ABOUT THE SPEAKER
Anders Ynnerman - Scientific visualization expert
Anders Ynnerman studies the fundamental aspects of computer graphics and visualization, in particular large scale and complex data sets with a focus on volume rendering and multi-modal interaction.

Why you should listen

Professor Anders Ynnerman received a Ph.D. in physics from Gothenburg University. During the early 90s he was doing research at Oxford University and Vanderbilt University. In 1996 he started the Swedish National Graduate School in Scientific Computing, which he directed until 1999. From 1997 to 2002 he directed the Swedish National Supercomputer Centre and from 2002 to 2006 he directed the Swedish National Infrastructure for Computing (SNIC).

Since 1999 he is holding a chair in scientific visualization at Linköping University and in 2000 he founded the Norrköping Visualization and Interaction Studio (NVIS). NVIS currently constitutes one of the main focal points for research and education in computer graphics and visualization in the Nordic region. Ynnerman is currently heading the build-up of a large scale center for Visualization in Norrköping.

More profile about the speaker
Anders Ynnerman | Speaker | TED.com
TEDxGöteborg 2010

Anders Ynnerman: Visualizing the medical data explosion

安德斯.伊爾曼:醫療數據可視化

Filmed:
539,883 views

現今醫療條件下,對一位病患進行掃描,短短數秒便會生成上千張圖像,數據以百萬兆計.那麼對於醫生來說,如何對這海量的數據進行解析並篩選出所需要的信息呢?本次TED哥德堡演講上,來自科學可視化領域的專家安德斯.伊爾曼向我們展示了一種與虛擬屍檢同樣精密的新技術,此技術的應用可幫助醫生對海量數據進行有效分析.除此之外,伊爾曼還將介紹一些略帶科幻色彩暂處於研發階段的醫療技術.本次演講包含一些醫療圖片的展示.
- Scientific visualization expert
Anders Ynnerman studies the fundamental aspects of computer graphics and visualization, in particular large scale and complex data sets with a focus on volume rendering and multi-modal interaction. Full bio

Double-click the English transcript below to play the video.

00:15
I will start開始 by posing冒充 a little bit of a challenge挑戰:
0
0
4000
首先我先向大家介紹一個亟需解決的難題
00:19
the challenge挑戰 of dealing交易 with data數據,
1
4000
3000
如何有效處理
00:22
data數據 that we have to deal合同 with
2
7000
2000
醫療過程中生成的
00:24
in medical situations情況.
3
9000
2000
海量數據.
00:26
It's really a huge巨大 challenge挑戰 for us.
4
11000
2000
這些數據處理起來十分棘手.
00:28
And this is our beast of burden負擔 --
5
13000
2000
這個正是解決此難題的關鍵.
00:30
this is a Computer電腦 Tomography斷層攝影術 machine,
6
15000
2000
一台x光斷層掃描儀
00:32
a CTCT machine.
7
17000
2000
即CT機.
00:34
It's a fantastic奇妙 device設備.
8
19000
2000
這台機器非常先進.
00:36
It uses使用 X-raysX射線, X-rayX-射線 beams,
9
21000
2000
它使用X線管發出X線束對患者進行掃描,
00:38
that are rotating旋轉 very fast快速 around the human人的 body身體.
10
23000
3000
同時這些X線管會圍繞患者高速旋轉.
00:41
It takes about 30 seconds to go through通過 the whole整個 machine
11
26000
2000
CT機完成一次掃描需要大約30秒
00:43
and is generating發電 enormous巨大 amounts of information信息
12
28000
2000
同時採集並輸出掃描所生成的
00:45
that comes out of the machine.
13
30000
2000
大量信息.
00:47
So this is a fantastic奇妙 machine
14
32000
2000
這台機器真的非常厲害
00:49
that we can use
15
34000
2000
它可以用來
00:51
for improving提高 health健康 care關心,
16
36000
2000
提高衛生保健的質量.
00:53
but as I said, it's also a challenge挑戰 for us.
17
38000
2000
但正如之前所說,它也為我們帶來了一個問題.
00:55
And the challenge挑戰 is really found發現 in this picture圖片 here.
18
40000
3000
從這張圖片大家可以看到這個問題.
00:58
It's the medical data數據 explosion爆炸
19
43000
2000
它正是我們現在正在面臨的
01:00
that we're having right now.
20
45000
2000
醫療數據爆炸.
01:02
We're facing面對 this problem問題.
21
47000
2000
我們正在努力解決這個問題.
01:04
And let me step back in time.
22
49000
2000
讓我們先來回顧一下過去.
01:06
Let's go back a few少數 years年份 in time and see what happened發生 back then.
23
51000
3000
現在我們回到幾十年前
01:09
These machines that came來了 out --
24
54000
2000
我要說的這些機器
01:11
they started開始 coming未來 in the 1970s --
25
56000
2000
於上世紀70年代開始投入使用
01:13
they would scan掃描 human人的 bodies身體,
26
58000
2000
醫生們用這些機器對患者進行人體掃描.
01:15
and they would generate生成 about 100 images圖片
27
60000
2000
之後會生成大約100張
01:17
of the human人的 body身體.
28
62000
2000
人體影像.
01:19
And I've taken採取 the liberty自由, just for clarity明晰,
29
64000
2000
恕我冒昧,為了方便理解,
01:21
to translate翻譯 that to data數據 slices.
30
66000
3000
我把這圖像轉換成等量的數據切片.
01:24
That would correspond對應 to about 50 megabytes兆字節 of data數據,
31
69000
2000
這些圖像大約相當於50MB的數據,
01:26
which哪一個 is small
32
71000
2000
這個數量很小
01:28
when you think about the data數據 we can handle處理 today今天
33
73000
3000
如果和現在我們每天打交道的信息量相比
01:31
just on normal正常 mobile移動 devices設備.
34
76000
2000
只與普通的移動設備相當.
01:33
If you translate翻譯 that to phone電話 books圖書,
35
78000
2000
如果拿電話簿的信息量做比的話,
01:35
it's about one meter儀表 of phone電話 books圖書 in the pile.
36
80000
3000
約相當於一米高的電話簿疊加.
01:38
Looking at what we're doing today今天
37
83000
2000
現在我們來看看今天
01:40
with these machines that we have,
38
85000
2000
對這些機器的使用.
01:42
we can, just in a few少數 seconds,
39
87000
2000
現在,只需數秒
01:44
get 24,000 images圖片 out of a body身體,
40
89000
2000
一位患者的人體掃描可以得到24,000張影像.
01:46
and that would correspond對應 to about 20 gigabytes千兆字節 of data數據,
41
91000
3000
這相當於 20 GB的數據,
01:49
or 800 phone電話 books圖書,
42
94000
2000
800本電話簿.
01:51
and the pile would then be 200 meters of phone電話 books圖書.
43
96000
2000
壘起來大約有200米.
01:53
What's about to happen發生 --
44
98000
2000
然後呢,會發生甚麼?
01:55
and we're seeing眼看 this; it's beginning開始 --
45
100000
2000
我們可以看到,它已經開始了----
01:57
a technology技術 trend趨勢 that's happening事件 right now
46
102000
2000
一種新的技術趨勢已經出現
01:59
is that we're starting開始 to look at time-resolved時間分辨 situations情況 as well.
47
104000
3000
我們開始考量時間分辨力.
02:02
So we're getting得到 the dynamics動力學 out of the body身體 as well.
48
107000
3000
我們也需要得到書面化的診斷結果.
02:05
And just assume承擔
49
110000
2000
現在我們假設
02:07
that we will be collecting蒐集 data數據 during five seconds,
50
112000
3000
我們收集到了掃描5秒鐘所得數據,
02:10
and that would correspond對應 to one terabyte兆兆字節 of data數據 --
51
115000
2000
大約為1 TB.
02:12
that's 800,000 books圖書
52
117000
2000
相當於800,000本電話簿,
02:14
and 16 kilometers公里 of phone電話 books圖書.
53
119000
2000
壘起來約16千米.
02:16
That's one patient患者, one data數據 set.
54
121000
2000
這還只是掃描一個病患所得數據集.
02:18
And this is what we have to deal合同 with.
55
123000
2000
這也正是我們需要處理的數據量
02:20
So this is really the enormous巨大 challenge挑戰 that we have.
56
125000
3000
所以說這個難題真的十分棘手.
02:23
And already已經 today今天 -- this is 25,000 images圖片.
57
128000
3000
現在正是這個問題. 這裡有25,000張影像.
02:26
Imagine想像 the days
58
131000
2000
想像一下在以前
02:28
when we had radiologists放射科醫生 doing this.
59
133000
2000
醫生們是這樣研究病理的.
02:30
They would put up 25,000 images圖片,
60
135000
2000
放到現在,他們要放25,000張圖像上去,
02:32
they would go like this, "25,0000, okay, okay.
61
137000
3000
到時候他們就要像這樣去看,”第25,000張,
02:35
There is the problem問題."
62
140000
2000
哎,對,問題找到了.”
02:37
They can't do that anymore. That's impossible不可能.
63
142000
2000
現實不允許他們再這樣去找了.
02:39
So we have to do something that's a little bit more intelligent智能 than doing this.
64
144000
3000
所以我們要想一些更聰明的辦法.
02:43
So what we do is that we put all these slices together一起.
65
148000
2000
我們得把這些切片再整合起來.
02:45
Imagine想像 that you slice your body身體 in all these directions方向,
66
150000
3000
我們先把自己沿這些各種方向切成數據片,
02:48
and then you try to put the slices back together一起 again
67
153000
3000
然後把這些切片再重新放回到一起,
02:51
into a pile of data數據, into a block of data數據.
68
156000
2000
這樣一堆數據就成了一個數據塊
02:53
So this is really what we're doing.
69
158000
2000
這就是我們要做的.
02:55
So this gigabyte技嘉 or terabyte兆兆字節 of data數據, we're putting it into this block.
70
160000
3000
把這許多GB、TB的數據合成一個數據塊
02:58
But of course課程, the block of data數據
71
163000
2000
當然,這個數據塊
03:00
just contains包含 the amount of X-rayX-射線
72
165000
2000
只包含了在各個部分
03:02
that's been absorbed吸收 in each point in the human人的 body身體.
73
167000
2000
被人體吸收了的X線束的數據.
03:04
So what we need to do is to figure數字 out a way
74
169000
2000
接下來我們要做的就是想個辦法
03:06
of looking at the things we do want to look at
75
171000
3000
只顯示我們想看到那部分的數據,
03:09
and make things transparent透明 that we don't want to look at.
76
174000
3000
隱去我們不想看到的部份.
03:12
So transforming轉型 the data數據 set
77
177000
2000
於是我們要把這個數據集
03:14
into something that looks容貌 like this.
78
179000
2000
變成這個樣子.
03:16
And this is a challenge挑戰.
79
181000
2000
這個不容易做到.
03:18
This is a huge巨大 challenge挑戰 for us to do that.
80
183000
3000
這個非常不容易做到.
03:21
Using運用 computers電腦, even though雖然 they're getting得到 faster更快 and better all the time,
81
186000
3000
雖然現在電腦運行已越來越快且穩定
03:24
it's a challenge挑戰 to deal合同 with gigabytes千兆字節 of data數據,
82
189000
2000
利用電腦處理上GB 的數據,
03:26
terabytes兆兆字節 of data數據
83
191000
2000
或者說上TB的數據
03:28
and extracting提取 the relevant相應 information信息.
84
193000
2000
並提取出所需信息依然並不容易.
03:30
I want to look at the heart.
85
195000
2000
有時候要看一下心臟,
03:32
I want to look at the blood血液 vessels船隻. I want to look at the liver.
86
197000
2000
有時候要看一下血管,有時看肝臟,
03:34
Maybe even find a tumor,
87
199000
2000
也許有時候
03:36
in some cases.
88
201000
2000
要找一下看沒有腫瘤.
03:39
So this is where this little dear comes into play.
89
204000
2000
現在該我的小女兒出現了.
03:41
This is my daughter女兒.
90
206000
2000
這就是我女兒.
03:43
This is as of 9 a.m. this morning早上.
91
208000
2000
這大概是今天上午9點.
03:45
She's playing播放 a computer電腦 game遊戲.
92
210000
2000
她在玩電腦遊戲.
03:47
She's only two years年份 old,
93
212000
2000
她才只有兩歲,
03:49
and she's having a blast爆破.
94
214000
2000
但是玩得很開心.
03:51
So she's really the driving主動 force
95
216000
3000
這樣的她正是
03:54
behind背後 the development發展 of graphics-processing圖形處理 units單位.
96
219000
3000
催動圖像處理器進步的原動力.
03:58
As long as kids孩子 are playing播放 computer電腦 games遊戲,
97
223000
2000
只要小孩子還在玩電腦遊戲,
04:00
graphics圖像 is getting得到 better and better and better.
98
225000
2000
電腦圖像處理技術就會越來越好.
04:02
So please go back home, tell your kids孩子 to play more games遊戲,
99
227000
2000
所以請大家回去告誡你們的小孩多玩遊戲吧,
04:04
because that's what I need.
100
229000
2000
我真的很需要這個.
04:06
So what's inside of this machine
101
231000
2000
我要說的是,我處理
04:08
is what enables使 me to do the things that I'm doing
102
233000
2000
醫療數據要用的東西
04:10
with the medical data數據.
103
235000
2000
就包含在這機器裡面.
04:12
So really what I'm doing is using運用 these fantastic奇妙 little devices設備.
104
237000
3000
我要用到的就是這些能幹的小設備.
04:15
And you know, going back
105
240000
2000
多年前
04:17
maybe 10 years年份 in time
106
242000
2000
大約十年前
04:19
when I got the funding資金
107
244000
2000
我得到足夠的資金
04:21
to buy購買 my first graphics圖像 computer電腦 --
108
246000
2000
買了我的第一台繪圖電腦
04:23
it was a huge巨大 machine.
109
248000
2000
那台電腦體型非常大
04:25
It was cabinets櫥櫃 of processors處理器 and storage存儲 and everything.
110
250000
3000
像塞滿處理器,存儲器等等等等的格子
04:28
I paid支付 about one million百萬 dollars美元 for that machine.
111
253000
3000
這台機器花了我大約一百萬美金.
04:32
That machine is, today今天, about as fast快速 as my iPhone蘋果手機.
112
257000
3000
現在這機器運行速度大概和我的iPhone一樣.
04:37
So every一切 month there are new graphics圖像 cards coming未來 out,
113
262000
2000
每個月都會有不同的新顯示卡面世.
04:39
and here is a few少數 of the latest最新 ones那些 from the vendors供應商 --
114
264000
3000
這是銷售商們推出的最新的顯示卡----
04:42
NVIDIANVIDIA, ATIATI, Intel英特爾 is out there as well.
115
267000
3000
NVIDIA, ATI, 還有Intel.
04:45
And you know, for a few少數 hundred bucks雄鹿
116
270000
2000
只要花個幾百塊
04:47
you can get these things and put them into your computer電腦,
117
272000
2000
就能買到這些裝到電腦裡面去,
04:49
and you can do fantastic奇妙 things with these graphics圖像 cards.
118
274000
3000
然後就可以做很多想做的事情.
04:52
So this is really what's enabling啟用 us
119
277000
2000
要解決醫療數據爆炸的問題
04:54
to deal合同 with the explosion爆炸 of data數據 in medicine醫學,
120
279000
3000
靠的正是這個.
04:57
together一起 with some really nifty俏皮的 work
121
282000
2000
再加上一些其他
04:59
in terms條款 of algorithms算法 --
122
284000
2000
邏輯運算之類的技術活----
05:01
compressing壓縮 data數據,
123
286000
2000
比如數據壓縮,
05:03
extracting提取 the relevant相應 information信息 that people are doing research研究 on.
124
288000
3000
以及提取醫生需要研究部分的信息.
05:06
So I'm going to show顯示 you a few少數 examples例子 of what we can do.
125
291000
3000
接下來我為大家演示一下我們能做到的部分.
05:09
This is a data數據 set that was captured捕獲 using運用 a CTCT scanner掃描器.
126
294000
3000
這是使用CT機掃描時建成的一個數據集.
05:12
You can see that this is a full充分 data數據 [set].
127
297000
3000
大家可以看到這是一套完整的數據.
05:15
It's a woman女人. You can see the hair頭髮.
128
300000
3000
這是一位女性. 從頭髮可以分辨出來.
05:18
You can see the individual個人 structures結構 of the woman女人.
129
303000
3000
大家可以看到這位女性身體各處的生理構造.
05:21
You can see that there is [a] scattering散射 of X-raysX射線
130
306000
3000
她牙齒上一塊散布的X線束,
05:24
on the teeth, the metal金屬 in the teeth.
131
309000
2000
那是牙齒上的一塊金屬.
05:26
That's where those artifacts文物 are coming未來 from.
132
311000
3000
也就是人造物所在的地方.
05:29
But fully充分 interactively交互式
133
314000
2000
然後只需
05:31
on standard標準 graphics圖像 cards on a normal正常 computer電腦,
134
316000
3000
在裝有普通顯示卡的普通電腦上
05:34
I can just put in a clip plane平面.
135
319000
2000
進行適當的編程,解析出一個剖面.
05:36
And of course課程 all the data數據 is inside,
136
321000
2000
當然所有的數據都沒在表面,
05:38
so I can start開始 rotating旋轉, I can look at it from different不同 angles,
137
323000
3000
通過旋轉可以從不同的角度進行觀察,
05:41
and I can see that this woman女人 had a problem問題.
138
326000
3000
我可以看到這位女性有一個問題,
05:44
She had a bleeding流血的 up in the brain,
139
329000
2000
她的大腦顱腔有一處出血,
05:46
and that's been fixed固定 with a little stent支架,
140
331000
2000
醫生用一個支架和
05:48
a metal金屬 clamp that's tightening緊縮 up the vessel船隻.
141
333000
2000
一個金屬夾子夾緊血管來控制出血.
05:50
And just by changing改變 the functions功能,
142
335000
2000
通過改變功能設置,
05:52
then I can decide決定 what's going to be transparent透明
143
337000
3000
我可以決定讓哪部分隱去
05:55
and what's going to be visible可見.
144
340000
2000
哪部分顯示出來.
05:57
I can look at the skull頭骨 structure結構體,
145
342000
2000
我可以只看他的頭骨部分,
05:59
and I can see that, okay, this is where they opened打開 up the skull頭骨 on this woman女人,
146
344000
3000
然後可以觀察出,哦,醫生是從這裡打開她的頭蓋骨,
06:02
and that's where they went in.
147
347000
2000
然後是從這個地方著手進行手術.
06:04
So these are fantastic奇妙 images圖片.
148
349000
2000
這些都是非常有用的圖像.
06:06
They're really high resolution解析度,
149
351000
2000
他們能提供非常有用的信息,
06:08
and they're really showing展示 us what we can do
150
353000
2000
能告訴我們今天用普通顯示卡
06:10
with standard標準 graphics圖像 cards today今天.
151
355000
3000
我們能做些甚麼.
06:13
Now we have really made製作 use of this,
152
358000
2000
現在我們確實已經開始利用起這些顯卡,
06:15
and we have tried試著 to squeeze a lot of data數據
153
360000
3000
我們希望能利用這些顯卡處理
06:18
into the system系統.
154
363000
2000
盡量多的數據.
06:20
And one of the applications應用 that we've我們已經 been working加工 on --
155
365000
2000
我們正在開發的一個應用----
06:22
and this has gotten得到 a little bit of traction牽引 worldwide全世界 --
156
367000
3000
這個應用已經開始全球推廣----
06:25
is the application應用 of virtual虛擬 autopsies屍體解剖.
157
370000
2000
虛擬屍檢.
06:27
So again, looking at very, very large data數據 sets,
158
372000
2000
這一次,從這些信息量巨大的數據集中
06:29
and you saw those full-body全身 scans掃描 that we can do.
159
374000
3000
大家可以再一次看到全身掃描的使用.
06:32
We're just pushing推動 the body身體 through通過 the whole整個 CTCT scanner掃描器,
160
377000
3000
把屍體完全推進CT掃描儀,
06:35
and just in a few少數 seconds we can get a full-body全身 data數據 set.
161
380000
3000
只要數秒就可以得到一個全身數據集.
06:38
So this is from a virtual虛擬 autopsy屍檢.
162
383000
2000
這是一次虛擬屍檢的資料.
06:40
And you can see how I'm gradually逐漸 peeling去皮 off.
163
385000
2000
大家可以看到一層一層的解構如何完成.
06:42
First you saw the body身體 bag that the body身體 came來了 in,
164
387000
3000
首先是覆著屍體的停屍袋,然後是屍體
06:45
then I'm peeling去皮 off the skin皮膚 -- you can see the muscles肌肉 --
165
390000
3000
然後剖開皮膚,出現肌肉
06:48
and eventually終於 you can see the bone structure結構體 of this woman女人.
166
393000
3000
最後可以看到這位女性的骨骼結構.
06:51
Now at this point, I would also like to emphasize注重
167
396000
3000
在這裡,我要強調一下,
06:54
that, with the greatest最大 respect尊重
168
399000
2000
對接下來我要展示的屍檢範例
06:56
for the people that I'm now going to show顯示 --
169
401000
2000
我是懷著極高的敬意.
06:58
I'm going to show顯示 you a few少數 cases of virtual虛擬 autopsies屍體解剖 --
170
403000
2000
這些都是虛擬屍檢的應用案例
07:00
so it's with great respect尊重 for the people
171
405000
2000
我是懷著對死者最高的敬意
07:02
that have died死亡 under violent暴力 circumstances情況
172
407000
2000
向大家展示
07:04
that I'm showing展示 these pictures圖片 to you.
173
409000
3000
這些暴力死亡的屍檢案例.
07:08
In the forensic法庭的 case案件 --
174
413000
2000
法醫屍檢裡
07:10
and this is something
175
415000
2000
近四年來
07:12
that ... there's been approximately 400 cases so far
176
417000
2000
單就瑞典我所在的地區來說
07:14
just in the part部分 of Sweden瑞典 that I come from
177
419000
2000
目前已經有大約400例
07:16
that has been undergoing經歷 virtual虛擬 autopsies屍體解剖
178
421000
2000
法醫屍檢
07:18
in the past過去 four years年份.
179
423000
2000
採用了虛擬驗屍.
07:20
So this will be the typical典型 workflow工作流程 situation情況.
180
425000
3000
虛擬驗屍的流程大概是這樣的.
07:23
The police警察 will decide決定 --
181
428000
2000
首先,大概在晚上
07:25
in the evening晚間, when there's a case案件 coming未來 in --
182
430000
2000
警方到達案發現場
07:27
they will decide決定, okay, is this a case案件 where we need to do an autopsy屍檢?
183
432000
3000
根據現場情況決定是否需要虛擬驗屍.
07:30
So in the morning早上, in between之間 six and seven in the morning早上,
184
435000
3000
之後大概在早上6點到7點,
07:33
the body身體 is then transported inside of the body身體 bag
185
438000
2000
警察們把屍體裝進停屍袋
07:35
to our center中央
186
440000
2000
送到我們研究中心
07:37
and is being存在 scanned掃描 through通過 one of the CTCT scanners掃描儀.
187
442000
2000
使用CT機進行掃描.
07:39
And then the radiologist放射科醫生, together一起 with the pathologist病理學家
188
444000
2000
接著放射性專家以及病理學專家
07:41
and sometimes有時 the forensic法庭的 scientist科學家,
189
446000
2000
有時候再加上法醫學家
07:43
looks容貌 at the data數據 that's coming未來 out,
190
448000
2000
共同研究
07:45
and they have a joint聯合 session會議.
191
450000
2000
從CT機得到的數據.
07:47
And then they decide決定 what to do in the real真實 physical物理 autopsy屍檢 after that.
192
452000
3000
由他們確定接下來實際屍檢的步驟.
07:52
Now looking at a few少數 cases,
193
457000
2000
現在我們來看一些真實案例.
07:54
here's這裡的 one of the first cases that we had.
194
459000
2000
這是早期案例中的一個.
07:56
You can really see the details細節 of the data數據 set.
195
461000
3000
我們可以看到非常詳盡的數據,
07:59
It's very high-resolution高分辨率,
196
464000
2000
它們能提供很大的幫助.
08:01
and it's our algorithms算法 that allow允許 us
197
466000
2000
然後我們利用電腦的邏輯演算
08:03
to zoom放大 in on all the details細節.
198
468000
2000
可以對所有想看到的細節進一步放大.
08:05
And again, it's fully充分 interactive互動,
199
470000
2000
這一次,同樣非常智能,
08:07
so you can rotate迴轉 and you can look at things in real真實 time
200
472000
2000
這個系統中我們可以像實際屍檢一樣
08:09
on these systems系統 here.
201
474000
2000
根據需要對屍體進行旋轉.
08:11
Without沒有 saying too much about this case案件,
202
476000
2000
對這個案例無需做過多的描述.
08:13
this is a traffic交通 accident事故,
203
478000
2000
這是一起交通意外,
08:15
a drunk driver司機 hit擊中 a woman女人.
204
480000
2000
司機醉酒駕駛,一名女性被撞.
08:17
And it's very, very easy簡單 to see the damages賠償 on the bone structure結構體.
205
482000
3000
大家可以很清楚看到骨架上所受創傷.
08:20
And the cause原因 of death死亡 is the broken破碎 neck頸部.
206
485000
3000
死因是頸骨骨折.
08:23
And this women婦女 also ended結束 up under the car汽車,
207
488000
2000
被害者當場死亡.
08:25
so she's quite相當 badly beaten毆打 up
208
490000
2000
撞擊發生時,
08:27
by this injury.
209
492000
2000
死者受到重創.
08:29
Here's這裡的 another另一個 case案件, a knifing刮塗.
210
494000
3000
這裡是另一個案子.一起持刀行凶案.
08:32
And this is also again showing展示 us what we can do.
211
497000
2000
這一次我們來看看可以發現甚麼.
08:34
It's very easy簡單 to look at metal金屬 artifacts文物
212
499000
2000
屍體體內的金屬人造物部分
08:36
that we can show顯示 inside of the body身體.
213
501000
3000
非常明顯.
08:39
You can also see some of the artifacts文物 from the teeth --
214
504000
3000
你還可以看到牙齒裡也有一些人造物,
08:42
that's actually其實 the filling填充 of the teeth --
215
507000
2000
那是補牙的填充物.
08:44
but because I've set the functions功能 to show顯示 me metal金屬
216
509000
3000
這裡我設定了只顯示金屬,
08:47
and make everything else其他 transparent透明.
217
512000
2000
其他被自動屏蔽.
08:49
Here's這裡的 another另一個 violent暴力 case案件. This really didn't kill the person.
218
514000
3000
這是另一起暴力案件.這裡並不是致命傷.
08:52
The person was killed殺害 by stabs in the heart,
219
517000
2000
真正死因是心臟被刺.
08:54
but they just deposited沉積 the knife
220
519000
2000
後來兇手又把刀
08:56
by putting it through通過 one of the eyeballs眼球.
221
521000
2000
插進了被害人的眼睛.
08:58
Here's這裡的 another另一個 case案件.
222
523000
2000
再來看另外一個案子.
09:00
It's very interesting有趣 for us
223
525000
2000
能直觀看到諸如東西被刀刺破的樣子
09:02
to be able能夠 to look at things like knife stabbings刺傷.
224
527000
2000
是很有意思的一件事情.
09:04
Here you can see that knife went through通過 the heart.
225
529000
3000
這裡你可以看到心臟被刀刺穿.
09:07
It's very easy簡單 to see how air空氣 has been leaking洩漏
226
532000
2000
可以很清楚看到空氣
09:09
from one part部分 to another另一個 part部分,
227
534000
2000
從一個部位漏往另一個部位.
09:11
which哪一個 is difficult to do in a normal正常, standard標準, physical物理 autopsy屍檢.
228
536000
3000
這在常規屍檢中是很難觀察到的.
09:14
So it really, really helps幫助
229
539000
2000
所以說,犯罪研究中,
09:16
the criminal刑事 investigation調查
230
541000
2000
虛擬屍檢可以幫助
09:18
to establish建立 the cause原因 of death死亡,
231
543000
2000
判斷死者真實死因,
09:20
and in some cases also directing導演 the investigation調查 in the right direction方向
232
545000
3000
以及必要時候幫助建立正確的
09:23
to find out who the killer兇手 really was.
233
548000
2000
緝凶方向.
09:25
Here's這裡的 another另一個 case案件 that I think is interesting有趣.
234
550000
2000
接下來也是一個很有意思的案子.
09:27
Here you can see a bullet子彈
235
552000
2000
這裡可以看到有一顆子彈.
09:29
that has lodged提交 just next下一個 to the spine脊柱 on this person.
236
554000
3000
子彈是擦著脊柱飛入的.
09:32
And what we've我們已經 doneDONE is that we've我們已經 turned轉身 the bullet子彈 into a light source資源,
237
557000
3000
接著我們把這顆子彈變成一個發光體,
09:35
so that bullet子彈 is actually其實 shining閃亮的,
238
560000
2000
子彈變成發光體後
09:37
and it makes品牌 it really easy簡單 to find these fragments片段.
239
562000
3000
要找子彈碎片就容易多了.
09:40
During a physical物理 autopsy屍檢,
240
565000
2000
如果在實際屍檢中,
09:42
if you actually其實 have to dig through通過 the body身體 to find these fragments片段,
241
567000
2000
要從屍體中搜尋出這些彈片
09:44
that's actually其實 quite相當 hard to do.
242
569000
2000
可謂相當困難.
09:48
One of the things that I'm really, really happy快樂
243
573000
2000
今天還有一樣
09:50
to be able能夠 to show顯示 you here today今天
244
575000
3000
我非常想展示給大家的東西,
09:53
is our virtual虛擬 autopsy屍檢 table.
245
578000
2000
就是我們的虛擬驗屍檯.
09:55
It's a touch觸摸 device設備 that we have developed發達
246
580000
2000
這其實是一套觸屏設備
09:57
based基於 on these algorithms算法, using運用 standard標準 graphics圖像 GPUs圖形處理器.
247
582000
3000
配置有普通顯示卡,加上電腦邏輯演算開發而得.
10:00
It actually其實 looks容貌 like this,
248
585000
2000
大家可以看得更清楚一點
10:02
just to give you a feeling感覺 for what it looks容貌 like.
249
587000
3000
就是這個樣子.
10:05
It really just works作品 like a huge巨大 iPhone蘋果手機.
250
590000
3000
用起來就像一個放大版的iPhone.
10:08
So we've我們已經 implemented實施
251
593000
2000
在模擬驗屍檯上
10:10
all the gestures手勢 you can do on the table,
252
595000
3000
你可以做任何實際驗屍中可能的操作,
10:13
and you can think of it as an enormous巨大 touch觸摸 interface接口.
253
598000
4000
你可以就把它當作一個大型觸屏.
10:17
So if you were thinking思維 of buying購買 an iPadiPad的,
254
602000
2000
所以如果你有想買個iPad,
10:19
forget忘記 about it. This is what you want instead代替.
255
604000
3000
別管iPad了, 這個才是你想要的.
10:22
Steve史蒂夫, I hope希望 you're listening to this, all right.
256
607000
3000
史提夫(蘋果公司現任董事長),聽到了吧
10:26
So it's a very nice不錯 little device設備.
257
611000
2000
這真的是一個很有意思的玩意
10:28
So if you have the opportunity機會, please try it out.
258
613000
2000
有機會你們一定要試一下
10:30
It's really a hands-on動手 experience經驗.
259
615000
3000
這個是非親身體驗不能明白的.
10:33
So it gained獲得 some traction牽引, and we're trying to roll this out
260
618000
3000
它已經獲得了一定認可,我們正在準備它的首次亮相,
10:36
and trying to use it for educational教育性 purposes目的,
261
621000
2000
希望能把它應用到相關教學中
10:38
but also, perhaps也許 in the future未來,
262
623000
2000
同時,也希望在將來,
10:40
in a more clinical臨床 situation情況.
263
625000
3000
能將它應用到臨床醫學中去.
10:43
There's a YouTubeYouTube的 video視頻 that you can download下載 and look at this,
264
628000
2000
如果大家想把虛擬驗屍檯
10:45
if you want to convey傳達 the information信息 to other people
265
630000
2000
介紹給其他人知道的話,
10:47
about virtual虛擬 autopsies屍體解剖.
266
632000
3000
這次演講的影片可以在YouTube下載到.
10:50
Okay, now that we're talking about touch觸摸,
267
635000
2000
好了,說到觸得到
10:52
let me move移動 on to really "touching接觸" data數據.
268
637000
2000
接下來我們來看一些真正觸得到的數據.
10:54
And this is a bit of science科學 fiction小說 now,
269
639000
2000
這個聽起來還有一點科幻,
10:56
so we're moving移動 into really the future未來.
270
641000
3000
因為我們現在要先進入未來的景象.
10:59
This is not really what the medical doctors醫生 are using運用 right now,
271
644000
3000
現在的醫生並沒有真的在使用這種儀器,
11:02
but I hope希望 they will in the future未來.
272
647000
2000
但是我希望以後能夠.
11:04
So what you're seeing眼看 on the left is a touch觸摸 device設備.
273
649000
3000
屏幕左側是一個觸控裝置.
11:07
It's a little mechanical機械 pen鋼筆
274
652000
2000
一隻觸控筆.
11:09
that has very, very fast快速 step motors馬達 inside of the pen鋼筆.
275
654000
3000
筆裡面置有高速步進電動機,
11:12
And so I can generate生成 a force feedback反饋.
276
657000
2000
能通過力反饋信號模擬出”真實”的觸感.
11:14
So when I virtually實質上 touch觸摸 data數據,
277
659000
2000
用這支筆觸碰這些虛擬數據,
11:16
it will generate生成 forces軍隊 in the pen鋼筆, so I get a feedback反饋.
278
661000
3000
會在筆中生成觸力信號從而得到力反饋效果.
11:19
So in this particular特定 situation情況,
279
664000
2000
這次示範中
11:21
it's a scan掃描 of a living活的 person.
280
666000
2000
使用的是一套活人掃描數據.
11:23
I have this pen鋼筆, and I look at the data數據,
281
668000
3000
我拿著筆, 掃描數據在我面前.
11:26
and I move移動 the pen鋼筆 towards the head,
282
671000
2000
把筆伸向掃瞄出的頭部影像
11:28
and all of a sudden突然 I feel resistance抵抗性.
283
673000
2000
我立刻就能感覺到所遇到的阻礙.
11:30
So I can feel the skin皮膚.
284
675000
2000
我感覺到了皮膚的阻礙.
11:32
If I push a little bit harder更難, I'll go through通過 the skin皮膚,
285
677000
2000
繼續用力, 穿透皮膚
11:34
and I can feel the bone structure結構體 inside.
286
679000
3000
就能感覺到裡面的骨骼構架.
11:37
If I push even harder更難, I'll go through通過 the bone structure結構體,
287
682000
2000
如果再加點力,就能穿過骨骼,
11:39
especially特別 close to the ear where the bone is very soft柔軟的.
288
684000
3000
尤其是在耳朵附近軟骨部分做這個實驗的話.
11:42
And then I can feel the brain inside, and this will be the slushy泥濘的 like this.
289
687000
3000
穿過骨骼,能感覺到大腦內部存在,到處黏糊糊的.
11:45
So this is really nice不錯.
290
690000
2000
這玩意真的不錯.
11:47
And to take that even further進一步, this is a heart.
291
692000
3000
接下來進一步我們來看心臟.
11:50
And this is also due應有 to these fantastic奇妙 new scanners掃描儀,
292
695000
3000
這又得歸功於那些新一代掃描儀,
11:53
that just in 0.3 seconds,
293
698000
2000
短短0.3秒
11:55
I can scan掃描 the whole整個 heart,
294
700000
2000
就掃描完了整個心臟.
11:57
and I can do that with time resolution解析度.
295
702000
2000
時間分辨率極高.
11:59
So just looking at this heart,
296
704000
2000
大家請先看這個心臟,
12:01
I can play back a video視頻 here.
297
706000
2000
接下來我為大家放一段視頻.
12:03
And this is KarljohanKarljohan, one of my graduate畢業 students學生們
298
708000
2000
這是卡爾約安,我的一個研究生
12:05
who's誰是 been working加工 on this project項目.
299
710000
2000
他也是這個研究項目中的一員.
12:07
And he's sitting坐在 there in front面前 of the Haptic觸覺 device設備, the force feedback反饋 system系統,
300
712000
3000
他正坐在這套力反饋系統觸覺設備前面,
12:10
and he's moving移動 his pen鋼筆 towards the heart,
301
715000
3000
用觸控筆研究那顆心臟.
12:13
and the heart is now beating跳動 in front面前 of him,
302
718000
2000
這心臟就在他眼前勃勃跳動.
12:15
so he can see how the heart is beating跳動.
303
720000
2000
拿著筆他就能檢查這顆心臟跳動是否正常.
12:17
He's taken採取 the pen鋼筆, and he's moving移動 it towards the heart,
304
722000
2000
現在他正拿著觸控筆,把它移近心臟,
12:19
and he's putting it on the heart,
305
724000
2000
然後放在心臟表面,
12:21
and then he feels感覺 the heartbeats心跳 from the real真實 living活的 patient患者.
306
726000
3000
感受來自那位患者的真實心跳.
12:24
Then he can examine檢查 how the heart is moving移動.
307
729000
2000
這樣他就可以對患者的心臟機能進行檢查.
12:26
He can go inside, push inside of the heart,
308
731000
2000
他還可以把筆伸進心臟裡面
12:28
and really feel how the valves閥門 are moving移動.
309
733000
3000
切切實實的感受心臟瓣膜是如何一張一翕.
12:31
And this, I think, is really the future未來 for heart surgeons外科醫生.
310
736000
3000
我想這個正是心臟外科醫生所需要的.
12:34
I mean it's probably大概 the wet dream夢想 for a heart surgeon外科醫生
311
739000
3000
有了這項技術,恐怕這些醫生們作夢也會笑醒.
12:37
to be able能夠 to go inside of the patient's耐心 heart
312
742000
3000
這樣醫生們就能夠
12:40
before you actually其實 do surgery手術,
313
745000
2000
在實際外科手術前深入觀察患者心臟,
12:42
and do that with high-quality高質量 resolution解析度 data數據.
314
747000
2000
並且有高度精確的數據做保證.
12:44
So this is really neat整齊.
315
749000
2000
非常值得期待.
12:47
Now we're going even further進一步 into science科學 fiction小說.
316
752000
3000
現在我們來講一點更科幻的東西.
12:50
And we heard聽說 a little bit about functional實用 MRIMRI.
317
755000
3000
大家大概都聽說過功能磁共振成像.
12:53
Now this is really an interesting有趣 project項目.
318
758000
3000
這是一個非常有意思的研究項目.
12:56
MRIMRI is using運用 magnetic磁性 fields領域
319
761000
2000
磁共振成像的原理是利用磁場
12:58
and radio無線電 frequencies頻率
320
763000
2000
和射頻脈衝
13:00
to scan掃描 the brain, or any part部分 of the body身體.
321
765000
3000
對大腦或身體其他部位進行掃描.
13:03
So what we're really getting得到 out of this
322
768000
2000
通常我們可以通過磁共振成像
13:05
is information信息 of the structure結構體 of the brain,
323
770000
2000
得到大腦結構的信息
13:07
but we can also measure測量 the difference區別
324
772000
2000
當然利用磁共振也可以測出
13:09
in magnetic磁性 properties性能 of blood血液 that's oxygenated含氧
325
774000
3000
含氧血和不含氧血
13:12
and blood血液 that's depleted耗盡 of oxygen.
326
777000
3000
的不同磁性.
13:15
That means手段 that it's possible可能
327
780000
2000
這就意味著
13:17
to map地圖 out the activity活動 of the brain.
328
782000
2000
我們可以繪製出大腦活躍區域圖.
13:19
So this is something that we've我們已經 been working加工 on.
329
784000
2000
這正是我們現在在研究的東西.
13:21
And you just saw MottsMotts the research研究 engineer工程師, there,
330
786000
3000
這裡大家可以看到我們的研究工程師默特
13:24
going into the MRIMRI system系統,
331
789000
2000
戴著護目鏡
13:26
and he was wearing穿著 goggles風鏡.
332
791000
2000
進入到磁共振成像設備.
13:28
So he could actually其實 see things in the goggles風鏡.
333
793000
2000
他可以從護目鏡上獲得外界的信息.
13:30
So I could present當下 things to him while he's in the scanner掃描器.
334
795000
3000
所以他在掃描儀裡時我就從外界向他傳遞信息.
13:33
And this is a little bit freaky辣媽,
335
798000
2000
這其實有一點詭異,
13:35
because what MottsMotts is seeing眼看 is actually其實 this.
336
800000
2000
因為默特看到的其實是這個
13:37
He's seeing眼看 his own擁有 brain.
337
802000
3000
他自己的大腦.
13:40
So MottsMotts is doing something here,
338
805000
2000
圖像顯示出默特並不是安安靜靜躺著的.
13:42
and probably大概 he is going like this with his right hand,
339
807000
2000
他大概在用右手做這個動作,
13:44
because the left side is activated活性
340
809000
2000
因為大腦的左半球運動皮層
13:46
on the motor發動機 cortex皮質.
341
811000
2000
處於活躍狀態.
13:48
And then he can see that at the same相同 time.
342
813000
2000
他自己也能同步看到這些畫面.
13:50
These visualizations可視化 are brand new.
343
815000
2000
這些可視化技術還相當新,
13:52
And this is something that we've我們已經 been researching研究 for a little while.
344
817000
3000
但我們對其研究已經進行了一段時間.
13:55
This is another另一個 sequence序列 of Motts'Motts“ brain.
345
820000
3000
這是另一次默特大腦的成像.
13:58
And here we asked MottsMotts to calculate計算 backwards向後 from 100.
346
823000
3000
這次成像我們讓默特從100開始倒數.
14:01
So he's going "100, 97, 94."
347
826000
2000
於是他開始倒數 “100, 97, 94”
14:03
And then he's going backwards向後.
348
828000
2000
一直數一直數.
14:05
And you can see how the little math數學 processor處理器 is working加工 up here in his brain
349
830000
3000
大家可以看到大腦在進行這個簡單數學演算
14:08
and is lighting燈光 up the whole整個 brain.
350
833000
2000
漸漸的整個大腦都活躍起來.
14:10
Well this is fantastic奇妙. We can do this in real真實 time.
351
835000
2000
看起來非常有意思,哪天我們自己也可以試試.
14:12
We can investigate調查 things. We can tell him to do things.
352
837000
2000
我們還可以指示默特做特定動作來做一些研究.
14:14
You can also see that his visual視覺 cortex皮質
353
839000
2000
大家可以看到他大腦後側
14:16
is activated活性 in the back of the head,
354
841000
2000
視覺皮層活躍起來了,
14:18
because that's where he's seeing眼看, he's seeing眼看 his own擁有 brain.
355
843000
2000
因為他自己正在看那裡,看自己的大腦.
14:20
And he's also hearing聽力 our instructions說明
356
845000
2000
同時他又在聽從我們的指令
14:22
when we tell him to do things.
357
847000
2000
進行動作.
14:24
The signal信號 is really deep inside of the brain as well,
358
849000
2000
雖然大腦信號是在大腦深處傳遞,
14:26
and it's shining閃亮的 through通過,
359
851000
2000
但它可以通過成像凸顯出來.
14:28
because all of the data數據 is inside this volume.
360
853000
2000
因為所有的數據都集中在活躍區域.
14:30
And in just a second第二 here you will see --
361
855000
2000
接下來大家就會觀察到變化----
14:32
okay, here. MottsMotts, now move移動 your left foot腳丫子.
362
857000
2000
好,就是這裡.默特,動一下你的左腿.
14:34
So he's going like this.
363
859000
2000
好,就是這裡.默特,動一下你的左腿.
14:36
For 20 seconds he's going like that,
364
861000
2000
持續了大約20秒,
14:38
and all of a sudden突然 it lights燈火 up up here.
365
863000
2000
於是突然大腦這一部分顏色鮮艷起來.
14:40
So we've我們已經 got motor發動機 cortex皮質 activation激活 up there.
366
865000
2000
大腦運動皮層活躍了.
14:42
So this is really, really nice不錯,
367
867000
2000
非常,非常不錯.
14:44
and I think this is a great tool工具.
368
869000
2000
這真的是一個非常厲害的工具.
14:46
And connecting also with the previous以前 talk here,
369
871000
2000
和前面所作演講結合起來看的話,
14:48
this is something that we could use as a tool工具
370
873000
2000
利用這個工具
14:50
to really understand理解
371
875000
2000
我們可以直觀地觀察到
14:52
how the neurons神經元 are working加工, how the brain is working加工,
372
877000
2000
神經系統是如何工作, 大腦是如何工作,
14:54
and we can do this with very, very high visual視覺 quality質量
373
879000
3000
而且這樣的觀察是高度可視化的,
14:57
and very fast快速 resolution解析度.
374
882000
3000
同時也具有高速分辨力.
15:00
Now we're also having a bit of fun開玩笑 at the center中央.
375
885000
2000
最近我們中心也做了一些很有意思的研究.
15:02
So this is a CAT scan掃描 -- Computer電腦 Aided計算機輔助 Tomography斷層攝影術.
376
887000
3000
這是台CAT掃描儀----計算機輔助斷層攝影.
15:06
So this is a lion獅子 from the local本地 zoo動物園
377
891000
2000
這是瑞典諾爾雪平市郊
15:08
outside of Norrkoping諾爾雪平 in Kolmarden距離Kolmården, Elsa艾爾莎.
378
893000
3000
動物園裡的一頭獅子.
15:11
So she came來了 to the center中央,
379
896000
2000
工作人員把她送到我們中心
15:13
and they sedated鎮靜 her
380
898000
2000
給她打了鎮靜劑
15:15
and then put her straight直行 into the scanner掃描器.
381
900000
2000
然後把她放平送進掃描儀.
15:17
And then, of course課程, I get the whole整個 data數據 set from the lion獅子.
382
902000
3000
接著就得到了這頭獅子的一套完整數據集.
15:20
And I can do very nice不錯 images圖片 like this.
383
905000
2000
我們可以得到像這樣的清晰圖像,
15:22
I can peel off the layer of the lion獅子.
384
907000
2000
也可以把獅子的表皮剖開
15:24
I can look inside of it.
385
909000
2000
觀察她的內部結構.
15:26
And we've我們已經 been experimenting試驗 with this.
386
911000
2000
我們確實有這樣做過實驗.
15:28
And I think this is a great application應用
387
913000
2000
我想這也是未來對這種技術
15:30
for the future未來 of this technology技術,
388
915000
2000
的某種絕好應用.
15:32
because there's very little known已知 about the animal動物 anatomy解剖學.
389
917000
3000
因為目前我們對動物解剖依然知之甚少.
15:35
What's known已知 out there for veterinarians獸醫 is kind of basic基本 information信息.
390
920000
3000
對獸醫來說這些都是亟需掌握的基本信息.
15:38
We can scan掃描 all sorts排序 of things,
391
923000
2000
基本上所有東西都能拿來掃描,
15:40
all sorts排序 of animals動物.
392
925000
2000
所有動物都可以,
15:42
The only problem問題 is to fit適合 it into the machine.
393
927000
3000
只要能塞進掃描儀.
15:45
So here's這裡的 a bear.
394
930000
2000
於是一頭熊就出現了.
15:47
It was kind of hard to get it in.
395
932000
2000
把牠塞進掃描儀稍微費了點功夫.
15:49
And the bear is a cuddly可愛, friendly友善 animal動物.
396
934000
3000
這頭熊倒是非常溫順,討人喜歡.
15:52
And here it is. Here is the nose鼻子 of the bear.
397
937000
3000
掃描結果出來了.這是熊的鼻子.
15:55
And you might威力 want to cuddle this one,
398
940000
3000
對著這個鼻子也許你還想去摸摸,
15:58
until直到 you change更改 the functions功能 and look at this.
399
943000
3000
調整設置顯示成這樣以後大概就不想了.
16:01
So be aware知道的 of the bear.
400
946000
2000
所以對熊還是要小心一點好.
16:03
So with that,
401
948000
2000
結束前,
16:05
I'd like to thank all the people
402
950000
2000
我要感謝
16:07
who have helped幫助 me to generate生成 these images圖片.
403
952000
2000
所有幫助我整理這些圖片的人.
16:09
It's a huge巨大 effort功夫 that goes into doing this,
404
954000
2000
你們花費了很大精力來完成這些,
16:11
gathering蒐集 the data數據 and developing發展 the algorithms算法,
405
956000
3000
收集數據,優化算法,
16:14
writing寫作 all the software軟件.
406
959000
2000
編寫所有需要的軟體.
16:16
So, some very talented天才 people.
407
961000
3000
你們都極具天賦.
16:19
My motto座右銘 is always, I only hire聘請 people that are smarter聰明 than I am
408
964000
3000
我一直堅持:只雇用比我聰明的人,
16:22
and most of these are smarter聰明 than I am.
409
967000
2000
這些人就幾乎人人比我聰明.
16:24
So thank you very much.
410
969000
2000
謝謝各位.
16:26
(Applause掌聲)
411
971000
4000
(掌聲)
Translated by SHUMAN WEI
Reviewed by Coco Shen

▲Back to top

ABOUT THE SPEAKER
Anders Ynnerman - Scientific visualization expert
Anders Ynnerman studies the fundamental aspects of computer graphics and visualization, in particular large scale and complex data sets with a focus on volume rendering and multi-modal interaction.

Why you should listen

Professor Anders Ynnerman received a Ph.D. in physics from Gothenburg University. During the early 90s he was doing research at Oxford University and Vanderbilt University. In 1996 he started the Swedish National Graduate School in Scientific Computing, which he directed until 1999. From 1997 to 2002 he directed the Swedish National Supercomputer Centre and from 2002 to 2006 he directed the Swedish National Infrastructure for Computing (SNIC).

Since 1999 he is holding a chair in scientific visualization at Linköping University and in 2000 he founded the Norrköping Visualization and Interaction Studio (NVIS). NVIS currently constitutes one of the main focal points for research and education in computer graphics and visualization in the Nordic region. Ynnerman is currently heading the build-up of a large scale center for Visualization in Norrköping.

More profile about the speaker
Anders Ynnerman | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee