ABOUT THE SPEAKER
Anthony Goldbloom - Machine learning expert
Anthony Goldbloom crowdsources solutions to difficult problems using machine learning.

Why you should listen

Anthony Goldbloom is the co-founder and CEO of Kaggle. Kaggle hosts machine learning competitions, where data scientists download data and upload solutions to difficult problems. Kaggle has a community of over 600,000 data scientists and has worked with companies ranging Facebook to GE on problems ranging from predicting friendships to flight arrival times.

Before Kaggle, Anthony worked as an econometrician at the Reserve Bank of Australia, and before that the Australian Treasury. In 2011 and 2012, Forbes named Anthony one of the 30 under 30 in technology; in 2013 the MIT Tech Review named him one of top 35 innovators under the age of 35, and the University of Melbourne awarded him an Alumni of Distinction Award. He holds a first call honors degree in Econometrics from the University of Melbourne.  

More profile about the speaker
Anthony Goldbloom | Speaker | TED.com
TED2016

Anthony Goldbloom: The jobs we'll lose to machines -- and the ones we won't

Anthony Goldbloom: စက်များအား ကျွန်တော်တို့ အရှုံးပေးရေမယ့် အလုပ်တွေ၊ ပြီးတော့ ဆုံးရှုံးမသွားမဲ့ အလုပ်တွေ။

Filmed:
2,568,213 views

စက်သညာဟာ ယနေ့အခါမှာတော့ ခရက်ဒစ် ဘေးရန်ကိုဝင်ကြည့်တာ စာကိုရွေးထုတ်တာတို့လို ရိုးစင်းတဲ့ လုပ်ငန်းတွေအတွက်ပဲ မဟုတ်တော့ပါဘူး။ အက်ဆေး အဆင့်သတ်မှတ်တာနဲ့ ရောဂါရှာဖွေတာတို့လို အလွန် ပိုရှုပ်ထွေးတဲ့ လုပ်ဆောင်ချက်တွေကိုပါ တတ်နိုင်စွမ်းပါတယ် ဒီအဆင့်မြင့်မှုတွေက မလွယ်ကူတဲ့ မေးခွန်းတစ်ခု ဖြစ်လာပါတယ်။ အနာဂတ်မှာ စက်ရုပ်တွေဟာ သင့်အလုပ်ကို လုပ်တော့မှာလား။
- Machine learning expert
Anthony Goldbloom crowdsources solutions to difficult problems using machine learning. Full bio

Double-click the English transcript below to play the video.

00:12
So this is my niece.
0
968
1262
ဒါက ကျွန်တော့ တူမပါ။
00:14
Her name is Yahli.
1
2644
1535
သူမရဲ့ အမည်က Yahli ပါ။
00:16
She is nine months old.
2
4203
1511
အသက်က ကိုး လပါ။
00:18
Her mum is a doctor,
and her dad is a lawyer.
3
6201
2528
သူမရဲ့ အမေက ဆရာဝန်၊ အဖေက ရှေ့နေပါ။
00:21
By the time Yahli goes to college,
4
9269
2006
Yahli ကောလိပ်တက်ချိန်မှာ
00:23
the jobs her parents do
are going to look dramatically different.
5
11299
3253
သူမရဲ့ မိဘတွေလုပ်တဲ့ အလုပ်တွေဟာ
အံ့မခန်း ပြောင်းလဲတော့မယ့်ပုံပါ။
00:27
In 2013, researchers at Oxford University
did a study on the future of work.
6
15347
5073
၂၀၁၃ မှာ Oxford တက္ကသိုလ်က သုတေသီတွေ
ဟာ အလုပ်ရဲ့ အနာဂတ်ကို လေ့လာခဲ့တယ်။
00:32
They concluded that almost one
in every two jobs have a high risk
7
20766
4139
သူတို့ ကောက်ချက်ချတာက အလုပ်နှစ်ခုတိုင်း
မှာ တစ်ခုနီးပါးက စက်တွေနဲ့ အစားထိုးတာ
00:36
of being automated by machines.
8
24929
1824
ခံရမယ့် မြင်မားတဲ့ အန္တရာယ်ရှိတယ်။
00:40
Machine learning is the technology
9
28388
1905
စက်သညာဟာ ဒီအနှောက်အယှက်
00:42
that's responsible for most
of this disruption.
10
30317
2278
အများစုအတွက်
တရားခံဖြစ်တဲ့ နည်းပညာပါ။
00:44
It's the most powerful branch
of artificial intelligence.
11
32619
2790
ဉာဏ်ရည်တုရဲ့ စွမ်းအား
အကောင်ဆုံး ကိုင်းခွဲပါ။
00:47
It allows machines to learn from data
12
35433
1882
စက်တွေက ဒေတာကနေ သင်ယူ၊
လူတွေလုပ်နိုင်တဲ့
00:49
and mimic some of the things
that humans can do.
13
37339
2592
တစ်ချို့ အရာတွေကို
အသွင်တုခွင့် ပေးပါတယ်။
00:51
My company, Kaggle, operates
on the cutting edge of machine learning.
14
39955
3415
ကျွန်တော့ ကုမ္ပဏီ Kaggle ဟာ စက်သညာရဲ့
နောက်ဆုံးပေါ်မှာ လည်ပတ်ပါတယ်။
00:55
We bring together
hundreds of thousands of experts
15
43394
2386
စက်မှုနဲ့ ပညာရပ်အတွက်
အရေးပါတဲ့ ပြဿနာဖြေရှင်းဖို့
00:57
to solve important problems
for industry and academia.
16
45804
3118
သိန်းချီတဲ့ ကျွမ်းကျင်ပညာရှင်တွေကို
စုစည်းပါတယ်။
01:01
This gives us a unique perspective
on what machines can do,
17
49279
3222
ဒါက ပေးတဲ့ ထူးခြားတဲ့ အမြင်တစ်ရပ်က
စက်တွေ လုပ်ဆောင်နိုင်တာ၊
01:04
what they can't do
18
52525
1235
မလုပ်နိုင်တာ၊ ဘာအလုပ်တွေ
01:05
and what jobs they might
automate or threaten.
19
53784
2939
စက်နဲ့အစားထိုးတာ (သို့) ခြိမ်းခြောက်
နိုင်လောက်တာပါ။
01:09
Machine learning started making its way
into industry in the early '90s.
20
57316
3550
စက်သညာဟာ ၉၀ နှစ်လွန်အစောပိုင်းက
၎င်းရဲ့ လမ်းကို စဖောက်ခဲ့တာပါ။
01:12
It started with relatively simple tasks.
21
60890
2124
အတော် ရိုးစင်းတဲ့ လုပ်ရပ်တွေနဲ့
စခဲ့တာပါ။
01:15
It started with things like assessing
credit risk from loan applications,
22
63406
4115
ချေးငွေ လျှောက်လွှာတွေကနေ
ခရက်ဒစ် ဘေးရန်ကို ဝင်ကြည့်တာ၊
01:19
sorting the mail by reading
handwritten characters from zip codes.
23
67545
4053
စာပို့သကေင်္တတွေကနေ လက်ရေးကို ဖတ်ခြင်း
နဲ့ စာရွေးတာမျတတွေနဲ့ စခဲ့ပါတယ်။
01:24
Over the past few years, we have made
dramatic breakthroughs.
24
72036
3169
နှစ်အနည်းငယ်လွန်တော့ ထူးခြားတဲ့
တိုးတက်မှုတွေ လုပ်ခဲ့တယ်။
01:27
Machine learning is now capable
of far, far more complex tasks.
25
75586
3916
စက်သညာဟာ အခုဆို အလွန် ပိုရှုပ်ထွေးတဲ့
လုပ်ဆောင်ချက်တွေကို တတ်နိုင်စွမ်းပါတယ်။
01:31
In 2012, Kaggle challenged its community
26
79860
3231
၂၀၁၂မှာ Kaggle က လူထုကို စိန်ခေါ်
လိုက်တာက အထက်တန်းဆင့်
01:35
to build an algorithm
that could grade high-school essays.
27
83115
3189
အက်ဆေးတွေကို အဆင့်သတ်မှတ်နိုင်တဲ့
အယ်ဂိုရီသမ်တစ်ခု တည်ဆောက်ဖို့ပါ။
01:38
The winning algorithms
were able to match the grades
28
86328
2604
နှစ်လိုဖွယ် အယ်ဂိုရီသမ်ဟာ လူသား
ဆရာတွေပေးတဲ့ အဆင့်
01:40
given by human teachers.
29
88956
1665
သတ်မှတ်ချက်တွေနဲ့ ယှဉ်နိုင်ခဲ့တယ်။
01:43
Last year, we issued
an even more difficult challenge.
30
91092
2984
မနှစ်က ပိုတောင် ခက်ခဲတဲ့ စိန်ခေါ်မှု
တစ်ရပ်ကို ထုတ်ပြန်ခဲ့တယ်။
01:46
Can you take images of the eye
and diagnose an eye disease
31
94100
2953
မျက်စိကို ပုံရိပ်ဖမ်းပြီး ဆီးချို
မျက်စိကွယ်တာလို့ခေါ်တဲ့
01:49
called diabetic retinopathy?
32
97077
1694
မျက်စိရောဂါကို ရှာဖွေနိုင်လား။
01:51
Again, the winning algorithms
were able to match the diagnoses
33
99164
4040
ထပ်ပြီး နှစ်လိုဖွယ် အယ်ဂိုရီသမ်ဟာ
မျက်စိဆရာဝန်တွေပေးတဲ့
01:55
given by human ophthalmologists.
34
103228
1825
ရှာဖွေမှုတွေနဲ့ ယှဉ်နိုင်ခဲ့ပါတယ်။
01:57
Now, given the right data,
machines are going to outperform humans
35
105561
3212
အခု မှန်ကန်တဲ့ ဒေတာကိုထောက်ဆလျှင်
စက်တွေဟာ ဒီလိုအလုပ်တွေမှာ
02:00
at tasks like this.
36
108797
1165
လူတွေထက် သာတော့မှာပါ။
02:01
A teacher might read 10,000 essays
over a 40-year career.
37
109986
3992
ဆရာတစ်ဦးဟာ လုပ်သက် နှစ်လေးဆယ်
ကျော်မှာ အက်ဆေး ၁၀၀၀၀ ဖတ်မိလောက်တယ်။
02:06
An ophthalmologist might see 50,000 eyes.
38
114407
2360
မျက်စိဆရာဝန်က မျက်လုံး
၅၀၀၀၀ တွေ့နိုင်တာပေါ့။
02:08
A machine can read millions of essays
or see millions of eyes
39
116791
3913
စက်တစ်ခုဟာ သန်းချီတဲ့ အက်ဆေးတွေ၊
သန်းချီတဲ့ မျက်လုံးတွေကို မိနစ်ပိုင်း
02:12
within minutes.
40
120728
1276
အတွင်းမှာ ဖတ်နိုင်တယ်။
02:14
We have no chance of competing
against machines
41
122456
2858
ကြိမ်ရေများကာ ထုထည်မြင့်မားတဲ့ အလုပ်တွေမှာ
စက်တွေနဲ့
02:17
on frequent, high-volume tasks.
42
125338
2321
ယှဉ်ဖို့ အခွင့်မရှိပါဘူး။
02:20
But there are things we can do
that machines can't do.
43
128665
3724
ဒါပေမဲ့ စက်တွေ မတတ်နိုင်ပဲ ကျွန်တော်တို့
လုပ်နိုင်တာတွေ ရှိပါတယ်။
02:24
Where machines have made
very little progress
44
132791
2200
စက်တွေ တိုးတက်မှု အရမ်းနည်းတာက
ဆန်းသစ်တဲ့
02:27
is in tackling novel situations.
45
135015
1854
အခြေအနေတွေကို ကိုင်တွယ်ရာမှာပါ။
02:28
They can't handle things
they haven't seen many times before.
46
136893
3899
အရင်က အကြိမ်အများကြီး မမြင်ဖူးတဲ့
အရာတွေကို ၎င်းတို့ မကိုင်တွယ်နိုင်ဘူး။
02:33
The fundamental limitations
of machine learning
47
141321
2584
စက်သညာရဲ့ ပဓာန ကန့်သတ်ချက်တွေက
02:35
is that it needs to learn
from large volumes of past data.
48
143929
3394
စက်ဟာ အတိတ် ဒေတာရဲ့ ကြီးမားတဲ့
ပမာဏတွေကနေ သင်ယူဖို့ လိုတာပါ။
02:39
Now, humans don't.
49
147347
1754
ကဲ လူတွေကတော့ မဟုတ်ဘူး။
02:41
We have the ability to connect
seemingly disparate threads
50
149125
3030
မမြင်ဖူးတဲ့ ပြဿနာကို ဖြေရှင်းဖို့
ဆိုးဝါးပုံရတဲ့ အမျှင်တွေကို
02:44
to solve problems we've never seen before.
51
152179
2238
ဆက်သွယ်ဖို့ အစွမ်း
ကျွန်တော်တို့မှာ ရှိပါတယ်။
02:46
Percy Spencer was a physicist
working on radar during World War II,
52
154808
4411
Percy Spencer ဟာ သံလိုက်ပြွန်က
ချောကလက်ကို အရည်ပျော်စေတာ သတိပြုမိစဉ်က
02:51
when he noticed the magnetron
was melting his chocolate bar.
53
159243
3013
ဒုတိယ ကမ္ဘာစစ်အတွင်းက ရေဒါမှာ
လုပ်ကိုင်နေတဲ့ ရူပဗေဒညာရှင်ပါ။
02:54
He was able to connect his understanding
of electromagnetic radiation
54
162970
3295
သူ့ရဲ့ သံလိုက်လျှပ်စစ် ရောင်ခြည်
နားလည်မှုကို ချက်ပြုတ်ခြင်း
02:58
with his knowledge of cooking
55
166289
1484
သုတနဲ့ ဆက်စပ်နိုင်ခဲ့တယ်။
02:59
in order to invent -- any guesses? --
the microwave oven.
56
167797
3258
တီထွင်ဖို့က မှန်းဆမိလား
မိုက်ခရိုဝေ့ဖ် မီးဖိုပါ။
03:03
Now, this is a particularly remarkable
example of creativity.
57
171444
3073
ကဲ ဒါက အတော် ထူးခြားတဲ့
မှတ်သားစရာ ဖန်တီးမှုပါ။
03:06
But this sort of cross-pollination
happens for each of us in small ways
58
174541
3664
ဒါပေမဲ့ ဒီလို ဝတ်မှုံစပ်ကူးခြင်းဟာ
တစ်ဦးစီမှာ နေ့စဉ် အကြိမ်ထောင်ချီတဲ့
03:10
thousands of times per day.
59
178229
1828
နည်းလမ်းလေးတွေနဲ့ ဖြစ်ပေါ်နေတာပါ။
03:12
Machines cannot compete with us
60
180501
1661
ဆန်းသစ်တဲ့ အခြေအနေတွေကို
03:14
when it comes to tackling
novel situations,
61
182186
2251
ကိုင်တွယ်ရာမှာ စက်တွေဟာ
လူနဲ့ မယှဉ်နိုင်ဘူး။
03:16
and this puts a fundamental limit
on the human tasks
62
184461
3117
ဒါက လူသား အလုပ်တွေကို
စက်တွေက အစားထိုးမယ်ဆိုတာကို
03:19
that machines will automate.
63
187602
1717
ပဓာန ကန်သတ်ချက်ပေးတာပါ။
03:22
So what does this mean
for the future of work?
64
190041
2405
ဒီတော့ ဒါက အနာဂတ် အလုပ်အတွက်
ဘာကိုဆိုလိုတာလဲ။
03:24
The future state of any single job lies
in the answer to a single question:
65
192804
4532
အလုပ်တစ်ခုချင်းရဲ့ အနာဂတ် အခြေအနေဟာ
မေးခွန်းတစ်ခုတည်းရဲ့ အဖြေမှာတည်ပါတယ်။
03:29
To what extent is that job reducible
to frequent, high-volume tasks,
66
197360
4981
မကြာခဏ ထုထည်မြင့်မားတဲ့ အလုပ်တွေမှာ
ဘယ်အတိုင်းအတာထိ အလုပ် ယုတ်လျော့မလဲ၊
03:34
and to what extent does it involve
tackling novel situations?
67
202365
3253
ဆန်သစ်တဲ့ အခြေအနေတွေကို ကိုင်
တွယ်ရာမှာ ဘယ်အတိုင်းအတာထိရှိလဲ။
03:37
On frequent, high-volume tasks,
machines are getting smarter and smarter.
68
205975
4035
မကြာခဏ ပမာဏမြင့်မားတဲ့ အလုပ်တွေမှာ
စက်တွေဟာ ပိုပိုပြီး တော်လာနေတယ်။
03:42
Today they grade essays.
They diagnose certain diseases.
69
210034
2714
ယနေ့ အက်ဆေးတွေ အဆင့်သတ်မှတ်တယ်၊
ရောဂါတစ်ချို့ ရှာဖွေတယ်။
03:44
Over coming years,
they're going to conduct our audits,
70
212772
3157
လာမယ့်နှစ်တွေမှာ ကျွန်တော်တို့ရဲ့
စာရင်းတွေကို စစ်ပြီး
03:47
and they're going to read boilerplate
from legal contracts.
71
215953
2967
တရားဝင် ကန်ထရိုက်တွေနေ
စံညွှန်းတွေကို ဖတ်တော့မယ်။
03:50
Accountants and lawyers are still needed.
72
218944
1997
.စာရင်းကိုင်တွေနဲ့ ရှေ့နေတွေ လိုနေဆဲပါ။
03:52
They're going to be needed
for complex tax structuring,
73
220965
2682
ရှုပ်ထွေးတဲ့ အခွန် ဖွဲ့စည်းမှုတွေနဲ့
ဆန်းသစ်တဲ့ အမှုအတွက်
03:55
for pathbreaking litigation.
74
223671
1357
လိုအပ်ပါလိမ့်မယ်။
03:57
But machines will shrink their ranks
75
225052
1717
ဒါပေမဲ့ စက်တွေက ရာထူးတွ​ေ ချုံ့တော့
03:58
and make these jobs harder to come by.
76
226793
1872
ဒီအလုပ်တွေရဖို့ ပို
ခက်စေလိမ့်မယ်။
04:00
Now, as mentioned,
77
228689
1151
ကဲ ဆိုခဲ့တဲ့အတိုင်း
04:01
machines are not making progress
on novel situations.
78
229864
2949
စက်တွေဟာ ဆန်းသစ်တဲ့ အခြေအနေမှာ
တိုးတက်မနေပါဘူး။
04:04
The copy behind a marketing campaign
needs to grab consumers' attention.
79
232837
3457
စျေးကွက် စည်းရုံးပွဲနောက်က မိတ္တူက
စားသုံးသူ အာရုံကို ဆွဲယူဖို့လိုတယ်။
04:08
It has to stand out from the crowd.
80
236318
1715
လူစုထဲကနေ ကွဲထွက်ဖို့လိုပါတယ်။
04:10
Business strategy means
finding gaps in the market,
81
238057
2444
စီးပွားရေး ဗျူဟာက စျေးကွက်ထဲက
ကွာဟချက်တွေ ရှာတာပါ။
04:12
things that nobody else is doing.
82
240525
1756
အခြား ဘယ်သူမှ လုပ်မနေတာတွေပေါ့။
04:14
It will be humans that are creating
the copy behind our marketing campaigns,
83
242305
4118
စျေးကွက်ဖော် စည်းရုံးပွဲနောက်က မိတ္တူကို
ဖန်တီးနေတာက လူသားတွေဖြစ်ပြီး
04:18
and it will be humans that are developing
our business strategy.
84
246447
3517
စီးပွားရေး ဗျူဟာတွေကို ဖွံ့ဖြိုး
အောင်လုပ်နေတာ လူသားတွေဖြစ်လိမ့်မယ်။
04:21
So Yahli, whatever you decide to do,
85
249988
2817
ဒီတော့ Yahli ရေ မင်းဘာလုပ်ဖို့
ဆုံးဖြတ်ဆုံးဖြတ်
04:24
let every day bring you a new challenge.
86
252829
2361
နေ့စဉ်တိုင်း စိမ်ခေါ်မှု
အသစ်တစ်ခု ယူလာပါစေ။
04:27
If it does, then you will stay
ahead of the machines.
87
255587
2809
အဲဒါဆိုရင် မင်းဟာ
စက်တွေရဲ့ ရှေ့က ရှိနေမှာပါ။
04:31
Thank you.
88
259126
1176
ကျေးဇူးတင်ပါတယ်။
04:32
(Applause)
89
260326
3104
(လက်ခုပ်သံများ)
Translated by sann tint
Reviewed by Myo Aung

▲Back to top

ABOUT THE SPEAKER
Anthony Goldbloom - Machine learning expert
Anthony Goldbloom crowdsources solutions to difficult problems using machine learning.

Why you should listen

Anthony Goldbloom is the co-founder and CEO of Kaggle. Kaggle hosts machine learning competitions, where data scientists download data and upload solutions to difficult problems. Kaggle has a community of over 600,000 data scientists and has worked with companies ranging Facebook to GE on problems ranging from predicting friendships to flight arrival times.

Before Kaggle, Anthony worked as an econometrician at the Reserve Bank of Australia, and before that the Australian Treasury. In 2011 and 2012, Forbes named Anthony one of the 30 under 30 in technology; in 2013 the MIT Tech Review named him one of top 35 innovators under the age of 35, and the University of Melbourne awarded him an Alumni of Distinction Award. He holds a first call honors degree in Econometrics from the University of Melbourne.  

More profile about the speaker
Anthony Goldbloom | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee