ABOUT THE SPEAKER
Hannah Fry - Complexity theorist
Hannah Fry researches the trends in our civilization and ways we can forecast its future.

Why you should listen

Hannah Fry completed her PhD in fluid dynamics in early 2011 with an emphasis on how liquid droplets move. Then, after working as an aerodynamicist in the motorsport industry, she began work on an interdisciplinary project in complexity sciences at University College London. Hannah’s current research focusses on discovering new connections between mathematically described systems and human interaction at the largest scale.

More profile about the speaker
Hannah Fry | Speaker | TED.com
TEDxUCL

Hannah Fry: Is life really that complex?

Hannah Fry: Maisha ni magumu kweli?

Filmed:
819,007 views

Kanuni zinaweza kutabiri eneo la mapinduzi yajayo? Kwenye haya maongezi mazuri, mwanahisabati Hannah Fry anaonyesha jinsi tabia tata za kijamii zinaweza kuchunguzwa na pengine kutabiriwa kupitia mifano ya ishara halisi, kama mitindo ya madoa ya chui au mgawanyo wa wawindaji na windo mbugani.
- Complexity theorist
Hannah Fry researches the trends in our civilization and ways we can forecast its future. Full bio

Double-click the English transcript below to play the video.

00:10
ThanksShukrani very much.
0
24
1157
Asanteni sana.
00:11
I am HannahHana FryFry, the badassbadass.
1
1205
1848
Mimi ni Hannah Fry, shupavu.
00:13
And todayleo I'm askingkuuliza the questionswali:
2
3077
1680
Na leo ninauliza maswali:
00:14
Is life really that complextata?
3
4781
1756
Maisha ni magumu kweli?
00:16
Now, I've only got ninetisa minutesdakika
to try and providekutoa you with an answerjibu,
4
6561
3325
Sasa, nina dakika tisa tu
kujaribu kuwapatia jibu,
00:19
so what I've donekufanyika
is splitkupasuliwa this neatlyvizuri into two partssehemu:
5
9910
2716
nilichofanya ni kugawa hili vizuri
kwenye sehemu mbili:
00:22
partsehemu one: yes;
6
12650
2353
sehemu ya kwanza: ndio;
00:25
and laterbaadae on, partsehemu two: no.
7
15027
2528
na baadae, kwenye sehemu ya pili: hapana.
00:27
Or, to be more accuratesahihi: no?
8
17579
2544
Au, kuwa sahihi zaidi: hapana?
00:30
(LaughterKicheko)
9
20147
1204
(Kicheko)
00:31
So first of all, let me try and definekufafanua
what I mean by "complextata."
10
21375
3006
Kwanza kabisa, ngoja nijaribu kufafanua
maana ya "magumu."
00:34
Now, I could give you
a hostmwenyeji of formalrasmi definitionsufafanuzi,
11
24405
2441
Sasa, ninaweza kukupa
umati wa fafanuzi zilizorasmi,
00:36
but in the simplestrahisi termsmaneno,
12
26870
1253
ila kwa istilahi rahisi,
00:38
any problemtatizo in complexityutata is something
that EinsteinEinstein and his peersrika can't do.
13
28147
4899
tatizo lolote kwenye ugumu ni kitu
ambacho Einstein na wenzake wameshindwa.
00:43
So, let's imaginefikiria --
if the clickerclicker worksinafanya kazi ... there we go.
14
33070
3240
Hivyo, tufikirie -- kama kibonyezeo
kikikubali ... haya twende.
00:46
EinsteinEinstein is playingkucheza a gamemchezo of snookersnooker.
15
36334
2103
Einstein anacheza mchezo wa snuka.
00:48
He's a cleverwajanja chapchap, so he knowsanajua
that when he hitshits the cuecue ballmpira,
16
38461
3479
Ni mwanaume mwerevu, anajua kua
anapopiga mpira wa ishara,
00:51
he could writeandika you an equationusawa
17
41964
1441
anaweza kukuandikia mlinganyo
00:53
and tell you exactlyhasa where the rednyekundu ballmpira
is going to hithit the sidespande,
18
43429
3128
na kukuambia kabisa mpira mwekundu
utaenda kugonga kwenye pande
00:56
how fastharaka it's going
and where it's going to endmwisho up.
19
46581
2439
jinsi unavyoenda haraka
na wapi utaishia.
00:59
Now, if you scalekiwango these snookersnooker ballsmipira
up to the sizeukubwa of the solarjua systemmfumo,
20
49044
3469
Kama ukirekebisha hii mipira ya snuka
mpaka kwenye kipimo cha mfumo wa jua
01:02
EinsteinEinstein can still help you.
21
52537
1959
Einstein bado anaweza kukusaidia.
01:04
Sure, the physicsfizikia changesmabadiliko,
22
54520
1245
Kweli, fizikia hubadilika,
01:05
but if you wanted to know about
the pathnjia of the EarthDunia around the SunJua,
23
55789
3282
lakini kama ulitaka kujua kuhusu
njia ya Dunia kuzunguka Jua,
01:09
EinsteinEinstein could writeandika you an equationusawa
24
59095
1733
Einstein angekuandikia mlinganyo
01:10
tellingkuwaambia you where bothwote wawili objectsvitu are
at any pointuhakika in time.
25
60852
2643
ukikuambia wapi vitu vyote viwili
vilipo kwa mda wowote
01:13
Now, with a surprisingajabu
increaseOngeza in difficultyshida,
26
63519
2204
Sasa, na ongezeko la
ugumu la kushangaza,
01:15
EinsteinEinstein could includejumuisha
the MoonMwezi in his calculationsmahesabu.
27
65747
2452
Einstein angeweza kuongezea
Mwezi kwenye hesabu.
01:18
But as you addongeza more and more planetssayari,
MarsMars and JupiterJupiter, say,
28
68223
3067
Lakini unapoongeza sayari zaidi na zaidi,
Mars na Jupiter, mfano,
01:21
the problemtatizo getshupata too toughngumu for EinsteinEinstein
to solvekutatua with a penkalamu and paperkaratasi.
29
71314
3764
tatizo linakua gumu sana kwa Einstein
kutatua na kalamu na karatasi.
01:25
Now, strangelyajabu, if insteadbadala yake of havingkuwa na
a handfulwachache of planetssayari,
30
75102
2843
Sasa, kiajabu, kama badala ya kua
na sayari chache,
01:27
you had millionsmamilioni of objectsvitu
or even billionsmabilioni,
31
77969
2672
unakua na mamilioni ya vitu
au hata mabilioni,
01:30
the problemtatizo actuallykwa kweli becomesinakuwa much simplerrahisi,
32
80665
2271
tatizo linakua kweli rahisi zaidi,
01:32
and EinsteinEinstein is back in the gamemchezo.
33
82960
1922
na Einstein anarudi kwenye mchezo.
01:34
Let me explainkuelezea what I mean by this,
34
84906
1846
Wacha nieleze ninachomaanisha na hili,
01:36
by scalingkuongeza these objectsvitu back down
to a molecularMasi levelngazi.
35
86776
3294
kwa kurekebisha hivi vitu kua vidogo
kwenye kiwango cha masi.
01:40
If you wanted to tracetazama the erraticsi sawa pathnjia
of an individualmtu binafsi airhewa moleculemolekuli,
36
90094
3747
Kama ulitaka kufuatilia njia mbalimbali
za molekyuli binafsi ya hewa,
01:43
you'dungependa have absolutelykabisa no hopetumaini.
37
93865
1842
ungekosa matumaini kabisa.
01:45
But when you have millionsmamilioni
of airhewa moleculesmolekuli all togetherpamoja,
38
95731
2711
Lakini kama una mamilioni ya
molekyuli za hewa kwa pamoja.
01:48
they startkuanza to acttenda in a way
whichambayo is quantifiablequantifiable, predictableinatabirika
39
98466
3877
zinaanza kutenda kwa njia
inayohesabika, inayotabirika
01:52
and well-behavedtabia nzuri vizuri.
40
102367
1170
na inayotenda vizuri.
01:53
And thank goodnesswema airhewa is well-behavedtabia nzuri vizuri,
41
103561
1885
Ninashukuru sana hewa inatenda vizuri,
01:55
because if it wasn'thaikuwa,
planesndege would fallkuanguka out of the skyanga.
42
105470
2910
kwa sababu isingekua hivyo,
ndege zingeanguka kutoka angani.
01:58
Now, on an even biggerkubwa zaidi scalekiwango,
acrosskote the wholeyote of the worldulimwengu,
43
108404
3064
Sasa, kwenye marekebisho makubwa zaidi,
katika dunia nzima,
02:01
the ideawazo is exactlyhasa the samesawa
with all of these airhewa moleculesmolekuli.
44
111492
3122
hilo wazo liko sawa kabisa
na molekyuli nyingine zote za hewa.
02:04
It's truekweli that you can't take
an individualmtu binafsi rainmvua dropletdroplet
45
114638
2918
Ni kweli kua huwezi kuchukua
tone moja la mvua
02:07
and say where it's come from
or where it's going to endmwisho up.
46
117580
2785
na kusema lilipotoka
au litaishia wapi.
02:10
But you can say with prettynzuri good certaintyuhakika
47
120389
2034
Lakini unaweza sema na uhakika mzuri sana
02:12
whetherkama it will be cloudymawingu tomorrowkesho.
48
122447
1813
kama kutakua na mawingu kesho.
02:14
So that's it.
49
124284
1158
Basi ndio hivyo.
02:15
In Einstein'sWa Einstein time,
this is how farmbali sciencesayansi had got.
50
125466
2683
Kwa wakati wa Einstein,
hapa ndipo sayansi ilipofika.
