Anthony Goldbloom: The jobs we'll lose to machines -- and the ones we won't
Anthony Goldbloom: As tarefas que perderemos para as máquinas — e as que não perderemos
Anthony Goldbloom crowdsources solutions to difficult problems using machine learning. Full bio
Double-click the English transcript below to play the video.
and her dad is a lawyer.
e o pai é advogado.
are going to look dramatically different.
será radicalmente diferente.
did a study on the future of work.
da Universidade de Oxford
sobre o futuro do trabalho.
in every two jobs have a high risk
um em cada dois empregos
automatizados com máquinas.
é a tecnologia responsável
of this disruption.
of artificial intelligence.
da inteligência artificial.
aprendam com os dados
that humans can do.
que os seres humanos fazem.
on the cutting edge of machine learning.
na aprendizagem automática de ponta.
hundreds of thousands of experts
de especialistas
for industry and academia.
para a indústria e para a academia.
on what machines can do,
sobre o que as máquinas conseguem fazer,
automate or threaten.
automatizadas ou ameaçadas.
into industry in the early '90s.
entrou na indústria no início dos anos 90.
credit risk from loan applications,
avaliar o risco de crédito
handwritten characters from zip codes.
manuscritos dos códigos postais.
dramatic breakthroughs.
fizemos progressos fenomenais.
of far, far more complex tasks.
fazer hoje tarefas muito mais complexas.
desafiou a sua comunidade
that could grade high-school essays.
avaliar os testes do secundário.
were able to match the grades
conseguiram equiparar-se aos valores
an even more difficult challenge.
ainda mais difícil.
e diagnosticar uma doença de olhos
and diagnose an eye disease
were able to match the diagnoses
conseguiram equiparar-se aos diagnósticos
as máquinas vão superar os seres humanos
machines are going to outperform humans
over a 40-year career.
durante a sua carreira de 40 anos.
or see millions of eyes
ou ver milhões de olhos
against machines
de competir com as máquinas
that machines can't do.
e que as máquinas não podem fazer.
very little progress
muito pouco progresso
they haven't seen many times before.
que não tenham visto muitas vezes.
of machine learning
da aprendizagem automática
from large volumes of past data.
com grandes volumes de dados anteriores.
seemingly disparate threads
relacionar fios aparentemente díspares
working on radar during World War II,
com radar durante a II Guerra Mundial,
was melting his chocolate bar.
estava a derreter uma barra de chocolate.
of electromagnetic radiation
de radiações eletromagnéticas
the microwave oven.
o forno micro-ondas.
example of creativity.
especialmente notável
happens for each of us in small ways
acontece com todos nós, de forma simples,
novel situations,
com situações novas.
on the human tasks
às tarefas humanas
for the future of work?
para o futuro do trabalho?
in the answer to a single question:
reside na resposta a uma única pergunta:
to frequent, high-volume tasks,
a tarefas frequentes, de alto volume,
tackling novel situations?
machines are getting smarter and smarter.
cada vez mais inteligentes.
They diagnose certain diseases.
Diagnosticam certas doenças.
they're going to conduct our audits,
vão realizar as nossas auditorias,
from legal contracts.
de contratos legais.
continuarão a ser precisos
for complex tax structuring,
litigações inovadoras.
reduzir as suas fileiras
on novel situations.
em situações novas.
tem de prender a atenção do consumidor,
needs to grab consumers' attention.
finding gaps in the market,
encontrar vazios no mercado,
the copy behind our marketing campaigns,
por detrás das campanhas publicitárias,
our business strategy.
as estratégias empresariais.
o que quer que venhas a ser,
te tragam um novo desafio.
ahead of the machines.
à frente das máquinas.
ABOUT THE SPEAKER
Anthony Goldbloom - Machine learning expertAnthony Goldbloom crowdsources solutions to difficult problems using machine learning.
Why you should listen
Anthony Goldbloom is the co-founder and CEO of Kaggle. Kaggle hosts machine learning competitions, where data scientists download data and upload solutions to difficult problems. Kaggle has a community of over 600,000 data scientists and has worked with companies ranging Facebook to GE on problems ranging from predicting friendships to flight arrival times.
Before Kaggle, Anthony worked as an econometrician at the Reserve Bank of Australia, and before that the Australian Treasury. In 2011 and 2012, Forbes named Anthony one of the 30 under 30 in technology; in 2013 the MIT Tech Review named him one of top 35 innovators under the age of 35, and the University of Melbourne awarded him an Alumni of Distinction Award. He holds a first call honors degree in Econometrics from the University of Melbourne.
Anthony Goldbloom | Speaker | TED.com