Anthony Goldbloom: The jobs we'll lose to machines -- and the ones we won't
Anthony Goldbloom: Darbai, kurių neteksime dėl kompiuterių, ir tie, kuriuos išlaikysime
Anthony Goldbloom crowdsources solutions to difficult problems using machine learning. Full bio
Double-click the English transcript below to play the video.
and her dad is a lawyer.
o tėtis – teisininkas.
are going to look dramatically different.
did a study on the future of work.
buvo atliktas tyrimas apie darbo ateitį.
in every two jobs have a high risk
kad beveik kas antra darbo sritis
yra technologija,
of this disruption.
of artificial intelligence.
dirbtinio intelekto dalis.
mokytis iš duomenų
that humans can do.
žmogaus veiksmus.
save mokančiomis sistemomis.
on the cutting edge of machine learning.
hundreds of thousands of experts
šimtus tūkstančių ekspertų tam,
for industry and academia.
pramonės ir mokslo problemas.
on what machines can do,
ką kompiuteriai gali atlikti,
automate or threaten.
grėsmė tapti automatizuotomis.
into industry in the early '90s.
brautis į pramonę 90-ųjų pradžioje.
gana paprastos užduotys.
credit risk from loan applications,
iš paskolos prašymo,
handwritten characters from zip codes.
ranka parašytus pašto indeksus.
dramatic breakthroughs.
įvyko didelis persilaužimas.
of far, far more complex tasks.
gali atlikti žymiai sunkesnes užduotis.
savo bendruomenei
that could grade high-school essays.
vertinti moksleivių rašinius.
were able to match the grades
darbus įvertinti taip pat,
an even more difficult challenge.
dar sunkesnį iššūkį.
and diagnose an eye disease
ir diagnozuoti akių ligą
were able to match the diagnoses
diagnozės atitiko
kompiuteriai geriau nei žmonės
machines are going to outperform humans
over a 40-year career.
rašinių per 40 m. karjerą.
apžiūrėti 50 tūkst. akių.
or see millions of eyes
rašinių ar apžiūrėti milijonus akių
against machines
su kompiuteriais
didelės apimties užduotis.
that machines can't do.
o kompiuteriai – ne.
very little progress
they haven't seen many times before.
kurių anksčiau nematė daug kartų.
of machine learning
from large volumes of past data.
daug praeities duomenų.
visiškai skirtingus dalykus,
seemingly disparate threads
su kuria susiduriame pirmąkart.
working on radar during World War II,
su radaru per Antrąjį pasaulinį karą,
was melting his chocolate bar.
išlydė jo šokoladą.
of electromagnetic radiation
apie elektromagnetinę radiaciją
the microwave oven.
Mikrobangų krosnelę.
example of creativity.
kūrybingumo pavyzdys.
happens for each of us in small ways
mums nutinka kasdien
novel situations,
on the human tasks
kiek žmogiškų veiklų
for the future of work?
darbui ateityje?
in the answer to a single question:
slypi atsakyme į klausimą:
to frequent, high-volume tasks,
įprastos, didelės apimties užduotys
tackling novel situations?
situacijų sprendimas?“
machines are getting smarter and smarter.
vystosi labai greitai.
They diagnose certain diseases.
diagnozuoja kai kurias ligas.
they're going to conduct our audits,
už mus atliks auditus,
from legal contracts.
mokesčių skaičiavimui,
for complex tax structuring,
susiaurins jų gretas
neįprastose situacijose.
on novel situations.
needs to grab consumers' attention.
turi patraukti vartotojo dėmesį.
finding gaps in the market,
atrasti rinkoje poreikį,
the copy behind our marketing campaigns,
reklamos kampanijų tekstus
our business strategy.
atneša naują iššūkį.
ahead of the machines.
už kompiuterius.
ABOUT THE SPEAKER
Anthony Goldbloom - Machine learning expertAnthony Goldbloom crowdsources solutions to difficult problems using machine learning.
Why you should listen
Anthony Goldbloom is the co-founder and CEO of Kaggle. Kaggle hosts machine learning competitions, where data scientists download data and upload solutions to difficult problems. Kaggle has a community of over 600,000 data scientists and has worked with companies ranging Facebook to GE on problems ranging from predicting friendships to flight arrival times.
Before Kaggle, Anthony worked as an econometrician at the Reserve Bank of Australia, and before that the Australian Treasury. In 2011 and 2012, Forbes named Anthony one of the 30 under 30 in technology; in 2013 the MIT Tech Review named him one of top 35 innovators under the age of 35, and the University of Melbourne awarded him an Alumni of Distinction Award. He holds a first call honors degree in Econometrics from the University of Melbourne.
Anthony Goldbloom | Speaker | TED.com