02:18
We could do really smallndogo problemsmatatizo
with a fewwachache objectsvitu
51
128173
3613
Tungeweza kufanya matatizo madogo
kweli ya vitu vichache
02:21
with simplerahisi interactionsushirikiano,
52
131810
1275
na miingiliano mirahisi,
02:23
or we could do hugekubwa problemsmatatizo
with millionsmamilioni of objectsvitu
53
133109
2602
au tungefanya matatizo makubwa
ya mamilioni ya vitu
02:25
and simplerahisi interactionsushirikiano.
54
135735
1323
na miingiliano mirahisi.
02:27
But what about everything in the middlekatikati?
55
137082
1937
Lakini vipi kuhusu kila kitu katikati?
02:29
Well, just sevensaba yearsmiaka
before Einstein'sWa Einstein deathkifo,
56
139043
2693
Basi, miaka saba tu
kabla ya kifo cha Einstein,
02:31
an AmericanMarekani scientistmwanasayansi calledaitwaye
WarrenWarren WeaverWeaver madealifanya exactlyhasa this pointuhakika.
57
141760
3658
mwanasayansi Mmarekani aitwae
Warren Weaver alisema kabisa jambo hili.
02:35
He said that scientifickisayansi methodologymbinu
has gonewamekwenda from one extremeuliokithiri to anothermwingine,
58
145442
3624
Alisema kua mbinu za kisayansi
zimeenda kutoka kasi moja hadi nyingine,
02:39
leavingkuondoka out an untouchedhaijatibiwa
great middlekatikati regionkanda.
59
149090
3071
ikibakiza eneo kubwa
la kati lisiloguswa.
02:42
Now, this middlekatikati regionkanda
is where complexityutata sciencesayansi liesuongo,
60
152185
2699
Sasa, hili eneo la kati
ndipo ugumu wa sayansi ulipo,
02:44
and this is what I mean by complextata.
61
154908
2259
na hichi ndicho ninachomaanisha kwa ugumu.
02:47
Now, unfortunatelykwa bahati mbaya, almostkaribu
everykila singlemoja problemtatizo you can think of
62
157191
3525
Sasa, bahati mbaya, karibia
kila tatizo utakalo liwaza
02:50
to do with humanbinadamu behaviortabia
63
160740
1222
kuhusu tabia ya binadamu
02:51
liesuongo in this middlekatikati regionkanda.
64
161986
2069
linakaa eneo hili la kati.
02:54
Einstein'sWa Einstein got absolutelykabisa no ideawazo
how to modelmfano the movementmwendo of a crowdumati.
65
164079
4290
Einstein hana wazo kabisa
jinsi ya kuunda harakati ya umati.
02:58
There are too manywengi people
to look at them all individuallykibinafsi
66
168393
2801
Kuna watu wengi sana
wa kuwaangalia wote binafsi
03:01
and too fewwachache to treatkutibu them as a gasgesi.
67
171218
1872
na wachache sana kuwatendea kama gesi.
03:03
SimilarlyVile vile, people are pronekuepuka
to annoyinghasira things like decisionsmaamuzi
68
173114
3356
Vilevile, watu wanakabiliwa
na vitu vinavyoudhi kama maamuzi
03:06
and not wantingunataka to walktembea into eachkila mmoja other,
69
176494
2014
na kutokutaka kugongana na kila mmoja,
03:08
whichambayo makeshufanya the problemtatizo
all the more complicatedngumu.
70
178532
2613
ambayo inaleta tatizo
yote ambayo ni ngumu zaidi.
03:11
EinsteinEinstein alsopia couldn'thaikuweza tell you
71
181169
1703
Einstein asingeweza kukuambia
03:12
when the nextijayo stockhisa marketsoko crashajali
is going to be.
72
182896
2349
lini kutakua na mgongano
wa soko la hisa.
03:15
EinsteinEinstein couldn'thaikuweza tell you
how to improvekuboresha unemploymentukosefu wa ajira.
73
185269
2764
Einstein hakuweza kukuambia
jinsi ya kuboresha ajira.
03:18
EinsteinEinstein can't even tell you
74
188057
1401
Einstein asingeweza kukuambia
03:19
whetherkama the nextijayo iPhoneiPhone
is going to be a hithit or a flopkweta.
75
189482
3382
kama iPhone ijayo
itakua kubwa au itatia fora
03:22
So to concludekuhitimisha partsehemu one:
we're completelykabisa screwedzimejaa.
76
192888
2606
Kuhitimisha sehemu ya kwanza:
tuna matatizo kabisa.
03:25
We'veTumekuwa got no toolszana to dealtoa with this,
and life is way too complextata.
77
195518
4500
Hatuna vifaa vya kutendea kazi hili
na maisha ni magumu sana.
03:30
But maybe there's hopetumaini,
78
200042
1796
Lakini labda kuna matumaini,
03:31
because in the last fewwachache yearsmiaka,
79
201862
1534
miaka michache iliyopita,
03:33
we'vetumekuwa begunimeanza to see the beginningsmwanzo
of a newmpya areaeneo of sciencesayansi
80
203420
3837
tulianza kuona mwanzo wa
eneo jipya la sayansi
03:37
usingkutumia mathematicshisabati
to modelmfano our socialkijamii systemsmifumo.
81
207281
3027
kutumia hisabati
kuunda mifumo ya kijamii.
03:40
And I'm not just talkingkuzungumza here
about statisticstakwimu and computerkompyuta simulationssimuleringar.
82
210332
3484
Na siongelei tu kuhusu
takwimu na uigaji wa kompyuta.
03:43
I'm talkingkuzungumza about writingkuandika down
equationsusawa about our societyjamii
83
213840
2996
Naongelea kuhusu kuandika chini
milinganyo kuhusu jamii
03:46
that will help us understandkuelewa
what's going on
84
216860
2069
ambayo itatusaidia kuelewa
kinachoendelea
03:48
in the samesawa way as with the snookersnooker ballsmipira
or the weatherhali ya hewa predictionutabiri.
85
218953
3215
kwa njia sawa kama mipira ya snuka
au utabiri wa hali ya hewa.
03:52
And this has come about
because people have begunimeanza to realizekutambua
86
222192
2842
Na hii imetokea kwa sababu
watu wameanza kugundua
03:55
that we can use and exploitkutumia analogiesmilinganisho
87
225058
2343
kua tunaweza kutumia mifano
03:57
betweenkati our humanbinadamu systemsmifumo
and those of the physicalkimwili worldulimwengu around us.
88
227425
3942
kati ya mifumo yetu ya kibinadamu
na zile za dunia ya halisi inayotuzunguka.
04:01
Now, to give you an examplemfano:
89
231938
1464
Sasa, kuwapa mfano:
04:03
the incrediblyincredibly complextata problemtatizo
of migrationuhamiaji acrosskote EuropeEurope.
90
233426
3454
Ukubwa mkuu wa tatizo la
uhamiaji katika Ulaya.
04:06
ActuallyKweli, as it turnsinageuka out, when you viewmtazamo
all of the people togetherpamoja,
91
236904
3332
Ukweli, inaonekana, unapoangalia
watu wote pamoja,
04:10
collectivelypamoja, they behavetenda as thoughingawa
they're followingzifuatazo the lawssheria of gravitymvuto.
92
240260
4043
kwa pamoja, wanatenda kama vile
wanafuata sheria za mvutano.
04:14
But insteadbadala yake of planetssayari
beingkuwa attractedkuvutia to one anothermwingine,
93
244327
3128
Lakini badala ya sayari kuvutiana
zenyewe kwa zenyewe,
04:17
it's people who are attractedkuvutia
to areasmaeneo with better jobkazi opportunitiesfursa,
94
247479
4210
ni watu ambao wanavutiwa na
maeneo yenye nafasi bora za ajira,
04:21
higherjuu paykulipa, better qualityubora of life
and lowerchini unemploymentukosefu wa ajira.
95
251713
4015
malipo ya juu, ubora wa maisha
na ukosefu wa ajira wa chini.
04:25
And in the samesawa way as people
are more likelyuwezekano to go for opportunitiesfursa
96
255752
3528
Na kwa hali hio hio kama watu
wanaelekea zaidi kwenda kwa nafasi
04:29
closekaribu to where they livekuishi alreadytayari --
LondonLondon to KentKent, for examplemfano,
97
259304
3035
karibu na wanapoishi tayari --
London mpaka Kent, kwa mfano,
04:32
as opposedkinyume to LondonLondon to MelbourneMelbourne --
98
262363
1792
tofauti na London mpaka Melbourne --
04:34
the gravitationalmvuto effectathari of planetssayari
farmbali away is feltwalihisi much lesschini.
99
264179
4136
matokeo ya mvutano wa sayari
mbali sana unasikika kidogo sana.
04:38
So, to give you anothermwingine examplemfano:
100
268997
2067
Hivyo, kuwapa mfano mwingine:
04:41
in 2008, a groupkikundi in UCLAUCLA
were looking into the patternschati
101
271088
4225
mwaka 2008, kikundi cha UCLA
kilikua kikiangalia ndani ya mitindo
04:45
of burglarywizi hotmoto spotsmatangazo in the cityjiji.
102
275337
2712
ya sehemu wizi upo kwa wingi mjini.
04:48
Now, one thing about burglarieswizi
is this ideawazo of repeatkurudia victimizationBlé.
103
278073
5519
Sasa, kitu kimoja kuhusu wezi ni
hili wazo la uathirikaji wa kuendelea.
04:53
So if you have a groupkikundi of burglarswezi
who managekusimamia to successfullykwa mafanikio robuibike an areaeneo,
104
283616
4237
Hivyo kama una kundi la wezi
waliofaniikiwa kuiba kwenye eneo lako,
04:57
they'llwatakuja tendtamaa to returnkurudi to that areaeneo
and carrykubeba on burglingburgling it.
105
287877
3790
wanapenda kurudi kwenye hilo eneo
na kuendelea na wizi.
05:01
So they learnkujifunza the layoutMpangilio of the housesnyumba,
106
291691
2856
Hivyo wanajifunza mipangilio ya nyumba,
05:04
the escapekutoroka routesnjia
107
294571
1694
njia za kutorokea
05:06
and the localmitaa securityusalama measuresvipimo
that are in placemahali.
108
296289
3004
na kipimo cha ulinzi wa eneo
uliopo sehemu hio.
05:09
And this will continueendelea to happenkutokea
109
299317
1685
Na hii itaendelea kutokea
05:11
untilmpaka localmitaa residentswakazi and policepolisi
rampnjia panda up the securityusalama,
110
301026
3181
mpaka wa kazi na polisi wa
eneo hilo wasimamie ulinzi,
05:14
at whichambayo pointuhakika, the burglarswezi
will movehoja off elsewheremahali pengine.
111
304231
2771
ambapo ndipo, wezi watahamia
kuelekea eneo lingine.
05:17
And it's that balanceusawa
betweenkati burglarswezi and securityusalama
112
307026
2808
Na ni huo usawa kati
ya wezi na ulinzi
05:19
whichambayo createshujenga these dynamicnguvu
hotmoto spotsmatangazo of the cityjiji.
113
309858
3037
unaotengeneza hizi sehemu kuu
za wizi jijini zinazobadilika.
05:22
As it turnsinageuka out,
this is exactlyhasa the samesawa processmchakato
114
312919
3544
Kama inavyoonekana,
huu ni mfumo sawa kabisa
05:26
as how a leopardchui getshupata its spotsmatangazo,
115
316487
2242
ya jinsi chui anavyopata madoadoa,
05:28
exceptisipokuwa in the leopardchui examplemfano,
it's not burglarswezi and securityusalama,
116
318753
2936
isipokua kwenye mfano wa chui,
sio wezi na ulinzi,
05:31
it's the chemicalkemikali processmchakato
that createshujenga these patternschati
117
321713
3465
ni mchakato wa kemikali
unaotengeneza huu utaratibu
05:35
and something calledaitwaye "morphogenesismorphogenesis."
118
325202
1995
na kitu kinachoitwa "morphogenesis."
05:37
We actuallykwa kweli know an awfulmbaya lot
about the morphogenesismorphogenesis of leopardchui spotsmatangazo.
119
327221
4256
Tunajua kabisa mambo mengi kuhusu
morphogenesis ya madoa ya chui.
05:41
Maybe we can use this to try and spotdoa
some of the warningonyo signsishara with burglarieswizi
120
331501
4644
Labda tunaweza kutumia hili kujaribu kuona
baadhi ya alama za kuonya na wezi
05:46
and perhapslabda, alsopia to createkuunda
better crimeuhalifu strategiesmikakati to preventkuzuia crimeuhalifu.
121
336169
4107
na pengine, kuunda pia
mbinu bora za uhalifu kuzuia uhalifu.
05:50
There's a groupkikundi here at UCLUCL
122
340300
1572
Kuna kikundi hapa UCL
05:51
who are workingkufanya kazi with
the WestMagharibi MidlandsMidlands policepolisi right now
123
341896
2825
ambao wanafanya kazi na
polisi wa West Midlands sasa hivi
05:54
on this very questionswali.
124
344745
1641
kwenye swali hili hasa.
05:56
I could give you
plentymengi of examplesmifano like this,
125
346410
2915
Nitawapa mifano mengi
kama hii,
05:59
but I wanted to leaveshika you
with one from my ownmwenyewe researchutafiti
126
349349
2643
lakini nilitaka kukuacha
na moja ya tafiti zangu
06:02
on the LondonLondon riotsvurugu.
127
352016
1166
kwenye ghasia za London.
06:03
Now, you probablylabda
don't need me to tell you
128
353206
2015
Sasa, labda hauhitaji
mimi nikuambie
06:05
about the eventsmatukio of last summermajira ya joto,
129
355245
1567
juu ya matukio ya kiangazi kilichopita,
06:06
where LondonLondon and the UKUINGEREZA saw
the worstmbaya zaidi sustainedendelevu periodkipindi
130
356836
3030
ambapo London na Uingereza waliona
kipindi kibaya cha kuhimili
06:09
of violentvurugu lootingkupora and arsonhujuma
131
359890
1526
cha uhalifu na uchomaji
06:11
for over twentyishirini yearsmiaka.
132
361440
1613
kwa zaidi ya miaka ishirini.
06:13
It's understandableinaeleweka that, as a societyjamii,
we want to try and understandkuelewa
133
363077
3287
Inaeleweka kua, kama jamii,
tunataka kujaribu kuelewa
06:16
exactlyhasa what causedunasababishwa these riotsvurugu,
134
366388
1794
nini kilichosababisha hizi ghasia,
06:18
but alsopia, perhapslabda, to equipkuandaa our policepolisi
with better strategiesmikakati
135
368206
3885
lakini pia, pengine, kuwapa polisi wetu
mbinu bora
06:22
to leadkuongoza to a swifterswifter
resolutionazimio in the futurebaadaye.
136
372115
3781
kuongoza kwenye suluhisho
nyepesi mbeleni.
06:25
Now, I don't want to upsetkasirika
the sociologistswanasosholojia here,
137
375920
2356
Sasa, sitaki kuwakasirisha
wanasosholojia hapa,
06:28
so I absolutelykabisa cannothaiwezi talk about
the individualmtu binafsi motivationsmotisha for a rioterrioter,
138
378300
4857
hivyo sitaweza kuongelea kabisa
kuhusu hamasisho binafsi za mpinduzi,
06:33
but when you look at
the rioterswaandamanaji all togetherpamoja,
139
383181
2168
lakini unapoangalia
wanamapinduzi kwa pamoja,
06:35
mathematicallykimahesabu, you can separatetofauti it
into a three-stageAwamu ya tatu processmchakato
140
385373
3208
kihisabati, unaweza kuitenga kwenye
mchakato wa hatua tatu
06:38
and drawkuteka analogiesmilinganisho accordinglyipasavyo.
141
388605
1975
na kuweka mifano ipasavyo.
06:40
So, stephatua one: let's say
you've got a groupkikundi of friendsmarafiki.
142
390604
3177
Basi, hatua ya kwanza: tuseme
una kikundi cha marafiki.
06:43
NoneHakuna of them are involvedhusika in the riotsvurugu,
143
393805
1875
Hakuna hata mmoja anaehusika na ghasia,
06:45
but one of them walkshuenda pastzilizopita
a FootMguu LockerKabati whichambayo is beingkuwa raidedkuvamia,
144
395704
3682
lakini mmoja wao anapita mbele ya
Foot Locker inayokua inavamiwa,
06:49
and goeshuenda in and bagsmifuko himselfmwenyewe
a newmpya pairjozi of trainerswakufunzi.
145
399410
2513
na kuingia na kujinunulia
viatu vipya vya mazoezi.
06:51
He textsmaandiko one of his friendsmarafiki and saysanasema,
"Come on down to the riotsvurugu."
146
401947
4089
Anaandika ujumbe kwa mmoja wa rafiki
zake na kusema, "Njoo kwenye mgomo."
06:56
So his friendrafiki joinshujiunga him,
147
406060
1421
Hivyo rafiki yake anamuunga,
06:57
and then the two of them textmaandishi
more of theirwao friendsmarafiki, who joinkujiunga them,
148
407505
3157
halafu wawili hao wanaandikia
marafiki zao zaidi, ambao wanawaunga,
07:00
and textmaandishi more of theirwao friendsmarafiki
149
410686
1581
na kuandikia marafiki zao zaidi
07:02
and more and more, and so it continuesinaendelea.
150
412291
2374
na zaidi na zaidi, na hivyo inaendelea.
07:04
This processmchakato is identicalkufanana to the way
that a virusvirusi spreadshuenea throughkupitia a populationidadi ya watu.
151
414689
4583
Huu mchakato unafanana na jinsi
kile kirusi kinavyosambaa kwenye umati.
07:09
If you think about the birdndege flumafua epidemicjanga
of a couplewanandoa of yearsmiaka agoiliyopita,
152
419296
3100
Ukifikiria kuhusu tatizo la mafua ya
ndege miaka kadhaa iliopita,
07:12
the more people that were infectedkuambukizwa,
the more people that got infectedkuambukizwa,
153
422420
3303
wagonjwa walivyoongezeka,
watu walioambukizwa waliongezeka,
07:15
and the fasterharaka the virusvirusi spreadkuenea
154
425747
1588
na kadri kirusi kilivyosambaa
07:17
before the authoritiesmamlaka managedimeweza
to get a handlekushughulikia on eventsmatukio.
155
427359
3141
kabla mamlaka hayajaweza kumudu
kuweza kudhibiti matukio.
07:20
And it's exactlyhasa the samesawa processmchakato here.
156
430988
2515
Na ni mchakato huo huo hapa.
07:23
So let's say you've got a rioterrioter,
he's decidedaliamua he's going to riotrushwa.
157
433527
3276
Tusema umepata mpinduzi,
ameamua atoke aende kwenye maandamano.
07:26
The nextijayo thing he has to do
is pickpick a riotrushwa sitetovuti.
158
436827
2535
Kinachofuata ni kuchagua
mahali pa maandamano.
07:30
Now, what you should know
about rioterswaandamanaji is that, umUM ...
159
440274
3624
Sasa, unachotakiwa kujua
kuhusu wapinduzi ni kua, um ...
07:33
OopsPole, clicker'swa clicker gonewamekwenda. There we go.
160
443922
1642
Oops, kibonyezo kimetoweka.
Sawa.
07:35
What you should know about rioterswaandamanaji is,
they're not preparedtayari to travelkusafiri
161
445588
3344
Unachotakiwa kujua kuhusu wapinduzi ni,
hawajajiandaa kusafiri
07:38
that farmbali from where they livekuishi,
162
448956
1451
mbali sana na wanapoishi,
07:40
unlessisipokuwa it's a really juicyJuicy riotrushwa sitetovuti.
163
450431
1852
isipokuwa eneo zuri sana la ghasia.
07:42
(LaughterKicheko)
164
452307
1075
(Kicheko)
07:43
So you can see that here from this graphgrafu,
165
453406
2069
Hivyo unaona hilo hapo kwenye hii grafu,
07:45
with an awfulmbaya lot of rioterswaandamanaji
havingkuwa na traveledalisafiri lesschini than a kilometerkilomita
166
455499
3391
lenye wapinduzi wengi
waliosafiri chini ya kilomita
07:48
to the sitetovuti that they wentakaenda to.
167
458914
1679
kwenye mahali walipoenda.
07:50
Now, this patternmfano is seenkuonekana
in consumerwatumiaji modelsmifano of retailrejareja spendingmatumizi,
168
460617
4909
Sasa, huu mtindo unaonekana
kwenye mifano ya watumiaji wa rejareja,
07:55
i.e., where we choosechagua to go shoppingununuzi.
169
465550
2309
yaani, tunapochagua kwenda kununua vitu.
07:57
So, of coursebila shaka, people like
to go to localmitaa shopsmaduka,
170
467883
2922
Hivyo, bila shaka, watu wanapenda
kwenye maduka ya mtaani,
08:00
but you'dungependa be preparedtayari
to go a little bitkidogo furtherzaidi
171
470829
2592
lakini utakua umejiandaa kwenda
mbali zaidi kidogo
08:03
if it was a really good retailrejareja sitetovuti.
172
473445
2116
kama lilikua eneo zuri la maduka.
08:05
And this analogymfano, actuallykwa kweli, was alreadytayari
pickedilichukua up by some of the paperskaratasi,
173
475585
3442
Na huu mfano, kweli, ulikua tayari
umechaguliwa na baadhi ya magazeti,
08:09
with some tabloidTabloidi pressbonyeza callingwito the eventsmatukio
"ShoppingUnunuzi with violencevurugu,"
174
479051
3262
na baadhi ya wachapa magazeti wakiita
haya matukio "Ununuzi na fujo,"
08:12
whichambayo probablylabda sumskiasi it up
in termsmaneno of our researchutafiti.
175
482337
2788
ambayo pengine inaeleza
kwa maneno ya utafiti wetu.
08:15
Oh! -- we're going backwardsnyuma.
176
485673
1476
Oh! -- tunaenda nyuma.
08:19
OK, stephatua threetatu.
177
489730
1456
Sawa, hatua ya tatu.
08:21
FinallyHatimaye, the rioterrioter is at his sitetovuti,
178
491210
1817
Mwishowe, mpinduzi yupo eneo lake,
08:23
and he wants to avoidkuepuka
gettingkupata caughthawakupata by the policepolisi.
179
493051
4572
na anataka kuepuka
kukamatwa na polisi.
08:27
The rioterswaandamanaji will avoidkuepuka
the policepolisi at all timesnyakati,
180
497647
2701
Wapinduzi wataepuka
polisi muda wote,
08:30
but there is some safetyusalama in numbersnambari.
181
500372
2094
lakini kuna usalama kwenye wengi.
08:32
And on the flipflip sideupande, the policepolisi,
with theirwao limitedmdogo resourcesrasilimali,
182
502490
3061
Na kwa upande mwingine, polisi,
na rasilimali zao kidogo,
08:35
are tryingkujaribu to protectkulinda
as much of the cityjiji as possibleinawezekana,
183
505575
2579
wanajaribu kulinda jiji
kadri watakavyoweza,
08:38
arrestkukamatwa rioterswaandamanaji whereverpopote possibleinawezekana
184
508178
2013
kukamata wapinduzi inapowezekana
08:40
and to createkuunda a deterrentkuzuia effectathari.
185
510215
2041
na kutengeneza athari za kizuizi.
08:45
And actuallykwa kweli, as it turnsinageuka out,
186
515510
1491
Na kweli, kama inavyoonekana,
08:47
this mechanismutaratibu betweenkati the two speciesaina,
so to speaksema, of rioterswaandamanaji and policepolisi,
187
517025
4623
huu mfumo kati ya jamii hizi mbili,
za wapinduzi na polisi,
08:51
is identicalkufanana to predatorswadudu
and preymawindo in the wildmwitu.
188
521672
2649
ni sawa na wawindaji
na windo mbugani.
08:54
So if you can imaginefikiria rabbitsSungura and foxesmbweha,
189
524345
2197
Basi ukifikiria sungura na mbweha,
08:56
rabbitsSungura are tryingkujaribu to avoidkuepuka
foxesmbweha at all costsgharama,
190
526566
2750
sungura wanajaribu kuepuka
mbweha kwa namna zote,
08:59
while foxesmbweha are patrollingdoria the spacenafasi,
tryingkujaribu to look for rabbitsSungura.
191
529340
3687
wakati mbweha wanazunguka eneo,
wakijaribu kutafuta sungura.
09:03
We actuallykwa kweli know an awfulmbaya lot
about the dynamicsmienendo of predatorswadudu and preymawindo.
192
533051
3354
Tunajua ukweli kiasi kikubwa
kuhusu msukumo wa wawindaji na windo.
09:06
We alsopia know a lot about
consumerwatumiaji spendingmatumizi flowsinapita.
193
536429
4979
Tunajua pia mengi kuhusu
mtiririko wa tabia za watumiaji.
09:11
And we know a lot about
how virusesvirusi spreadkuenea throughkupitia a populationidadi ya watu.
194
541432
3163
Na tunajua mengi kuhusu
jinsi virusi vinavyosamnaa kwenya umati.
09:14
So if you take these threetatu analogiesmilinganisho
togetherpamoja and exploitkutumia them,
195
544619
3033
Hivyo ukichukua hii mifano mitatu
kwa pamoja na kuitumia,
09:17
you can come up with a mathematicalhisabati
modelmfano of what actuallykwa kweli happenedkilichotokea,
196
547676
3236
unaweza kutoka na mfano wa
hisabati wa nini hasa kilichotokea,
09:20
that's capableuwezo of replicatingkuiga
the generaljumla patternschati
197
550936
2404
ambacho kinauwezo wa kurudia
mitindo ya jumla
09:23
of the riotsvurugu themselveswenyewe.
198
553364
1343
ya ghasia zenyewe.
09:25
Now, oncemara moja we'vetumekuwa got this,
we can almostkaribu use this as a petripetri dishsahani
199
555678
3086
Tunapojua hili, tunaweza tumia
hili kama kisahani cha tafiti
09:28
and startkuanza havingkuwa na conversationsmazungumzo
200
558788
1623
na kuanza kuwa na majadiliano
09:30
about whichambayo areasmaeneo of the cityjiji
were more susceptiblekuambukizwa than otherswengine
201
560435
3139
kuhusu maeneo gani kwenye jiji
ambayo yako hatarishi kuliko mengine
09:33
and what policepolisi tacticsmbinu could be used
202
563598
1877
na mbinu gani za polisi zinaweza tumika
09:35
if this were ever to happenkutokea
again in the futurebaadaye.
203
565499
2307
kama zingetokea tena
huko mbeleni.
09:37
Even twentyishirini yearsmiaka agoiliyopita, modelingmfano
of this sortfanya was completelykabisa unheardkusikilizwa of.
204
567830
4003
Hata miaka ishirini iliyopita, mifano
ya hii namna haikusikika kabisa.
09:41
But I think that these analogiesmilinganisho
are an incrediblyincredibly importantmuhimu toolchombo
205
571857
4444
Lakini ninafikiri hii mifano
ni kifaa kizuri na muhimu sana
09:46
in tacklingkukabiliana na problemsmatatizo with our societyjamii,
206
576325
2491
kwenye kupambana na matatizo ya
jamii yetu,
09:48
and perhapslabda, ultimatelyhatimaye improvingkuboresha
our societyjamii overallkwa ujumla.
207
578840
3406
na pengine, mwishowe kuboresha
jamii yetu kwa ujumla.
09:52
So, to concludekuhitimisha: life is complextata,
208
582270
2389
Hivyo, kuhitimisha, maisha ni magumu,
09:54
but perhapslabda understandinguelewa it need not
necessarilylazima be that complicatedngumu.
209
584683
3357
lakini pengine kuyaelewa sio
lazima kuwe kugumu hivyo.
09:58
Thank you.
210
588064
1158
Asanteni.
09:59
(ApplauseMakofi)
211
589246
1386
(Makofi)
Translated by Doris Mangalu
Reviewed by Nelson Simfukwe

▲Back to top

ABOUT THE SPEAKER
Hannah Fry - Complexity theorist
Hannah Fry researches the trends in our civilization and ways we can forecast its future.

Why you should listen

Hannah Fry completed her PhD in fluid dynamics in early 2011 with an emphasis on how liquid droplets move. Then, after working as an aerodynamicist in the motorsport industry, she began work on an interdisciplinary project in complexity sciences at University College London. Hannah’s current research focusses on discovering new connections between mathematically described systems and human interaction at the largest scale.

More profile about the speaker
Hannah Fry | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee