ABOUT THE SPEAKER
David Agus - Cancer Doctor
Although a highly-accomplished conventional doctor, David Agus has embraced the future of medicine and is constantly exploring ways that new technologies can help in the fight against cancer.

Why you should listen

David Agus is a medical doctor and a Professor of Medicine at the University of Southern California. However, he is also the founder of a couple of game-changing medical initiatives. In 2006, he co-founded Navigenics with Dietrich Stephan, Ph.D., to form a company that would provide people with their individual genetic information, allowing them to act on any predispositions to disease that they might have and prevent onset. He also founded Oncology.com which was the largest cancer Internet resource and community.

Dr. Agus’ research is focused on the application of proteomics and genomics in the study of cancer, as well as developing new therapeutic treatments for cancer. He serves as Director of the USC Center for Applied Molecular Medicine and the USC Westside Prostate Cancer Center. Agus is also the recipient of several honors and awards, including the American Cancer Society Physician Research Award, a Clinical Scholar Award from the Sloan-Kettering Institute and the International Myeloma Foundation Visionary Science Award.

More profile about the speaker
David Agus | Speaker | TED.com
TEDMED 2009

David Agus: A new strategy in the war on cancer

David Agus: Unha nova estratexia na guerra contra o cancro

Filmed:
830,903 views

Ata agora, segundo explica David Agus, o tratamento do cancro centrábase de xeito un tanto miope nas células agresivas individualmente. El propón un novo enfoque interdisciplinar, no que o uso de certos medicamentos inusuais, os modelos informáticos e a análise de proteínas nos permitirán tratar e analizar o corpo humano como un todo.
- Cancer Doctor
Although a highly-accomplished conventional doctor, David Agus has embraced the future of medicine and is constantly exploring ways that new technologies can help in the fight against cancer. Full bio

Double-click the English transcript below to play the video.

00:15
I'm a cancer doctor, and I walked out of my office
0
0
3000
Son oncólogo e hai tres ou catro anos
saín da miña consulta
00:18
and walked by the pharmacy in the hospital three or four years ago,
1
3000
4000
e pasei por diante
da farmacia do hospital
esta era a portada da revista Fortune,
que estaba apoiada no escaparate
00:22
and this was the cover of Fortune magazine
2
7000
3000
[Por que estamos perdendo
a guerra contra o cancro [e como gañala]]
00:25
sitting in the window of the pharmacy.
3
10000
2000
00:27
And so, as a cancer doctor, you look at this,
4
12000
2000
E, como oncólogo,
mírala e desanímaste.
00:29
and you get a little bit downhearted.
5
14000
2000
00:31
But when you start to read the article by Cliff,
6
16000
3000
Pero cando comezas a ler
o artigo de Cliff,
00:34
who himself is a cancer survivor,
7
19000
2000
que se curou dun cancro
grazas a un ensaio clínico
00:36
who was saved by a clinical trial
8
21000
2000
ao que os seus pais o levaron dende a
cidade de Nova York ata o norte do estado
00:38
where his parents drove him from New York City to upstate New York
9
23000
4000
para recibir unha terapia experimental que
salvou a súa vida pero que
00:42
to get an experimental therapy for --
10
27000
2000
00:44
at the time -- Hodgkin's disease, which saved his life,
11
29000
3000
naquel momento se utilizaba
para a enfermidade de Hodgkin.
00:47
he makes remarkable points here.
12
32000
3000
comenta cousas moi interesantes.
00:50
And the point of the article was that we have gotten
13
35000
3000
O tema do artigo era que
nos converteramos en reducionistas
00:53
reductionist in our view of biology,
14
38000
3000
tanto na nosa visión da bioloxía
como na do cancro.
00:56
in our view of cancer.
15
41000
2000
Nos últimos 50 anos, centrámonos en
tratar o xene individual,
00:58
For the last 50 years, we have focused on treating
16
43000
3000
01:01
the individual gene
17
46000
2000
en entender como funcionaba o cancro
pero non en como controlalo.
01:03
in understanding cancer, not in controlling cancer.
18
48000
3000
01:06
So, this is an astounding table.
19
51000
3000
Esta é unha táboa impactante.
01:09
And this is something that sobers us in our field everyday
20
54000
3000
É algo que nos fai pensar diariamente
aos que traballamos neste campo
01:12
in that, obviously, we've made remarkable impacts
21
57000
2000
en que, fronte aos avances notables
01:14
on cardiovascular disease,
22
59000
2000
en enfermidades cardiovasculares,
01:16
but look at cancer. The death rate in cancer
23
61000
3000
fíxense no cancro.
A taxa de mortalidade
non cambiou en máis de 50 anos.
01:19
in over 50 years hasn't changed.
24
64000
3000
Tivemos pequenas vitorias en enfermidades
como na leucemia mielóxena crónica,
01:22
We've made small wins in diseases like chronic myelogenous leukemia,
25
67000
4000
para a que temos unha pastilla que fai que
a enfermidade remita no 100% dos casos,
01:26
where we have a pill that can put 100 percent of people in remission,
26
71000
3000
01:29
but in general, we haven't made an impact at all in the war on cancer.
27
74000
6000
pero en xeral, non tivemos grandes avances
na guerra contra o cancro.
01:35
So, what I'm going to tell you today,
28
80000
3000
Así que o que vou a contarlles hoxe,
son algunhas das razóns polas que penso
que pasa isto,
01:38
is a little bit of why I think that's the case,
29
83000
3000
01:41
and then go out of my comfort zone
30
86000
2000
e logo saír da miña zona de confort
01:43
and tell you where I think it's going,
31
88000
3000
e explicarlles que camiño penso
que está tomando,
01:46
where a new approach -- that we hope to push forward
32
91000
3000
e o novo enfoque que existe,
que esperamos que abra a porta a
01:49
in terms of treating cancer.
33
94000
4000
novas formas de tratar o cancro.
01:53
Because this is wrong.
34
98000
3000
Porque isto non é aceptable.
01:56
So, what is cancer, first of all?
35
101000
2000
Así que, en primeiro lugar,
que é o cancro?
01:58
Well, if one has a mass or an abnormal blood value, you go to a doctor,
36
103000
5000
Se alguén ten un vulto
ou valores anormais en sangue,
vai ao médico,
que lle crava unha agulla.
02:03
they stick a needle in.
37
108000
2000
E o método que temos hoxe en día
para obter diagnoses
02:05
They way we make the diagnosis today is by pattern recognition:
38
110000
4000
é o recoñecemento de patróns.
02:09
Does it look normal? Does it look abnormal?
39
114000
4000
Parece normal?
Parece anormal?
Os patólogos simplemente
miran esta botella de plástico.
02:13
So, that pathologist is just like looking at this plastic bottle.
40
118000
3000
02:16
This is a normal cell. This is a cancer cell.
41
121000
3000
Esta é unha célula normal.
Esta é unha célula cancerosa.
02:19
That is the state-of-the-art today in diagnosing cancer.
42
124000
5000
Estes son os avances de última xeración
para a diagnose do cancro.
02:24
There's no molecular test,
43
129000
3000
Non hai unha proba molecular,
non hai unha secuenciación de xenes
da que nos falaron onte,
02:27
there's no sequencing of genes that was referred to yesterday,
44
132000
3000
02:30
there's no fancy looking at the chromosomes.
45
135000
3000
non hai unha observación detallada
dos cromosomas.
Esta é a tecnoloxía punta que temos
e como o facemos.
02:33
This is the state-of-the-art and how we do it.
46
138000
3000
02:36
You know, I know very well, as a cancer doctor, I can't treat advanced cancer.
47
141000
6000
Eu, como oncólogo, sei que
non podo tratar un cancro avanzado.
02:42
So, as an aside, I firmly believe in the field of trying to identify cancer early.
48
147000
7000
Así que son un firme defensor do traballo
para o seu diagnóstico precoz.
02:49
It is the only way you can start to fight cancer, is by catching it early.
49
154000
5000
É a única maneira de loitar contra el:
colléndoo a tempo.
02:54
We can prevent most cancers.
50
159000
3000
Podemos evitar a maioría dos cancros.
02:57
You know, the previous talk alluded to preventing heart disease.
51
162000
3000
Como sabedes, a conferencia previa falaba
sobre previr enfermidades cardíacas.
03:00
We could do the same in cancer.
52
165000
2000
Podemos facer o mesmo co cancro.
03:02
I co-founded a company called Navigenics,
53
167000
2000
Son cofundador dunha empresa
chamada Navigenics,
03:04
where, if you spit into a tube --
54
169000
2000
na que, se cospes nun tubo
03:06
and we can look look at 35 or 40 genetic markers for disease,
55
171000
6000
—podemos comprobar 35 ou 40
marcadores xenéticos de enfermidades,
todos eles pódense postergar
en moitos dos cancros—
03:12
all of which are delayable in many of the cancers --
56
177000
2000
03:14
you start to identify what you could get,
57
179000
4000
primeiro identifícase
de que poderías enfermar no futuro
03:18
and then we can start to work to prevent them.
58
183000
3000
e logo comezamos a traballar
para previlo.
03:21
Because the problem is, when you have advanced cancer,
59
186000
3000
Porque o problema é que, hoxe en día,
cando o cancro xa está moi avanzado
03:24
we can't do that much today about it, as the statistics allude to.
60
189000
4000
non se pode facer moito,
tal e como reflicten as estatísticas.
O que pasa co cancro é que
é unha enfermidade de maiores
03:28
So, the thing about cancer is that it's a disease of the aged.
61
193000
4000
Por que é unha enfermidade de maiores?
03:32
Why is it a disease of the aged?
62
197000
2000
03:34
Because evolution doesn't care about us after we've had our children.
63
199000
4000
Porque á evolución non lle importamos
unha vez que xa tivemos nenos.
A evolución protexeunos
ao longo da nosa idade reprodutiva
03:39
See, evolution protected us during our childbearing years
64
204000
3000
03:42
and then, after age 35 or 40 or 45,
65
207000
4000
e logo, despois de cumprir os 35,
os 40 ou os 45,
03:46
it said "It doesn't matter anymore, because they've had their progeny."
66
211000
4000
suponse que "xa non importa,
porque xa tiveron a súa descendencia".
03:50
So if you look at cancers, it is very rare -- extremely rare --
67
215000
5000
Así que se se fixan nos cancros,
é raro, moi raro,
que un neno teña cancro,
mentres que hai miles de casos cada ano.
03:55
to have cancer in a child, on the order of thousands of cases a year.
68
220000
5000
04:00
As one gets older? Very, very common.
69
225000
4000
A medida que un envellece?.
Moi frecuente.
04:04
Why is it hard to treat?
70
229000
2000
Por que é difícil de tratar?
04:06
Because it's heterogeneous,
71
231000
2000
Porque é heteroxéneo,
e ese é o perfecto substrato
para o desenvolvemento do cancro.
04:08
and that's the perfect substrate for evolution within the cancer.
72
233000
5000
04:13
It starts to select out for those bad, aggressive cells,
73
238000
4000
Comeza pola duplicación
desas células prexudiciais e agresivas,
04:17
what we call clonal selection.
74
242000
4000
o que se coñece como selección clonal.
Pero, se logramos entender que
o cancro non só é un defecto molecular,
04:21
But, if we start to understand
75
246000
3000
04:24
that cancer isn't just a molecular defect, it's something more,
76
249000
5000
que é máis ca iso,
04:29
then we'll get to new ways of treating it, as I'll show you.
77
254000
4000
entón teremos novas formas de tratalo,
como verán a continuación.
Un dos problemas fundamentais
que temos co cancro
04:33
So, one of the fundamental problems we have in cancer
78
258000
2000
04:35
is that, right now, we describe it by a number of adjectives, symptoms:
79
260000
4000
é que, agora mesmo, se describe cunha
serie de adxectivos e síntomas:
04:39
"I'm tired, I'm bloated, I have pain, etc."
80
264000
3000
"Estou canso, inchado, teño dor, etc."
04:42
You then have some anatomic descriptions,
81
267000
2000
Logo hai algunhas descricións anatómicas,
04:44
you get that CT scan: "There's a three centimeter mass in the liver."
82
269000
4000
os resultados do TAC: "Hai un vulto
de tres centímetros no fígado".
A continuación,
algunhas especificacións corporais:
04:48
You then have some body part descriptions:
83
273000
3000
"Está no fígado, no peito, na próstata..."
04:51
"It's in the liver, in the breast, in the prostate."
84
276000
2000
04:53
And that's about it.
85
278000
3000
E iso é todo.
O noso dicionario para describir o cancro
é moi, moi limitado.
04:56
So, our dictionary for describing cancer is very, very poor.
86
281000
4000
05:00
It's basically symptoms.
87
285000
2000
Basicamente contén síntomas.
05:02
It's manifestations of a disease.
88
287000
3000
Manifestacións da enfermidade.
O que é impresionante é que
nos últimos dous ou tres anos
05:05
What's exciting is that over the last two or three years,
89
290000
3000
o goberno investiu 400 millóns de dólares
05:08
the government has spent 400 million dollars,
90
293000
2000
05:10
and they've allocated another billion dollars,
91
295000
3000
e están asignados outros mil millóns,
para o que se coñece como
o Proxecto Atlas do Xenoma do Cancro.
05:13
to what we call the Cancer Genome Atlas Project.
92
298000
2000
05:15
So, it is the idea of sequencing all of the genes in the cancer,
93
300000
4000
A idea é secuenciar
todos os xenes do cancro,
05:19
and giving us a new lexicon, a new dictionary to describe it.
94
304000
5000
e atopar un novo léxico,
un novo dicionario para describilo.
05:24
You know, in the mid-1850's in France,
95
309000
3000
Como saben, alá pola década de 1850,
en Francia comezaron a definir os cancros
05:27
they started to describe cancer by body part.
96
312000
3000
dependendo da zona corporal
na que se atopasen
05:30
That hasn't changed in over 150 years.
97
315000
4000
Isto non cambiou en máis de 150 anos
05:34
It is absolutely archaic that we call cancer
98
319000
4000
É un completo arcaísmo que chamemos cancro
de próstata, de peito, muscular...
05:38
by prostate, by breast, by muscle.
99
323000
4000
Non ten sentido se o pensamos ben.
05:42
It makes no sense, if you think about it.
100
327000
3000
Obviamente, na actualidade
temos outra tecnoloxía
05:45
So, obviously, the technology is here today,
101
330000
3000
e nos vindeiros anos isto irá cambiando.
05:48
and, over the next several years, that will change.
102
333000
3000
Xa non iremos a un especialista en
cancro de mama.
05:51
You will no longer go to a breast cancer clinic.
103
336000
2000
05:53
You will go to a HER2 amplified clinic, or an EGFR activated clinic,
104
338000
5000
Irase ao especialista
no HER2 intensificado ou no EGFR activado,
05:58
and they will go to some of the pathogenic lesions
105
343000
2000
que se centre nas lesións patóxenas
06:00
that were involved in causing this individual cancer.
106
345000
4000
que son as causantes
dese cancro en particular.
Con sorte, pasaremos de ser
[a arte da medicina]
06:04
So, hopefully, we will go from being the art of medicine
107
349000
3000
a converternos na [ciencia da medicina]
06:07
more to the science of medicine,
108
352000
2000
06:09
and be able to do what they do in infectious disease,
109
354000
3000
e seremos capaces de facer o que se fai
con calquera enfermidade infecciosa,
06:12
which is look at that organism, that bacteria,
110
357000
3000
que é mirar ese organismo,
esa bacteria,
e logo dicir: "Deberiamos empregar
este antibiótico,
06:15
and then say, "This antibiotic makes sense,
111
360000
3000
porque tes unha bacteria específica
que vai responder ben a el".
06:18
because you have a particular bacteria that will respond to it."
112
363000
4000
Cando alguén se expón ao H1N1,
tómase Tamiflu,
06:22
When one is exposed to H1N1, you take Tamiflu,
113
367000
4000
06:26
and you can remarkably decrease the severity of symptoms
114
371000
3000
o que diminúe de xeito notable
a gravidade dos síntomas
06:29
and prevent many of the manifestations of the disease.
115
374000
3000
e prevén moitas
das manifestacións da enfermidade.
06:32
Why? Because we know what you have, and we know how to treat it --
116
377000
5000
Por que? Porque sabemos o que ten
e sabemos como tratalo,
aínda que neste país non se poida vacinar,
pero iso xa é outra historia.
06:37
although we can't make vaccine in this country, but that's a different story.
117
382000
4000
06:41
The Cancer Genome Atlas is coming out now.
118
386000
3000
Estanse a publicar os primeiros resultados
do Atlas do Xenoma do Cancro.
06:44
The first cancer was done, which was brain cancer.
119
389000
4000
Está completado o primeiro dos cancros,
o cancro cerebral.
06:48
In the next month, the end of December, you'll see ovarian cancer,
120
393000
4000
O mes que vén, a finais de decembro,
tamén se completará o cancro de ovarios
06:52
and then lung cancer will come several months after.
121
397000
4000
e uns meses despois será o pulmonar.
Outro campo é o da proteómica,
do que falarei en breve,
06:56
There's also a field of proteomics that I'll talk about in a few minutes,
122
401000
3000
06:59
which I think is going to be the next level
123
404000
3000
e o que creo que vai ser o próximo
en termos de coñecer e clasificar
as enfermidades.
07:02
in terms of understanding and classifying disease.
124
407000
4000
Pero recordade,
non estou abríndolle paso á xenómica,
07:06
But remember, I'm not pushing genomics,
125
411000
2000
07:08
proteomics, to be a reductionist.
126
413000
3000
á proteómica, para ser reducionista.
07:11
I'm doing it so we can identify what we're up against.
127
416000
3000
Fágoo para poder identificar
a que nos enfrontamos.
07:14
And there's a very important distinction there that we'll get to.
128
419000
4000
Existe unha distinción moi importante aí,
que é sobre o que imos a falar.
Hoxe en día, na asistencia sanitaria,
gastamos a maioría do diñeiro,
07:18
In health care today, we spend most of the dollars --
129
423000
3000
07:21
in terms of treating disease --
130
426000
3000
—dende o punto de vista
do tratamento de enfermidades—
07:24
most of the dollars in the last two years of a person's life.
131
429000
4000
a maior parte do diñeiro
nos dous últimos anos de vida.
Gastamos moi pouco, se gastamos algo,
en identificar contra que loitamos.
07:28
We spend very little, if any, dollars in terms of identifying what we're up against.
132
433000
5000
07:33
If you could start to move that, to identify what you're up against,
133
438000
4000
Se se puidese empezar con iso,
sabendo contra qué se loita,
07:37
you're going to do things a hell of a lot better.
134
442000
3000
faríanse as cousas moitísimo mellor.
Se puidésemos ir incluso un paso máis alá
e previr a enfermidade,
07:40
If we could even take it one step further and prevent disease,
135
445000
4000
poderiamos avanzar moito
na outra dirección,
07:44
we can take it enormously the other direction,
136
449000
3000
07:47
and obviously, that's where we need to go, going forward.
137
452000
4000
e dende logo, aí é onde
precisamos chegar, cara adiante.
Esta é a páxina web do
Instituto Nacional do Cancro.
07:51
So, this is the website of the National Cancer Institute.
138
456000
3000
07:54
And I'm here to tell you, it's wrong.
139
459000
3000
E eu estou aquí para dicirlles
que está mal.
A web do Instituto Nacional do Cancro di
07:57
So, the website of the National Cancer Institute
140
462000
2000
07:59
says that cancer is a genetic disease.
141
464000
4000
que o cancro é unha enfermidade xenética.
08:03
The website says, "If you look, there's an individual mutation,
142
468000
4000
Di: "Se se observa,
hai unha mutación concreta,
08:07
and maybe a second, and maybe a third,
143
472000
2000
e pode que unha segunda,
e incluso unha terceira,
08:09
and that is cancer."
144
474000
2000
e iso é o cancro."
08:11
But, as a cancer doc, this is what I see.
145
476000
4000
Porén, como oncólogo, isto é o que creo.
Non é unha enfermidade xenética.
08:15
This isn't a genetic disease.
146
480000
2000
Aquí poden ver un fígado
con cancro de colon,
08:17
So, there you see, it's a liver with colon cancer in it,
147
482000
3000
08:20
and you see into the microscope a lymph node
148
485000
2000
e tamén ao microscopio,
un ganglio linfático
08:22
where cancer has invaded.
149
487000
2000
invadido polo cancro.
08:24
You see a CT scan where cancer is in the liver.
150
489000
4000
Pódese ver un TAC no que se aprecia
un fígado con cancro.
08:28
Cancer is an interaction of a cell
151
493000
3000
O cancro é unha interacción dunha célula
08:31
that no longer is under growth control with the environment.
152
496000
5000
que xa non está baixo
o control de crecemento do medio.
08:36
It's not in the abstract; it's the interaction with the environment.
153
501000
4000
Isto non ocorre en abstracto,
é a interacción co medio que a rodea.
08:40
It's what we call a system.
154
505000
3000
É o que se chama sistema.
08:43
The goal of me as a cancer doctor is not to understand cancer.
155
508000
4000
O meu obxectivo como oncólogo non é
entender o cancro.
08:47
And I think that's been the fundamental problem over the last five decades,
156
512000
3000
Creo que este foi o problema fundamental
das últimas cinco décadas,
08:50
is that we have strived to understand cancer.
157
515000
3000
que nos esforzamos por entendelo.
08:53
The goal is to control cancer.
158
518000
3000
O obxectivo é controlalo.
E este é un esquema de optimización
moi diferente,
08:56
And that is a very different optimization scheme,
159
521000
2000
08:58
a very different strategy for all of us.
160
523000
3000
unha estratexia completamente distinta
para todos nós.
Participei na Asociación Americana
sobre a Investigación do Cancro,
09:01
I got up at the American Association of Cancer Research,
161
526000
2000
09:03
one of the big cancer research meetings, with 20,000 people there,
162
528000
4000
unha importante reunión de investigadores
sobre o cancro, cuns 20.000 asistentes,
09:07
and I said, "We've made a mistake.
163
532000
3000
e dixen:
"Cometemos un erro.
Todos cometemos un erro, incluso eu,
09:10
We've all made a mistake, myself included,
164
535000
3000
ao centrarnos no que non debiamos,
sendo reducionistas.
09:13
by focusing down, by being a reductionist.
165
538000
2000
09:15
We need to take a step back."
166
540000
2000
Temos que dar un paso atrás."
E, créano ou non, houbo apupos
entre os asistentes.
09:17
And, believe it or not, there were hisses in the audience.
167
542000
2000
Á xente non lle gustou, pero esa
é a única forma en que podemos avanzar.
09:19
People got upset, but this is the only way we're going to go forward.
168
544000
4000
Tiven moita sorte de coñecer
a Danny Hillis hai uns anos.
09:23
You know, I was very fortunate to meet Danny Hillis a few years ago.
169
548000
4000
Xuntáronnos e ningún dos dous
tiñamos gana de coñecer ao outro.
09:27
We were pushed together, and neither one of us really wanted to meet the other.
170
552000
4000
09:31
I said, "Do I really want to meet a guy from Disney, who designed computers?"
171
556000
4000
Eu dicía: "Quero coñecer a un tipo
de Disney, que deseñou ordenadores?"
E el preguntábase:
"De verdade quere coñecer outro doctor?"
09:35
And he was saying: Does he really want to meet another doctor?
172
560000
3000
09:38
But people prevailed on us, and we got together,
173
563000
2000
Pero a xente convenceunos, e xuntámonos,
09:40
and it's been transformative in what I do, absolutely transformative.
174
565000
5000
e tivo un efecto transformador
no que fago, completamente transformador.
Deseñamos e traballamos na modelaxe
09:46
We have designed, and we have worked on the modeling --
175
571000
3000
09:49
and much of these ideas came from Danny and from his team --
176
574000
4000
—e moitas destas ideas foron concibidas
por Danny e o seu equipo—
na modelaxe do cancro no corpo
como un sistema complexo.
09:53
the modeling of cancer in the body as complex system.
177
578000
3000
09:56
And I'll show you some data there
178
581000
2000
Ensinareilles algúns datos aquí
onde eu creo que de verdade pode
marcar a diferenza
09:58
where I really think it can make a difference and a new way to approach it.
179
583000
4000
e ser unha nova maneira de abordalo.
10:02
The key is, when you look at these variables and you look at this data,
180
587000
4000
A clave está en que,
cando miren as variables e a información,
10:06
you have to understand the data inputs.
181
591000
4000
entendan os datos que se lles presentan.
10:10
You know, if I measured your temperature over 30 days,
182
595000
4000
Se mido as súas temperaturas
durante 30 días
e pregunto:
"Cal foi a temperatura media?"
10:14
and I asked, "What was the average temperature?"
183
599000
2000
10:16
and it came back at 98.7, I would say, "Great."
184
601000
4000
e resulta que é 37ºC, diría
"Excelente".
10:20
But if during one of those days
185
605000
2000
Pero se durante un deses días
10:22
your temperature spiked to 102 for six hours,
186
607000
3000
a súa temperatura chegou a 39ºC
durante seis horas,
10:25
and you took Tylenol and got better, etc.,
187
610000
2000
e tomou Tylenol e mellorou, etc.
10:27
I would totally miss it.
188
612000
2000
Eu non me daría nin conta.
Un dos problemas fundamentais
en medicina
10:29
So, one of the problems, the fundamental problems in medicine
189
614000
3000
10:32
is that you and I, and all of us,
190
617000
2000
é que vostedes e eu e todos nós,
10:34
we go to our doctor once a year.
191
619000
2000
imos ao médico unha vez ao ano.
10:36
We have discrete data elements; we don't have a time function on them.
192
621000
4000
Temos valores discretos, pero non
unha serie temporal.
10:40
Earlier it was referred to this direct life device.
193
625000
3000
Xa se fixo alusión antes
a este dispositivo Directlife.
10:43
You know, I've been using it for two and a half months.
194
628000
3000
Levo usándoo dende hai dous meses e medio.
É un artefacto abraiante,
non porque me diga
10:46
It's a staggering device, not because it tells me
195
631000
2000
10:48
how many kilocalories I do every day,
196
633000
3000
cantas quilocalorías queimei
ao longo do día,
pero si porque me di nun período de 24h
o que fixen durante todo o día.
10:51
but because it looks, over 24 hours, what I've done in a day.
197
636000
4000
Non caera na conta de que paso tres horas
sentado á miña mesa,
10:55
And I didn't realize that for three hours I'm sitting at my desk,
198
640000
3000
10:58
and I'm not moving at all.
199
643000
2000
sen moverme para nada.
11:00
And a lot of the functions in the data that we have as input systems here
200
645000
5000
Moitas das funcións dos datos
que usamos como entrada
son moi diferentes de como os entendemos,
11:05
are really different than we understand them,
201
650000
3000
11:08
because we're not measuring them dynamically.
202
653000
2000
porque non os estamos medindo
de forma dinámica.
11:10
And so, if you think of cancer as a system,
203
655000
5000
E, se pensan no cancro
como un sistema,
hai unha entrada, unha saída
e un estado no medio.
11:15
there's an input and an output and a state in the middle.
204
660000
4000
11:19
So, the states, are equivalent classes of history,
205
664000
3000
Os estados son clases de equivalencia
das historias.
11:22
and the cancer patient, the input, is the environment,
206
667000
3000
No paciente de cancro, a entrada é
o medio, a dieta, o tratamento,
11:25
the diet, the treatment, the genetic mutations.
207
670000
4000
as mutacións xenéticas.
A saída de información son os síntomas:
11:29
The output are our symptoms:
208
674000
3000
Dóenos algo? Está medrando o cancro?
Sentímonos inchados? Etc.
11:32
Do we have pain? Is the cancer growing? Do we feel bloated, etc.?
209
677000
4000
11:36
Most of that state is hidden.
210
681000
4000
A maioría deste estado está agochado.
Así que o que facemos no noso ámbito é
cambiar a información de entrada,
11:40
So what we do in our field is we change and input,
211
685000
3000
11:43
we give aggressive chemotherapy,
212
688000
2000
poñemos unha quimioterapia agresiva
e valoramos: "Mellorou o resultado?
Remitiu a dor? Etc."
11:45
and we say, "Did that output get better? Did that pain improve, etc.?"
213
690000
5000
11:50
And so, the problem is that it's not just one system,
214
695000
4000
O problema é que non só se trata
dun único sistema,
11:54
it's multiple systems on multiple scales.
215
699000
3000
senón de múltiples sistemas
con múltiples escalas.
11:57
It's a system of systems.
216
702000
3000
É un sistema de sistemas.
Así que, cando te centras
nos sistemas emerxentes,
12:00
And so, when you start to look at emergent systems,
217
705000
2000
12:02
you can look at a neuron under a microscope.
218
707000
3000
podes observar unha neurona
baixo o microscopio.
Unha neurona vista ao microscopio
é moi elegante
12:05
A neuron under the microscope is very elegant
219
710000
2000
12:07
with little things sticking out and little things over here,
220
712000
3000
con cousiñas que sobresaen e
cousiñas por aquí,
pero se comezas a agrupalas
nun sistema complexo,
12:10
but when you start to put them together in a complex system,
221
715000
4000
verás que se trata dun cerebro,
12:14
and you start to see that it becomes a brain,
222
719000
2000
e que ese cerebro pode
crear intelixencia,
12:16
and that brain can create intelligence,
223
721000
3000
que é sobre o que estamos falando
con respecto ao corpo,
12:19
what we're talking about in the body,
224
724000
2000
12:21
and cancer is starting to model it like a complex system.
225
726000
3000
ao que o cancro modela
obtendo un sistema complexo.
12:24
Well, the bad news is that these robust --
226
729000
3000
A mala noticia é que
estes robustos
—'robustos' é unha palabra clave—
12:27
and robust is a key word --
227
732000
2000
12:29
emergent systems are very hard to understand in detail.
228
734000
4000
estes robustos sistemas emerxentes
son moi difíciles de analizar en detalle.
12:33
The good news is you can manipulate them.
229
738000
3000
A boa nova é que se poden manipular.
Pódese intentar controlalos
12:36
You can try to control them
230
741000
2000
sen saber exactamente
como funciona cada parte.
12:38
without that fundamental understanding of every component.
231
743000
3000
12:41
One of the most fundamental clinical trials in cancer
232
746000
3000
Un ensaio clínico fundamental
con referencia ao cancro
12:44
came out in February in the New England Journal of Medicine,
233
749000
3000
saíu publicado en febreiro
no New England Journal of Medicine,
12:47
where they took women who were pre-menopausal with breast cancer.
234
752000
4000
e trataba sobre mulleres premenopáusicas
con cancro de mama.
12:51
So, about the worst kind of breast cancer you can get.
235
756000
3000
Sobre o peor tipo de cancro de mama
que se pode ter.
12:54
They had gotten their chemotherapy,
236
759000
2000
Puxéronlles quimioterapia
12:56
and then they randomized them,
237
761000
2000
e logo distribuíronas aleatoriamente,
a metade tratouse cun placebo
e a outra metade con ácido zoledrónico,
12:58
where half got placebo,
238
763000
2000
13:00
and half got a drug called Zoledronic acid that builds bone.
239
765000
4000
un medicamento
que rexenera o material óseo.
13:04
It's used to treat osteoporosis,
240
769000
2000
Úsase para tratar a osteoporose.
Administróuselles dúas veces ao ano.
13:06
and they got that twice a year.
241
771000
2000
13:08
They looked and, in these 1,800 women,
242
773000
4000
Comprobaron que, nesas 1.800 mulleres,
13:12
given twice a year a drug that builds bone,
243
777000
3000
ás que se lles dera o medicamento
rexenerador óseo,
reduciran a reaparición do cancro nun 35%.
13:15
you reduce the recurrence of cancer by 35 percent.
244
780000
5000
Reducírase a reaparición dun cancro
cun medicamento
13:21
Reduce occurrence of cancer by a drug
245
786000
2000
que nin sequera chegaba a el.
13:23
that doesn't even touch the cancer.
246
788000
2000
13:25
So the notion, you change the soil, the seed doesn't grow as well.
247
790000
5000
A idea era que, se cambias o terreo,
a semente non xermina tan ben.
13:30
You change that system,
248
795000
3000
Cambias o sistema,
e pode que se obteñan
resultados relevantes no cancro.
13:33
and you could have a marked effect on the cancer.
249
798000
2000
13:35
Nobody has ever shown -- and this will be shocking --
250
800000
3000
Ninguén demostrou ata agora
—e isto vailles chocar—
ninguén demostrou ata agora
que a maioría da quimioterapia
13:38
nobody has ever shown that most chemotherapy
251
803000
3000
chegue sequera a unha célula cancerosa.
13:41
actually touches a cancer cell.
252
806000
2000
13:43
It's never been shown.
253
808000
2000
Nunca se demostrou.
13:45
There's all these elegant work in the tissue culture dishes,
254
810000
3000
Existe moito traballo deste tipo en
cultivos de tecidos
aos que se lles aplicas este medicamento,
pode ter efectos na célula,
13:48
that if you give this cancer drug, you can do this effect to the cell,
255
813000
3000
13:51
but the doses in those dishes are nowhere near
256
816000
3000
pero as doses que se empregan nos cultivos
nin sequera se aproximan
13:54
the doses that happen in the body.
257
819000
4000
ás que se lles administran
aos pacientes.
Se se lle dá Taxol a unha muller
con cancro de mama,
13:58
If I give a woman with breast cancer a drug called Taxol
258
823000
3000
14:01
every three weeks, which is the standard,
259
826000
2000
cada tres semanas,
que é o habitual,
14:03
about 40 percent of women with metastatic cancer
260
828000
2000
ata un 40% das mulleres
con metástase
responden a ese medicamento
de maneira satisfactoria:
14:05
have a great response to that drug.
261
830000
3000
14:08
And a response is 50 percent shrinkage.
262
833000
2000
prodúcese unha reducción do 50%.
Fixádevos que iso nin sequera é
un nivel alto,
14:10
Well, remember that's not even an order of magnitude,
263
835000
2000
14:12
but that's a different story.
264
837000
2000
pero iso xa é outra historia.
14:14
They then recur, I give them that same drug every week.
265
839000
4000
Despois reaparece e repítese o tratamento,
pero esta vez cada semana.
14:18
Another 30 percent will respond.
266
843000
3000
Agora será efectivo no 30% dos casos.
14:21
They then recur, I give them that same drug
267
846000
2000
Se reaparece e se volve aplicar
o tratamento
14:23
over 96 hours by continuous infusion,
268
848000
3000
durante 96 horas de infusión intravenosa,
14:26
another 20 or 30 percent will respond.
269
851000
3000
seguirá sendo efectivo
nun 20 ou 30% dos casos.
Polo tanto, non se pode dicir que funciona
do mesmo xeito en tódolos casos.
14:29
So, you can't tell me it's working by the same mechanism in all three size.
270
854000
4000
14:33
It's not. We have no idea the mechanism.
271
858000
3000
Porque non o fai.
Non temos nin idea do seu mecanismo.
14:36
So the idea that chemotherapy may just be disrupting
272
861000
3000
A noción reside en que a quimioterapia
pode estar impedindo
14:39
that complex system,
273
864000
3000
a proliferación dese sistema complexo,
14:42
just like building bone disrupted that system and reduced recurrence,
274
867000
5000
ao igual que o fixo o tratamento
coa medicación da rexeneración ósea.
A quimioterapia traballaría
do mesmo xeito.
14:47
chemotherapy may work by that same exact way.
275
872000
3000
14:50
The wild thing about that trial also,
276
875000
3000
O impresionante deste ensaio
é que, ademais, puido reducir
os novos cancros ata nun 30%.
14:53
was that it reduced new primaries, so new cancers, by 30 percent also.
277
878000
7000
O problema radica en que
tódolos nosos sistemas cambian.
15:02
So, the problem is, yours and mine, all of our systems are changing.
278
887000
5000
15:07
They're dynamic.
279
892000
2000
Son dinámicos.
15:09
I mean, this is a scary slide, not to take an aside,
280
894000
3000
Sen deixar iso de lado...
esta é unha alarmante diapositiva
15:12
but it looks at obesity in the world.
281
897000
2000
que representa a obesidade no mundo.
15:14
And I'm sorry if you can't read the numbers, they're kind of small.
282
899000
3000
Sinto que non se vexan os números,
a verdade é que son minúsculos.
15:17
But, if you start to look at it, that red, that dark color there,
283
902000
4000
Pero se se fixan, o vermello,
esa cor escura,
representa que un 75% da poboación
deses países é obesa.
15:21
more than 75 percent of the population
284
906000
3000
15:24
of those countries are obese.
285
909000
3000
15:27
Look a decade ago, look two decades ago: markedly different.
286
912000
4000
Fíxense hai unha década, ou dúas:
totalmente diferente.
15:31
So, our systems today are dramatically different
287
916000
3000
Na actualidade, os nosos sistemas
son completamente diferentes
15:34
than our systems a decade or two ago.
288
919000
4000
do que eran hai un par de décadas.
15:38
So the diseases we have today,
289
923000
3000
As enfermidades que existen
hoxe en día
15:41
which reflect patterns in the system over the last several decades,
290
926000
4000
reflicten patróns nos sistemas
ao longo das últimas décadas
15:45
are going to change dramatically over the next decade or so
291
930000
4000
e van cambiar de forma radical
na próxima década,
15:49
based on things like this.
292
934000
3000
como podemos deducir
de porcentaxes coma estas.
15:52
So, this picture, although it is beautiful, is a 40-gigabyte picture
293
937000
10000
Esta imaxe, que é moi bonita,
ten un peso de 40GB
16:02
of the whole proteome.
294
947000
2000
e representa a totalidade do proteoma.
16:04
So this is a drop of blood that has gone through a superconducting magnet,
295
949000
4000
Iso é unha pequena cantidade de sangue
que pasou por un imán supercondutor,
16:08
and we're able to get resolution
296
953000
2000
por iso podemos obter esta resolución
16:10
where we can start to see all of the proteins in the body.
297
955000
4000
e ver todas as proteínas do corpo.
Podemos darlle unha ollada a este sistema.
16:14
We can start to see that system.
298
959000
2000
16:16
Each of the red dots are where a protein has actually been identified.
299
961000
4000
Cada un dos puntiños vermellos son
proteínas que xa están identificadas.
A potencia deses imáns,
o que podemos facer con isto,
16:20
The power of these magnets, the power of what we can do here,
300
965000
2000
16:22
is that we can see an individual neutron with this technology.
301
967000
5000
é ver un ata un simple neutrón
grazas a esta tecnoloxía.
16:27
So, again, this is stuff we're doing with Danny Hillis
302
972000
3000
De novo,
isto é o que facemos con Danny Hillis
16:30
and a group called Applied Proteomics,
303
975000
2000
e o grupo chamado Applied Proteomics.
16:32
where we can start to see individual neutron differences,
304
977000
4000
Vemos pequenas diferenzas neutrónicas
16:36
and we can start to look at that system like we never have before.
305
981000
4000
e obtemos unha nova visión do sistema
que xamais fora pensada.
En lugar dunha visión reducionista,
estamos ampliando a perspectiva.
16:40
So, instead of a reductionist view, we're taking a step back.
306
985000
4000
16:44
So this is a woman, 46 years old,
307
989000
4000
Esta é unha muller de 46 anos,
que padeceu cancro
e logo unha recidiva.
16:48
who had recurrent lung cancer.
308
993000
3000
16:51
It was in her brain, in her lungs, in her liver.
309
996000
4000
Estaba no seu cerebro,
nos pulmons, no fígado...
16:55
She had gotten Carboplatin Taxol, Carboplatin Taxotere,
310
1000000
4000
Tratouse con Carboplatino Taxol
e Carboplatino Taxotere,
Xencitabina, Navelbina...
16:59
Gemcitabine, Navelbine:
311
1004000
2000
todos os medicamentos posibles,
pero a enfermidade continuaba avanzando.
17:01
Every drug we have she had gotten, and that disease continued to grow.
312
1006000
5000
17:06
She had three kids under the age of 12,
313
1011000
4000
Tiña tres nenos de menos de 12 anos,
17:10
and this is her CT scan.
314
1015000
2000
e este é o resultado do seu TAC.
O que vemos é unha sección transversal
do seu corpo a esta altura,
17:12
And so what this is, is we're taking a cross-section of her body here,
315
1017000
3000
17:15
and you can see in the middle there is her heart,
316
1020000
3000
aí no medio está o corazón,
17:18
and to the side of her heart on the left there is this large tumor
317
1023000
4000
e á súa esquerda, un gran tumor
que se non se tratase,
17:22
that will invade and will kill her, untreated, in a matter of weeks.
318
1027000
6000
invadiría o resto do corpo
e mataríaa en cuestión de semanas.
Seguiu tomando unha pastilla ao día
que tiña un obxectivo concreto.
17:28
She goes on a pill a day that targets a pathway,
319
1033000
5000
17:33
and again, I'm not sure if this pathway was in the system, in the cancer,
320
1038000
4000
Non sei seguro se o obxectivo
estaba no sistema, no cancro,
17:37
but it targeted a pathway, and a month later, pow, that cancer's gone.
321
1042000
6000
pero centrábase niso e un mes despois,
(puf!) o cancro desaparece.
17:43
Six months later it's still gone.
322
1048000
3000
Seis meses despois seguía sen reaparecer.
17:46
That cancer recurred, and she passed away three years later from lung cancer,
323
1051000
5000
Porén, sufriu unha recidiva e morreu
tres anos despois de cancro de pulmón,
17:51
but she got three years from a drug
324
1056000
4000
pero obtivo tres anos máis
grazas a unha medicación
17:55
whose symptoms predominately were acne.
325
1060000
2000
que tiña como principal
efecto secundario acne.
17:57
That's about it.
326
1062000
2000
Iso era todo.
17:59
So, the problem is that the clinical trial was done,
327
1064000
4000
A cuestión é que o ensaio estaba feito
e nós formabamos parte del.
18:03
and we were a part of it,
328
1068000
2000
18:05
and in the fundamental clinical trial --
329
1070000
2000
Na parte fundamental do ensaio,
a chamada Fase Tres,
18:07
the pivotal clinical trial we call the Phase Three,
330
1072000
2000
negámonos a usar placebo.
18:09
we refused to use a placebo.
331
1074000
3000
Gustaríalles que a súa nai,
o seu irmán ou a súa irmá
18:12
Would you want your mother, your brother, your sister
332
1077000
2000
18:14
to get a placebo if they had advanced lung cancer and had weeks to live?
333
1079000
4000
fosen tratados con placebo se padecesen
dun cancro avanzado
e só lles quedasen
unhas semanas de vida?
18:18
And the answer, obviously, is not.
334
1083000
2000
A resposta é, dende logo, que non.
18:20
So, it was done on this group of patients.
335
1085000
2000
Así que así o fixemos
cun grupo de pacientes.
18:22
Ten percent of people in the trial had this dramatic response that was shown here,
336
1087000
6000
O 10% da xente que participaba no ensaio
reaccionou deste xeito incrible
que acabamos de ver.
O medicamento foi á FDA
(Axencia de Alimentos e Medicamentos)
18:28
and the drug went to the FDA,
337
1093000
3000
e obtivemos como resposta:
18:31
and the FDA said, "Without a placebo,
338
1096000
2000
"Sen placebo, como saberemos se o paciente
obtivo resultados coa medicación?"
18:33
how do I know patients actually benefited from the drug?"
339
1098000
5000
O día que se ía reunir a FDA, este
foi o editorial do Wall Street Journal.
18:38
So the morning the FDA was going to meet,
340
1103000
2000
18:40
this was the editorial in the Wall Street Journal.
341
1105000
3000
[A FDA aos pacientes: Morran]
(risas)
18:43
(Laughter)
342
1108000
2000
E como imaxinarán,
aprobouse a medicación.
18:45
And so, what do you know, that drug was approved.
343
1110000
4000
18:49
The amazing thing is another company did the right scientific trial,
344
1114000
4000
Algo incrible é que outra empresa
fixo ese experimento
18:53
where they gave half placebo and half the drug.
345
1118000
3000
no que se daba metade placebo
e metade medicación.
18:56
And we learned something important there.
346
1121000
2000
E de aí aprendemos algo importante.
O interesante é que o fixeron
en América do Sur e Canadá,
18:58
What's interesting is they did it in South America and Canada,
347
1123000
3000
lugares nos que é
"máis ético utilizar placebos".
19:01
where it's "more ethical to give placebos."
348
1126000
3000
Tamén o tiñan que facer
nos EEUU para que o aprobasen,
19:04
They had to give it also in the U.S. to get approval,
349
1129000
2000
así que participaron
tres pacientes dese país
19:06
so I think there were three U.S. patients
350
1131000
2000
19:08
in upstate New York who were part of the trial.
351
1133000
2000
que eran da na zona norte
do estado de Nova York.
19:10
But they did that, and what they found
352
1135000
2000
Iso foi o que fixeron e
o resultado
19:12
is that 70 percent of the non-responders
353
1137000
3000
foi que o 70% dos que non responderon
19:15
lived much longer and did better than people who got placebo.
354
1140000
5000
viviu moito máis
e cunha mellor calidade de vida
ca aqueles que tomaron placebo.
19:20
So it challenged everything we knew in cancer,
355
1145000
3000
Isto revolucionou todo
o que sabiamos sobre o cancro,
19:23
is that you don't need to get a response.
356
1148000
2000
e é que non precisas unha resposta.
19:25
You don't need to shrink the disease.
357
1150000
2000
Non precisas reducir a enfermidade
19:27
If we slow the disease, we may have more of a benefit
358
1152000
4000
porque se se ralentiza,
pódense obter mellores resultados
19:31
on patient survival, patient outcome, how they feel,
359
1156000
4000
en supervivencia de pacientes,
nos resultados e en como se senten,
ca se a reducimos.
19:35
than if we shrink the disease.
360
1160000
2000
A cuestión é que, se eu son ese médico
e me chega un TAC dun fígado
19:37
The problem is that, if I'm this doc, and I get your CT scan today
361
1162000
3000
19:40
and you've got a two centimeter mass in your liver,
362
1165000
3000
cun vulto de 2 cm, e ao cabo de tres meses
se converte nun vulto de 3 cm...
19:43
and you come back to me in three months and it's three centimeters,
363
1168000
3000
19:46
did that drug help you or not?
364
1171000
2000
A medicación funcionou ou non?
19:48
How do I know?
365
1173000
2000
Como o sei?
19:50
Would it have been 10 centimeters, or am I giving you a drug
366
1175000
4000
Poida que chegase a medir 10 cm
se non se tratase, ou estou administrando
19:54
with no benefit and significant cost?
367
1179000
3000
unha custosa medicación
sen obter beneficios?
Este é o problema fundamental.
19:57
So, it's a fundamental problem.
368
1182000
2000
19:59
And, again, that's where these new technologies can come in.
369
1184000
5000
De novo, isto é o que
estas novas tecnoloxías poden resolver.
20:04
And so, the goal obviously is that you go into your doctor's office --
370
1189000
4000
Dende logo que o maior obxectivo é que
se entre na consulta dun médico
20:08
well, the ultimate goal is that you prevent disease, right?
371
1193000
3000
e que poida previr a enfermidade, verdade?
20:11
The ultimate goal is that you prevent any of these things from happening.
372
1196000
4000
En última instancia, o obxectivo é
impedir se produzan.
20:15
That is the most effective, cost-effective,
373
1200000
3000
Iso é o máis efectivo e o máis rendible,
20:18
best way we can do things today.
374
1203000
2000
a mellor forma
na que se poderían facer as cousas.
20:20
But if one is unfortunate to get a disease,
375
1205000
3000
Porén, se alguén, por mala sorte, enferma,
vai á consulta do médico, que extrae
20:23
you'll go into your doctor's office, he or she will take a drop of blood,
376
1208000
3000
unha mostra de sangue
e xa saberemos como tratalo.
20:26
and we will start to know how to treat your disease.
377
1211000
4000
20:31
The way we've approached it is the field of proteomics,
378
1216000
3000
Este enfoque forma parte
do ámbito da proteómica,
20:34
again, this looking at the system.
379
1219000
2000
de novo, centrándonos no sistema.
Trátase de ter unha visión de conxunto.
20:36
It's taking a big picture.
380
1221000
2000
20:38
The problem with technologies like this is
381
1223000
3000
O problema das tecnoloxías coma esta
é que, se nos centramos
nas proteínas corporais,
20:41
that if one looks at proteins in the body,
382
1226000
2000
hai 11 ordes de magnitude
de diferenza
20:43
there are 11 orders of magnitude difference
383
1228000
3000
entre as proteínas que son
máis abundantes e as que menos.
20:46
between the high-abundant and the low-abundant proteins.
384
1231000
3000
20:49
So, there's no technology in the world that can span 11 orders of magnitude.
385
1234000
5000
Non hai ningún tipo de tecnoloxía
que poida abarcalas a todas.
20:54
And so, a lot of what has been done with people like Danny Hillis and others
386
1239000
5000
Por iso, moito do que fixemos
con xente como Danny Hillis, entre outros,
20:59
is to try to bring in engineering principles, try to bring the software.
387
1244000
4000
foi recorrer á enxeñería,
intentar atopar o software.
21:03
We can start to look at different components along this spectrum.
388
1248000
5000
Podemos ver diferentes compoñentes
en todo este espectro.
Antes falamos da interdisciplinariedade
e da colaboración.
21:08
And so, earlier was talked about cross-discipline, about collaboration.
389
1253000
5000
21:13
And I think one of the exciting things that is starting to happen now
390
1258000
3000
Dende o meu punto de vista,
que a xente de diferentes campos se una
21:16
is that people from those fields are coming in.
391
1261000
3000
é unha cousa verdadeiramente marabillosa
que xa está sucedendo.
21:19
Yesterday, the National Cancer Institute announced a new program
392
1264000
3000
Onte, o Instituto Nacional de Cancro
presentou un novo programa
21:22
called the Physical Sciences and Oncology,
393
1267000
3000
chamado 'Ciencias Físicas e Oncoloxía’
no que físicos e matemáticos
se xuntan para traballar sobre o cancro.
21:25
where physicists, mathematicians, are brought in to think about cancer,
394
1270000
4000
Xente que nunca antes
experimentara con el.
21:29
people who never approached it before.
395
1274000
3000
Onte informáronnos de que nos ían dar
a Danny e a min 16 millóns de dólares,
21:32
Danny and I got 16 million dollars, they announced yesterday,
396
1277000
3000
21:35
to try to attach this problem.
397
1280000
2000
para intentar abordar este problema.
21:37
A whole new approach, instead of giving high doses of chemotherapy
398
1282000
4000
Un enfoque totalmente novo,
que en lugar de administrar
elevadas doses de quimioterapia
por diferentes procedementos,
21:41
by different mechanisms,
399
1286000
2000
21:43
to try to bring technology to get a picture of what's actually happening in the body.
400
1288000
6000
trate de usar a tecnoloxía para ver
todo o que sucede nos nosos corpos.
21:49
So, just for two seconds, how these technologies work --
401
1294000
4000
Vou explicar brevemente
como funcionan estas novas ferramentas,
21:53
because I think it's important to understand it.
402
1298000
3000
porque é importante que o entendan.
21:56
What happens is every protein in your body is charged,
403
1301000
3000
O que ocorre é que cada unha das
proteínas do corpo está cargada.
21:59
so the proteins are sprayed in, the magnet spins them around,
404
1304000
4000
Rociamos o interior con elas e
o imán fai que xiren ao seu redor.
22:03
and then there's a detector at the end.
405
1308000
2000
Nun extremo hai un detector.
22:05
When it hit that detector is dependent on the mass and the charge.
406
1310000
5000
Dependendo do seu volume e da súa carga,
as proteínas irán chocando co detector.
Así, se o imán é grande abondo
e a resolución é boa,
22:10
And so we can accurately -- if the magnet is big enough,
407
1315000
3000
22:13
and your resolution is high enough --
408
1318000
2000
pódense detectar
tódalas proteínas do corpo
22:15
you can actually detect all of the proteins in the body
409
1320000
3000
22:18
and start to get an understanding of the individual system.
410
1323000
4000
e dar un paso máis cara
o coñecemento do sistema individual.
22:22
And so, as a cancer doctor,
411
1327000
2000
Como oncólogo,
22:24
instead of having paper in my chart, in your chart, and it being this thick,
412
1329000
5000
en lugar de ter o historial
como un montón de papeis así de gordo,
22:29
this is what data flow is starting to look like in our offices,
413
1334000
4000
así é como toda esa información
vai chegar ao noso despacho.
22:33
where that drop of blood is creating gigabytes of data.
414
1338000
3000
Unha gota de sangue
xerará xigabytes de información.
22:36
Electronic data elements are describing every aspect of the disease.
415
1341000
4000
Os datos electrónicos definirán
os diferentes aspectos da enfermidade.
22:40
And certainly the goal is we can start to learn from every encounter
416
1345000
4000
Por suposto, a meta é aprender
con cada consulta
e así avanzar, en lugar de
ter repetidas citas médicas
22:44
and actually move forward, instead of just having encounter and encounter,
417
1349000
5000
sen descubrir nada novo.
22:49
without fundamental learning.
418
1354000
2000
22:51
So, to conclude, we need to get away from reductionist thinking.
419
1356000
6000
Para acabar, debemos afastarnos
do pensamento reducionista.
22:57
We need to start to think differently and radically.
420
1362000
4000
Necesitamos pensar
dun xeito totalmente diferente.
23:01
And so, I implore everyone here: Think differently. Come up with new ideas.
421
1366000
4000
Prégollelo: pensen de forma diferente.
Elaboren novas ideas.
23:05
Tell them to me or anyone else in our field,
422
1370000
3000
Cóntennolas aos que pertencemos
a este campo porque,
23:08
because over the last 59 years, nothing has changed.
423
1373000
3000
nos últimos 59 anos, nada cambiou.
23:11
We need a radically different approach.
424
1376000
3000
Necesitamos unha visión
radicalmente diferente.
23:14
You know, Andy Grove stepped down as chairman of the board at Intel --
425
1379000
3000
Andy Grove dimitiu
do seu posto de presidente de Intel,
23:17
and Andy was one of my mentors, tough individual.
426
1382000
3000
e foi un dos meus mentores,
unha persoa esixente.
23:20
When Andy stepped down, he said,
427
1385000
2000
Cando renunciou ao seu posto, dixo:
23:22
"No technology will win. Technology itself will win."
428
1387000
3000
"Ningunha tecnoloxía gañará.
A tecnoloxía será a vitoria."
E creo con firmeza que,
no ámbito da medicina,
23:25
And I'm a firm believer, in the field of medicine and especially cancer,
429
1390000
4000
e en especial, do cancro,
haberá unha gran plataforma tecnolóxica
23:29
that it's going to be a broad platform of technologies
430
1394000
3000
23:32
that will help us move forward
431
1397000
2000
que nos axudará a avanzar e, con sorte,
curará pacientes a curto prazo.
23:34
and hopefully help patients in the near-term.
432
1399000
2000
23:36
Thank you very much.
433
1401000
2000
Moitas grazas.

▲Back to top

ABOUT THE SPEAKER
David Agus - Cancer Doctor
Although a highly-accomplished conventional doctor, David Agus has embraced the future of medicine and is constantly exploring ways that new technologies can help in the fight against cancer.

Why you should listen

David Agus is a medical doctor and a Professor of Medicine at the University of Southern California. However, he is also the founder of a couple of game-changing medical initiatives. In 2006, he co-founded Navigenics with Dietrich Stephan, Ph.D., to form a company that would provide people with their individual genetic information, allowing them to act on any predispositions to disease that they might have and prevent onset. He also founded Oncology.com which was the largest cancer Internet resource and community.

Dr. Agus’ research is focused on the application of proteomics and genomics in the study of cancer, as well as developing new therapeutic treatments for cancer. He serves as Director of the USC Center for Applied Molecular Medicine and the USC Westside Prostate Cancer Center. Agus is also the recipient of several honors and awards, including the American Cancer Society Physician Research Award, a Clinical Scholar Award from the Sloan-Kettering Institute and the International Myeloma Foundation Visionary Science Award.

More profile about the speaker
David Agus | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee