James Beacham: How we explore unanswered questions in physics
ジェームズ・ビーチャム: 物理学の未解決問題をいかに探求するか
James Beacham is an experimental high-energy particle physicist working with the ATLAS collaboration at CERN's Large Hadron Collider. Full bio
Double-click the English transcript below to play the video.
since I was a little kid.
答えが得られない問題に
for almost 100 years,
重力で結びつけられている
things in nature --
どうやって統一するのか?
held together by gravity?
この問題に対して答えを出そうと
over questions just like this.
with microscopes and electromagnets,
about the forces of the small
that description matched up
よく合致していることに
学びました
we understand gravity,
統一する美しい理論が―
there must be some elegant way
別々には研究が進んでいますが
about these two realms separately,
them mathematically,
this basically physics disaster,
解く試みはどれも
納得のいくものではありませんでした
to December of 2015,
being flipped on its head.
興味深いデータが見つかったことに端を発します
saw something intriguing in our data:
得られる可能性を匂わせていました
answer to this question.
little kid, I think,
稼働中の実験施設では最大の
Large Hadron Collider,
研究しています
experiment ever mounted.
on the border of France and Switzerland
27キロのトンネルで
colder than outer space
to almost the speed of light
millions of times per second,
fundamental particles.
took decades of work
世界中から集まった物理学者の
from around the globe,
衝突型加速器実験をするために
to switch on the LHC
稼働に向けて精力的に働いていました
have ever used in a collider experiment.
there is an equivalence
put there by nature.
より大きな衝突型加速器が必要です
a bigger, higher energy collider,
最大の加速器が
energy collider in the world
quadrillions of times,
そのデータを集めます
over months and months.
in our data as bumps --
コブとして表れてくるかもしれません
一群のデータ点です
that make a smooth line not so smooth.
データを蓄積した結果ですが
of the Higgs particle --
ヒッグス粒子の発見に至り
for the confirmation of its existence.
ノーベル賞受賞にもつながりました
大幅に増強されたことによって
新たな答を発見する
that we as a species had ever had
long-standing questions,
twice as much energy as we used
研究生活の全てを賭けていました
their entire careers for this moment,
好奇心旺盛な子供の私にとっては
I'd been waiting for my entire life.
この一瞬を待つためだったのです
息もできないほどドキドキしていました
and bit our fingernails,
the first proton collisions
何が発見できるかは未知数でした
in this brand-new data.
コブを見つけました
we found a bump.
you raise your eyebrow.
for eyebrow raises,
discovered a new particle,
このわずかなコブについて
in secret meetings,
over this little bump,
ruthless experimental sticks
研究をしました
of working feverishly --
and not going home,
機械のようなものですが―
for turning coffee into diagrams --
明快なメッセージとともに世界に発表しました
with a very clear message:
決定的ではないので
but it's not definitive,
注意深く観測するつもりだということです
as we take more data.
冷静でいようとしました
extremely cool about it.
この発表は世界中に広まりました
them of the little bump
過程で現れたコブを
toward the Higgs boson discovery.
my theorist colleagues --
500本もの論文を書きました
500 papers about this little bump.
天地がひっくり返るほどの大騒ぎでした
had been flipped on its head.
何千人もの物理学者たちが―
to collectively lose their cool?
代物なのでしょうか
観測されているということです
large number of collisions
2つの光子だけ つまり
of only two photons,
like automobile collisions.
光速に近い速さで衝突する時は
at almost the speed of light,
新しい粒子が1つできますが
can briefly create a new particle
that hit our detector.
2台の車が消えて
where the two cars vanish upon impact,
2台のスケートボードになり
into two skateboards,
正確には少し違います
極めて稀です
hit out detector are very rare.
quantum properties of photons,
新粒子の可能性は―
of possible new particles --
かなりの高エネルギーで
that long-standing question
信じられないほど弱い力です
compared to the other forces of nature.
簡単に重力を打ち負かすことができますが
どの程度の強さなのか?
to the other forces of nature?
私たちが標準モデルと呼ぶ理論で
are perfectly described
現時点での最良の理論です
of nature at its smallest scales,
achievements of humankind --
重力は標準理論に含まれていません
from the Standard Model.
消えてしまったというのでしょうか
of gravity has gone missing.
ある仮説があります
proposes a wild solution.
non-controversial statement.
受け入れていただけるといいのですが
in three dimensions of space.
3次元空間において
基底より高い状態にあるということです
in a three-dimensional field;
記述するために用いる数学では
that we use to describe all this stuff
three dimensions of space.
いろんな数学的な扱いを試すことができます
around with our math however we want.
空間の余剰次元について
with extra dimensions of space
すぎませんでした
mathematical concept.
後ろの方も見回してください
you at the back, look around --
three dimensions of space.
私たちには見えない空間の余剰次元に
into an extra-spatial dimension
どうでしょう?
重力は他の力と同じぐらい強いのに
as the other forces
重力のほんの小さな断面だけなので
extra-spatial dimension,
is a tiny slice of gravity
拡張しなければなりません
our Standard Model of particles
つまり重力の高次元素粒子―
a hyperdimensional particle of gravity,
特別な重力子を含めることができます
in extra-spatial dimensions.
SF小説のようなアイディアを試すのだろう?
this crazy, science fiction idea,
the collision reverberates
揺るがせて
that might be there,
this hyperdimensional graviton
into the three dimensions of the LHC
つまり2個の光の粒子に分裂します
extra-dimensional graviton
生み出せるという
hypothetical new particles
two-photon bump.
the mysteries of gravity
dimensions of space --
2個の光子からできるわずかなコブに
collectively lost their cool
would rewrite the textbooks.
とても明確でした
this work at the time,
パリッと素敵なノーベル賞になるか
a nice, crisp Nobel Prize --
the space around the bump
several months later,
「消えた希望」とか
disappointment," on "faded hopes,"
報道しました
帰国したと考えたことでしょう
to shut down the LHC and go home.
まあ実際だめでしたが―
a particle -- and I didn't --
why am I here talking to you?
専ら地図を作っているようなものです
is cartography.
分かりやすく説明します
about the LHC for a second.
宇宙の彼方の惑星に到着し
arriving at a distant planet,
生命の大きく顕著な兆候がないか
land, take a quick look around
obvious-to-spot particles,
異星人らしき変なコブを見ましたが
on a distant mountain,
we saw it was a rock.
諦めて飛び去りますか?
Do we just give up and fly away?
of decades exploring,
次の二十年間かけて探検をして
with a fine instrument,
はっきりとしたコブとして
show up immediately
やっと現れるかもしれません
after years of data taking.
LHCで始めたばかりです
at the LHC at this big high energy,
新粒子を発見できなかったらどうしましょう?
we still find no new particles?
すでに進行しています
for a 100-kilometer tunnel
粒子を衝突させられるでしょう
at 10 times the energy of the LHC.
決めることはできません
nature places new particles.
a 100-kilometer tunnel
collider floating in space
間違っているということです
particle physics wrong.
technology, expertise
多くの資金と技術とノウハウが
人工知能や機械学習の技術を
and machine learning techniques
a particle physics experiment
設計すると考えてみましょう
a hyperdimensional graviton.
助けとならないとしたら?
can't help us answer our questions?
これらの問題は
for centuries,
for the foreseeable future?
since I was a little kid
解決されない運命だとしたら?
in my lifetime?
考えなくてはならなくなるでしょう
in completely new ways.
確かめなくてはならないでしょう
a flaw somewhere.
より多くの人を誘わなくてはなりません
to join us in studying science
新たな視点が必要だからです
on these century-old problems.
and I'm still searching for them.
その答をまだ探しています
今は学生かもしれませんし
she's in school right now,
物理学を捉えるように導き
in a completely new way,
指摘してくれるでしょう
we're just asking the wrong questions.
ABOUT THE SPEAKER
James Beacham - Experimental particle physicistJames Beacham is an experimental high-energy particle physicist working with the ATLAS collaboration at CERN's Large Hadron Collider.
Why you should listen
As part of the ATLAS collaboration at CERN's Large Hadron Collider, one of the teams that discovered the Higgs boson in 2012, James Beacham is on the hunt for evidence of new particles -- dark photons, gravitons, dark matter and exotic Higgs bosons among them.
Previously, Beacham was part of a small team of researchers who, in 2009, searched for the Higgs boson in an unlikely place: data taken by the ALEPH experiment at CERN's Large Electron-Positron collider, nine years after it had stopped running. He has also worked with the APEX collaboration, a groundbreaking search for dark photons using existing particle physics facilities designed for very different purposes.
Beacham completed his PhD at New York University in 2014 and is currently a post-doctoral researcher with the ATLAS experiment group of the Ohio State University. He has been a guest on NPR's "Science Friday," participated in documentaries on the BBC and the Discovery Channel and talked particle physics with the New York Times and WIRED.
In addition to his ongoing research, Beacham is dedicated to making particle physics accessible to all. He has communicated science to the public with Symmetry Magazine, US/LHC, the Science Museum in London, the Institute of Physics, the World Science Fair and on the Web.
In 2015, Beacham organized Ex/Noise/CERN, a project colliding particle physics with experimental music to celebrate the LHC’s switch on to 13 trillion electron volts.
James Beacham | Speaker | TED.com