12
each connected连接的 to each other through通过 the ideas思路
111
240316
2301
每个都因他们的思想和语言
04:14
and the language语言 they share分享,
112
242617
1301
而联系在一起,
04:15
creating创建 a broader更广泛 concept概念 of the environment环境.
113
243918
2450
从而创造了一个更大的关于环境的概念。
04:18
And of course课程, from here, we can go
114
246368
1532
当然,从这里
04:19
and zoom放大 in and see, well, what are young年轻 people looking at?
115
247900
3534
我们通过放大能看到年轻人在看什么。
04:23
And they're looking at energy能源 technology技术 and nuclear fusion聚变.
116
251434
2345
他们聚焦在能源技术和核聚变。
04:25
This is their kind of resonance谐振
117
253779
1674
这是他们对环境话题
04:27
for the conversation会话 around the environment环境.
118
255453
2406
产生的一种共鸣。
04:29
If we split分裂 along沿 gender性别 lines线,
119
257859
1899
如果我们按性别来分类的话,
04:31
we can see females女性 resonating共鸣 heavily严重
120
259758
1987
能看到女性的共鸣
04:33
with food餐饮 economy经济, but also out there in hope希望 and optimism乐观.
121
261745
3645
更与食品经济有关,是充满希望和乐观的。
04:37
And so there's a lot of exciting扣人心弦 stuff东东 we can do here,
122
265390
2482
当然还有很多有趣的发现,
04:39
and I'll throw to Eric埃里克 for the next下一个 part部分.
123
267872
1762
我就交给Eric来讲下一部分。
04:41
EBEB: Yeah, I mean, just to point out here,
124
269634
1602
EB:恩,我就想指出,
04:43
you cannot不能 get this kind of perspective透视
125
271236
1538
你是没法从YouTube那个简单的搜索栏里
04:44
from a simple简单 tag标签 search搜索 on YouTubeYouTube的.
126
272774
3360
得到这种回馈的。
04:48
Let's now zoom放大 back out to the entire整个 global全球 conversation会话
127
276134
4188
现在我们跳出环境话题,重新回到全球的对话,
04:52
out of environment环境, and look at all the talks会谈 together一起.
128
280322
2534
来看下所有的这些演讲。
04:54
Now often经常, when we're faced面对 with this amount of content内容,
129
282856
2927
当面对如此数量的内容时,我们经常
04:57
we do a couple一对 of things to simplify简化 it.
130
285783
2431
通过其他手段去简化它。
05:00
We might威力 just say, well,
131
288214
1314
我们可能会说,
05:01
what are the most popular流行 talks会谈 out there?
132
289528
2829
那里面最受欢迎的演讲有哪些,
05:04
And a few少数 rise上升 to the surface表面.
133
292357
1397
然后就有一些浮现出来。
05:05
There's a talk about gratitude感谢.
134
293754
1828
其中一个是关于感恩的。
05:07
There's another另一个 one about personal个人 health健康 and nutrition营养.
135
295582
3344
有个是关于个人健康与营养的。
05:10
And of course课程, there's got to be one about pornA片, right?
136
298926
2929
当然,肯定会有一个是关于色情的,对吧?
05:13
And so then we might威力 say, well, gratitude感谢, that was last year.
137
301855
3234
所以我们就能说,感恩,是去年的主题。
05:17
What's trending趋势 now? What's the popular流行 talk now?
138
305089
2522
现在的趋势是什么?现在流行的演讲是什么?
05:19
And we can see that the new, emerging新兴, top最佳 trending趋势 topic话题
139
307611
3321
这样我们就能看到数字隐私成为新生的热门话题。
05:22
is about digital数字 privacy隐私.
140
310932
2666
这样我们就能看到数字隐私成为新生的热门话题。
05:25
So this is great. It simplifies简化 things.
141
313598
1693
这很棒,它简化了一切。
05:27
But there's so much creative创作的 content内容
142
315291
1827
但这样就有很多新鲜的内容
05:29
that's just buried隐藏 at the bottom底部.
143
317118
1921
被淹没在底部了。
05:31
And I hate讨厌 that. How do we bubble泡沫 stuff东东 up to the surface表面
144
319039
3318
我不喜欢这样。我们要怎样才能让这些
05:34
that's maybe really creative创作的 and interesting有趣?
145
322357
2458
可能真的有新意有趣的话题回到顶层呢?
05:36
Well, we can go back to the network网络 structure结构体 of ideas思路
146
324815
2931
其实我们可以回到思想的网络结构上
05:39
to do that.
147
327746
1430
来实现这一点。
05:41
Remember记得, it's that network网络 structure结构体
148
329176
2114
记住,是这个网络结构
05:43
that is creating创建 these emergent应急 topics主题,
149
331290
2268
让这些话题显现出来,
05:45
and let's say we could take two of them,
150
333558
1515
我们不妨拿出其中的两个
05:47
like cities城市 and genetics遗传学, and say, well, are there any talks会谈
151
335073
3047
像“城市”和“遗传”,然后看看
05:50
that creatively创造性 bridge these two really different不同 disciplines学科.
152
338120
2569
是否有其他演讲能有创意地把这两个不同的科目联系起来。
05:52
And that's -- Essentially实质上, this kind of creative创作的 remix混音
153
340689
2275
而这——基本上,这种创新性的混合
05:54
is one of the hallmarks特点 of innovation革新.
154
342964
1840
就是革新的标记之一。
05:56
Well here's这里的 one by Jessica杰西卡 Green绿色
155
344804
1606
这儿有一个Jessica Green
05:58
about the microbial微生物 ecology生态 of buildings房屋.
156
346410
2379
关于建筑的微生物生态学的演讲。
06:00
It's literally按照字面 defining确定 a new field领域.
157
348789
2010
它事实上是在定义一个新的领域。
06:02
And we could go back to those topics主题 and say, well,
158
350799
2103
然后我们再回到这两个话题上,
06:04
what talks会谈 are central中央 to those conversations对话?
159
352902
2768
想象在这里,有哪些是比较核心的?
06:07
In the cities城市 cluster, one of the most central中央
160
355670
1690
在“城市”的那堆里,其中一个最核心的
06:09
was one by Mitch米奇 Joachim约阿希姆 about ecological生态 cities城市,
161
357360
3952
就是Mitch Joachim的生态城市,
06:13
and in the genetics遗传学 cluster,
162
361312
1720
而在“遗传”的那堆里
06:15
we have a talk about synthetic合成的 biology生物学 by Craig克雷格 Venter腹部.
163
363032
3193
有Craig Venter的一个关于合成生物学的演讲。
06:18
These are talks会谈 that are linking链接 many许多 talks会谈 within their discipline学科.
164
366225
3353
还有很多演讲以他们的内容与其他许多演讲联系在一起的。
06:21
We could go the other direction方向 and say, well,
165
369578
1843
我们还可以从另一个方向入手,比方说
06:23
what are talks会谈 that are broadly宽广地 synthesizing合成
166
371421
2272
有哪些演讲,是广泛地
06:25
a lot of different不同 kinds of fields领域.
167
373693
1448
综合了很多不同领域的。
06:27
We used a measure测量 of ecological生态 diversity多样 to get this.
168
375141
2533
我们利用一种生态多样性的方法得到这个答案。
06:29
Like, a talk by Steven史蒂芬 Pinker平克 on the history历史 of violence暴力,
169
377674
2736
例如,Steven Pinker的一个演讲是关于暴力的历史,
06:32
very synthetic合成的.
170
380410
1180
非常综合。
06:33
And then, of course课程, there are talks会谈 that are so unique独特
171
381590
2078
当然,还有一些演讲是非常独特的,
06:35
they're kind of out in the stratosphere平流层, in their own拥有 special特别 place地点,
172
383668
3090
已经到了一定境界,不是常人能理解的,
06:38
and we call that the Colleen科琳 Flanagan那根 index指数.
173
386758
2514
我们称之为Colleen Flanagan指数。
06:41
And if you don't know Colleen科琳, she's an artist艺术家,
174
389272
3034
如果你不知道Colleen没关系,她是个艺术家,
06:44
and I asked her, "Well, what's it like out there
175
392306
1543
所以我问她,“我们空间概念的最高层
06:45
in the stratosphere平流层 of our idea理念 space空间?"
176
393849
1672
是什么样的?”
06:47
And apparently显然地 it smells气味 like bacon培根.
177
395521
3255
显然那地方闻着像培根。
06:50
I wouldn't不会 know.
178
398776
1791
我也不知道。
06:52
So we're using运用 these network网络 motifs主题
179
400567
2248
所以我们用这些网络图形
06:54
to find talks会谈 that are unique独特,
180
402815
1186
来寻找那些独特的演讲,
06:56
ones那些 that are creatively创造性 synthesizing合成 a lot of different不同 fields领域,
181
404001
2710
那些创造性地综合了很多领域的演讲,
06:58
ones那些 that are central中央 to their topic话题,
182
406711
1659
那些中心明确的演讲,
07:00
and ones那些 that are really creatively创造性 bridging桥接 disparate不同 fields领域.
183
408370
3374
还有那些创新地把不相干的领域联系起来的演讲。
07:03
Okay? We never would have found发现 those with our obsession困扰
184
411744
2102
对吧?一味地看趋势的话
07:05
with what's trending趋势 now.
185
413846
2313
我们是没法找到这些演讲的。
07:08
And all of this comes from the architecture建筑 of complexity复杂,
186
416159
2886
所有的这一切来自复杂性架构
07:11
or the patterns模式 of how things are connected连接的.
187
419045
2960
或是事物联系的模式。
07:14
SGSG: So that's exactly究竟 right.
188
422005
1625
SG:非常有道理。
07:15
We've我们已经 got ourselves我们自己 in a world世界
189
423630
2479
我们处在一个非复杂的世界,
07:18
that's massively大规模 complex复杂,
190
426109
2044
我们处在一个非常复杂的世界,
07:20
and we've我们已经 been using运用 algorithms算法 to kind of filter过滤 it down
191
428153
2867
我们一直试图用算法简化它
07:23
so we can navigate导航 through通过 it.
192
431020
1786
以便去驾驭它。
07:24
And those algorithms算法, whilst同时 being存在 kind of useful有用,
193
432806
2338
而这些算法就算有时有用,
07:27
are also very, very narrow狭窄, and we can do better than that,
194
435144
3476
也是非常有限的,而我们能做得更好,
07:30
because we can realize实现 that their complexity复杂 is not random随机.
195
438620
2566
因为我们能意识到这种复杂性不是偶然。
07:33
It has mathematical数学的 structure结构体,
196
441186
1954
它有数学架构,
07:35
and we can use that mathematical数学的 structure结构体
197
443140
1803
而我们能用这个数学架构去深入研究
07:36
to go and explore探索 things like the world世界 of ideas思路
198
444943
2214
例如这个世界上的所有思想,
07:39
to see what's being存在 said, to see what's not being存在 said,
199
447157
3000
去看看人们都讨论些什么,还有什么没讨论过的,
07:42
and to be a little bit more human人的
200
450157
1407
从而使得这些数据显得更人性化
07:43
and, hopefully希望, a little smarter聪明.
201
451564
1867
更富有智慧。
07:45
Thank you.
202
453431
966
谢谢
07:46
(Applause掌声)
203
454397
4220
(掌声)
Translated by Lee Li
Reviewed by Lorraine Teng

▲Back to top

ABOUT THE SPEAKERS
Eric Berlow - Ecologist
TED Senior Fellow Eric Berlow studies ecology and networks, exposing the interconnectedness of our ecosystems with climate change, government, corporations and more.

Why you should listen

Eric Berlow is an ecologist and network scientist who specializes in not specializing. A TED Senior Fellow, Berlow is recognized for his research on food webs and ecological networks and for creative approaches to complex problems. He was the founding director of the University of California's first environmental science center inside Yosemite National Park, where he continues to develop data-driven approaches to managing natural ecosystems. 

In 2012 Berlow founded Vibrant Data Labs, which builds tools to use data for social good. Berlow's current projects range from helping spark an egalitarian personal data economy to protecting endangered amphibians in Yosemite to crowd-sourcing novel insights about human creativity. Berlow holds a Ph.D. from Oregon State University in marine ecology.

 

 

More profile about the speaker
Eric Berlow | Speaker | TED.com
Sean Gourley - Physicist and military theorist
Sean Gourley, trained as a physicist, has turned his scientific mind to analyzing data about a messier topic: modern war and conflict. He is a TED Fellow.

Why you should listen

Sean Gourley's twin passions are physics (working on nanoscale blue-light lasers and self-assembled quantum nanowires) and politics (he once ran for a national elected office back home in New Zealand).

A Rhodes scholar, he's spent the past five years working at Oxford on complex adaptive systems and collective intelligent systems -- basically, using data to understand the nature of human conflict. As he puts it, "This research has taken me all over the world from the Pentagon, to the House of Lords, the United Nations and most recently to Iraq". Originally from New Zealand, he now lives in San Francisco, where he is the co-founder and CTO of Quid which is building a global intelligence platform. He's a 2009 TED Fellow.

In December 2009, Gourley and his team's research was published in the scientific journal Nature. He is co-founder and CTO of Quid.

More profile about the speaker
Sean Gourley | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee