ABOUT THE SPEAKER
Luis von Ahn - Computer scientist
Luis von Ahn builds systems that combine humans and computers to solve large-scale problems that neither can solve alone.

Why you should listen

Louis von Ahn is an associate professor of Computer Science at Carnegie Mellon University, and he's at the forefront of the crowdsourcing craze. His work takes advantage of the evergrowing Web-connected population to acheive collaboration in unprecedented numbers. His projects aim to leverage the crowd for human good. His company reCAPTCHA, sold to Google in 2009, digitizes human knowledge (books), one word at a time. His new project is Duolingo, which aims to get 100 million people translating the Web in every major language.

More profile about the speaker
Luis von Ahn | Speaker | TED.com
TEDxCMU

Luis von Ahn: Massive-scale online collaboration

Luis von Ahn: Bashkëpunimi masive online

Filmed:
1,740,008 views

Pasi ri-propozimit CAPTCHA ashtuqë secila përgjigjëje e secilit njeri do te ndihmonte për të digjitalizuar libra, Luis von Ahn dëshironte diqka tjeter për një kontribut të vogel nga shum njerëz ne internet for një qellim te mirë. Tek TEDxCMU, ai ndanë me ne se si ambicja e tije për një projekt të ri, do ti ndihmoj miliona njerëzve të mësojn një gjuh të re duke përkthyer web-in me shpejt dhe më sakët -- dhe e gjitha pa pages.
- Computer scientist
Luis von Ahn builds systems that combine humans and computers to solve large-scale problems that neither can solve alone. Full bio

Double-click the English transcript below to play the video.

00:15
How many of you had to fill out some sort of web form
0
0
2000
Sa prej jush i'u eshte dashur te mbushonje ndonje form ne web ( faqe interneti )
00:17
where you've been asked to read a distorted sequence of characters like this?
1
2000
2000
ku ju eshte kerkuar te lexoni nje sekuenc te qrregullt te nje karakterit sikurse ky ?
00:19
How many of you found it really, really annoying?
2
4000
2000
Sa prej jush e keni gjetur verte te tepruar?
00:21
Okay, outstanding. So I invented that.
3
6000
3000
Ne rregull, dalluar. Pra e kam ftuar ate.
00:24
(Laughter)
4
9000
2000
(Qeshen)
00:26
Or I was one of the people who did it.
5
11000
2000
ndoshta une isha njeri nga njerzit qe e bera ate.
00:28
That thing is called a CAPTCHA.
6
13000
2000
Ajo gje eshte quajtur nje CAPTACHA
00:30
And the reason it is there is to make sure you, the entity filling out the form,
7
15000
2000
dhe arsyja eshte atje per te bere te sigurt juve , etnitetit per te mbushur forma.
00:32
are actually a human and not some sort of computer program
8
17000
3000
jane ne te vertet njerzore jo ndonje lloj programi kompjuterik
00:35
that was written to submit the form millions and millions of times.
9
20000
2000
atje ishte shkruar per ta derguar formen, miliona dhe miliona herë.
00:37
The reason it works is because humans,
10
22000
2000
Arsyeja perse funksionon eshte sepse njerezit,
00:39
at least non-visually-impaired humans,
11
24000
2000
te pakten jo-vizualisht jo njeri i bashkangjitur,
00:41
have no trouble reading these distorted squiggly characters,
12
26000
2000
ska probleme leximi keto karaktere te qorjentuara,
00:43
whereas computer programs simply can't do it as well yet.
13
28000
3000
ku programet kompjuterike thjesht nuk mund ti bejen ato deri me tani.
00:46
So for example, in the case of Ticketmaster,
14
31000
2000
per shembull ne rastin e nje perdoruesi te tiketave
00:48
the reason you have to type these distorted characters
15
33000
2000
arsyje se ju duhet ti shenoni gjith ato karaktere te qorjentuara
00:50
is to prevent scalpers from writing a program
16
35000
2000
eshte per te mbrojtur skulptoret per te shkruar nje program
00:52
that can buy millions of tickets, two at a time.
17
37000
2000
i cili mund te blen miliona tiketa, dy me njeher.
00:54
CAPTCHAs are used all over the Internet.
18
39000
2000
CAPTCHA perdoret neper te gjith internetin.
00:56
And since they're used so often,
19
41000
2000
gjersa jan duke u perdorur kaq shume,
00:58
a lot of times the precise sequence of random characters that is shown to the user
20
43000
2000
shum her sekuencat precize jan te karaktereve te rendomta te cilat u shfaqen shfrytzuesve
01:00
is not so fortunate.
21
45000
2000
nuk eshte sa me fat.
01:02
So this is an example from the Yahoo registration page.
22
47000
3000
pra ky eshte nje shembulle from regjistrimit në Yahoo.
01:05
The random characters that happened to be shown to the user
23
50000
2000
Karakteri i rendomt i cili ndodh te shfaqet tek nje perdorues
01:07
were W, A, I, T, which, of course, spell a word.
24
52000
3000
ku W,A,I,T te cilat sigurisht shqiptojne nje fjali.
01:10
But the best part is the message
25
55000
3000
mirpo pjesa me e mir eshte porosia
01:13
that the Yahoo help desk got about 20 minutes later.
26
58000
3000
qe Yahoo ndihmuesi ka rreth 20 minuta me vone
01:16
Text: "Help! I've been waiting for over 20 minutes, and nothing happens."
27
61000
3000
Teksti "Ndihm! Kam mbi 20 minute qe pres dhe asgje nuk ka ndodhur"
01:19
(Laughter)
28
64000
4000
(Qeshen)
01:23
This person thought they needed to wait.
29
68000
2000
Ky person mendon qe ata duhet te presin.
01:25
This of course, is not as bad as this poor person.
30
70000
3000
Ky sigurisht qe nuk eshte aq keq sa nje person i varfer.
01:28
(Laughter)
31
73000
2000
(Qeshen)
01:30
CAPTCHA Project is something that we did here at Carnegie Melllon over 10 years ago,
32
75000
3000
CAPTCHA projekti eshte diqka qe e kemi bere ketu ne CARNEIGE MELLON para 10 viteve
01:33
and it's been used everywhere.
33
78000
2000
dhe eshte perdorur gjdokunde.
01:35
Let me now tell you about a project that we did a few years later,
34
80000
2000
Me lejoni t'ju tregoj tashi per nje projekt qe e kemi bere ketyre viteve te fundit,
01:37
which is sort of the next evolution of CAPTCHA.
35
82000
3000
i cili eshte nje lloje i evulucionit te se ardhmes
01:40
This is a project that we call reCAPTCHA,
36
85000
2000
Kete projekt e kemi quajtur reCAPTCHA,
01:42
which is something that we started here at Carnegie Mellon,
37
87000
2000
i cili eshte diqka qe kemi filluar kete tek Carneigie Mellon,
01:44
then we turned it into a startup company.
38
89000
2000
dhe me pas e kthyem ne nje kompani
01:46
And then about a year and a half ago,
39
91000
2000
dhe pastaj rreth nje viti e gjysme me vone,
01:48
Google actually acquired this company.
40
93000
2000
Google bleu kete kompani.
01:50
So let me tell you what this project started.
41
95000
2000
Pra me lejoni t'ju them se qfar ishte projekti i filluar
01:52
So this project started from the following realization:
42
97000
3000
pra projekti filloj nga realizimet siq vijojnë:
01:55
It turns out that approximately 200 million CAPTCHAs
43
100000
2000
u kthye qe parafersisht rreth 200 milion CAPTCHA-ne
01:57
are typed everyday by people around the world.
44
102000
3000
jan duke shkruar gjdo dite ne tere boten.
02:00
When I first heard this, I was quite proud of myself.
45
105000
2000
Kur e negjova kete, me te vertet isha krenar me veten time
02:02
I thought, look at the impact that my research has had.
46
107000
2000
Mendova shiqoni impaktin qe kishte kerkimi ime
02:04
But then I started feeling bad.
47
109000
2000
mirpo me pas fillova te ndihem keq/
02:06
See here's the thing, each time you type a CAPTCHA,
48
111000
2000
Pra ketu eshte gjeja, gjdoher qe e shkruan CAPTCHA,
02:08
essentially you waste 10 seconds of your time.
49
113000
3000
esencialisht ju keni humbur 10 sekonda te kohes suaj
02:11
And if you multiply that by 200 million,
50
116000
2000
dhe po te shumzonit me 200 milion
02:13
you get that humanity as a whole is wasting about 500,000 hours every day
51
118000
3000
ju mund te merrni kete humanitet si pergjethsi jane duke humbur rreth 500,000 ore gjdo dite
02:16
typing these annoying CAPTCHAs.
52
121000
2000
duke shenuar keto CAPTACHA te merzitshme.
02:18
So then I started feeling bad.
53
123000
2000
dhe me pas fillova te nidhem keq.
02:20
(Laughter)
54
125000
2000
(Qeshen)
02:22
And then I started thinking, well, of course, we can't just get rid of CAPTCHAs,
55
127000
3000
dhe me pas fillova te mendoj, mire sigurisht ne nuk mundemi te heqim qafesh Captchas-it
02:25
because the security of the Web sort of depends on them.
56
130000
2000
sepse siguria e web-it mvaret nga ato.
02:27
But then I started thinking, is there any way we can use this effort
57
132000
3000
pastaj fillova te mendoj, a ka ndonje menyr tjeter qe mundemi te perdorim ket mundesi
02:30
for something that is good for humanity?
58
135000
2000
per diqka qe eshte ne te miren e njerezimit?
02:32
So see, here's the thing.
59
137000
2000
pra shiq e shihni ketu eshte gjeja.
02:34
While you're typing a CAPTCHA, during those 10 seconds,
60
139000
2000
Gjersa jemi duke shenuar CAPTCHA, gjat atyre 10 sekondave
02:36
your brain is doing something amazing.
61
141000
2000
truri juaj eshte duke bere diqka te mahniteshme
02:38
Your brain is doing something that computers cannot yet do.
62
143000
2000
truri juaj eshte duke bere diqka qe kompjuteri deri tani nuk munden te bejne.
02:40
So can we get you to do useful work for those 10 seconds?
63
145000
3000
pra e mundemi te bejme ndonje pune te dobishme per ato 10 sekonda?
02:43
Another way of putting it is,
64
148000
2000
nje menyr tjeter e vendosjes se kesaj eshte
02:45
is there some humongous problem that we cannot yet get computers to solve,
65
150000
2000
a ka ndonje problem tjeter homogjem te cilin kompjuteret e tanishem nuk mund ta zgjedhin,
02:47
yet we can split into tiny 10-second chunks
66
152000
3000
deri tani mundemi te ndajme keto 10 sekonda te kushtueshme
02:50
such that each time somebody solves a CAPTCHA
67
155000
2000
saqe secilen koh kur dikush zgjedh nje CAPTCHA
02:52
they solve a little bit of this problem?
68
157000
2000
ata zgjedhin ngapak te ketij problemi?
02:54
And the answer to that is "yes," and this is what we're doing now.
69
159000
2000
dhe pergjigjeja per ate eshte "PO" dhe kjo eshte ajo se qfar ne po e bejme tani.
02:56
So what you may not know is that nowadays while you're typing a CAPTCHA,
70
161000
3000
pra ate qe ju ndoshta nuk mundeni ta dini ketyre ditve eshte se kur ju jeni duke shenuar nje CAPTCHA,
02:59
not only are you authenticating yourself as a human,
71
164000
2000
jo qe vetem ju jeni duke e autorizuar vetveten tuaj si njeri,
03:01
but in addition you're actually helping us to digitize books.
72
166000
2000
por ne perparsi ju jeni duke i ndihmuar digjitalizimit te nje libri.
03:03
So let me explain how this works.
73
168000
2000
pra me lejoni t'ju shpjegoj se si funksionon.
03:05
So there's a lot of projects out there trying to digitize books.
74
170000
2000
Jan shum projekte te cilat jan duke u munduar per te digjitalizuar libra.
03:07
Google has one. The Internet Archive has one.
75
172000
3000
Google ka nje. Arhivi i interneti ka poashtu.
03:10
Amazon, now with the Kindle, is trying to digitize books.
76
175000
2000
Amazoni tani me Kindle (lexuesi i librave elektronik) provon te digjitalizoj libra.
03:12
Basically the way this works
77
177000
2000
Faktikisht menyra se si funksionon
03:14
is you start with an old book.
78
179000
2000
eshte ju filloni me nje liber te vjeter.
03:16
You've seen those things, right? Like a book?
79
181000
2000
I keni pare keto gjere mire? sikurse nje liber ?
03:18
(Laughter)
80
183000
2000
(Qeshen)
03:20
So you start with a book, and then you scan it.
81
185000
2000
Pra filloni me nje liber, dhe e skanoni ate
03:22
Now scanning a book
82
187000
2000
Tashi skanimi i nje libre
03:24
is like taking a digital photograph of every page of the book.
83
189000
2000
eshte sikurse te marrim nje fotografi digjitale te seciles faqe te nje libri
03:26
It gives you an image for every page of the book.
84
191000
2000
te jep nje imazh per secilen faqe te librit
03:28
This is an image with text for every page of the book.
85
193000
2000
Ky eshte nje imazh me tekst per secilen faqe
03:30
The next step in the process
86
195000
2000
Hapi tjeter eshte proces.
03:32
is that the computer needs to be able to decipher all of the words in this image.
87
197000
3000
te cilin kompjuterit i nevoitet te jet te ngjendje ti nxierr te gjitha fjalet nga ky imazh.
03:35
That's using a technology called OCR,
88
200000
2000
Ata e perdorin nje teknologji te quajtur OCR,
03:37
for optical character recognition,
89
202000
2000
per karakte optice te nxierruar,
03:39
which takes a picture of text
90
204000
2000
te cilat i merr si fotografi nga teksti
03:41
and tries to figure out what text is in there.
91
206000
2000
dhe fillon ta gjeje se qfar teksti eshte atje.
03:43
Now the problem is that OCR is not perfect.
92
208000
2000
Tashi problemi eshte se OCR-ja nuk eshte perfekt
03:45
Especially for older books
93
210000
2000
Ne veqanti per libra te vjeter
03:47
where the ink has faded and the pages have turned yellow,
94
212000
3000
ku ngjyra ka filluar te bie dhe faqet jan bere ne te verdh,
03:50
OCR cannot recognize a lot of the words.
95
215000
2000
OCR-ja nuk mundet ti nxierr te gjitha fjalet.
03:52
For example, for things that were written more than 50 years ago,
96
217000
2000
Per shembull, per gjerat te cilat ishin shkruar para 50 viteve
03:54
the computer cannot recognize about 30 percent of the words.
97
219000
3000
kompjuteri nuk mundet ti nxierr rreth 30 perqind te fjalve.
03:57
So what we're doing now
98
222000
2000
Pra qfar jemi duke bere tani
03:59
is we're taking all of the words that the computer cannot recognize
99
224000
2000
eshte ne po i nxierrim te gjitha fjalit te cilat kompjuteret nuk munden
04:01
and we're getting people to read them for us
100
226000
2000
dhe po i'a japim njerzve qe ti lexojne ato per neve
04:03
while they're typing a CAPTCHA on the Internet.
101
228000
2000
gjersa ata jan duke shenuar nje CAPTCHA ne internet
04:05
So the next time you type a CAPTCHA, these words that you're typing
102
230000
3000
pra heren tjeter kur ju jeni duke shenuar nje CAPTCHA, keto fjali qe jeni duke i shenuar
04:08
are actually words that are coming from books that are being digitized
103
233000
3000
jan ne fakt fjalit te cilat jane duke ardhur nga librat te cilat po digjitalizohen
04:11
that the computer could not recognize.
104
236000
2000
qe kompjuteri nuk mundnte ti nxierrte.
04:13
And now the reason we have two words nowadays instead of one
105
238000
2000
dhe arsyeja perse ne kemi dy fjali koheve te fundit dhe jo nje
04:15
is because, you see, one of the words
106
240000
2000
eshte sepse ju shihni, njeren nga fjalet
04:17
is a word that the system just got out of a book,
107
242000
2000
eshte fjale te cilen sistemi sapo e ka nxierr nga nje liber,
04:19
it didn't know what it was, and it's going to present it to you.
108
244000
3000
nuk e dinte se qfar ishte, vetem do t'ua prezentoj para jush.
04:22
But since it doesn't know the answer for it, it cannot grade it for you.
109
247000
3000
meqe nuk e din pergjigjejen e tij, smundet ta noton per ty.
04:25
So what we do is we give you another word,
110
250000
2000
qfar ne bejme eshte ju japi nje fjali tjeter,
04:27
one for which the system does know the answer.
111
252000
2000
nje nga te cilen systemi e di pergjigjejen.
04:29
We don't tell you which one's which, and we say, please type both.
112
254000
2000
ne nuk ju themi se cila eshte cila, dhe ne ju themi ju lutem shtypni te dyja.
04:31
And if you type the correct word
113
256000
2000
nese e keni shkruar fjalin korrekte
04:33
for the one for which the system already knows the answer,
114
258000
2000
per te cilen sistemi e din pergjigjejen
04:35
it assumes you are human,
115
260000
2000
e pranon se je njeri,
04:37
and it also gets some confidence that you typed the other word correctly.
116
262000
2000
dhe gjithashtu pranon nje konfidenc qe ju jeni duke shtypur fjalin tjeter te saket.
04:39
And if we repeat this process to like 10 different people
117
264000
3000
dhe nese e perseritim kete proces tek 10 njerez te ndryshum
04:42
and all of them agree on what the new word is,
118
267000
2000
dhe te gjith prej tyre pajtohen se qfar eshte fjalia e re
04:44
then we get one more word digitized accurately.
119
269000
2000
ateher ne kemi digjitalizuar nje fjali te re saktesisht.
04:46
So this is how the system works.
120
271000
2000
pra ky keshtu funksionon sistemi.
04:48
And basically, since we released it about three or four years ago,
121
273000
3000
faktikisth, qe nga data e leshimit qe ka qen rreth 3 apo kater vite me pare
04:51
a lot of websites have started switching
122
276000
2000
shum web faqe kan filluar ti ndrrojne
04:53
from the old CAPTCHA where people wasted their time
123
278000
2000
nga CAPTCHA e vjeter ku njerzit humbsin kohen e tyre
04:55
to the new CAPTCHA where people are helping to digitize books.
124
280000
2000
tek CATPCHA e re ku njerzit jane duke ndihmuar digjitalizimin e librave.
04:57
So for example, Ticketmaster.
125
282000
2000
pershembull, Tiketuesi master
04:59
So every time you buy tickets on Ticketmaster, you help to digitize a book.
126
284000
3000
Pra gjodher kur ju blenje nje tiket, ju i ndihmoni digjitalizimit te nje libri.
05:02
Facebook: Every time you add a friend or poke somebody,
127
287000
2000
Facebook: gjdoher kur ju shtoni nje shok ose pokoni dike,
05:04
you help to digitize a book.
128
289000
2000
ju jeni duke i ndihmuar digjitalizimit.
05:06
Twitter and about 350,000 other sites are all using reCAPTCHA.
129
291000
3000
Twitter dhe rreth 350,000 faqe tjera jan duke perdorur reCAPTCHA
05:09
And in fact, the number of sites that are using reCAPTCHA is so high
130
294000
2000
dhe ne fakt, numri i web faqeve qe jan duke perdorur eshte shum i larte
05:11
that the number of words that we're digitizing per day is really, really large.
131
296000
3000
dhe numri i fjalive te cilat jane duke u digjitalizuar per nje dite eshte shum shum i madh.
05:14
It's about 100 million a day,
132
299000
2000
eshte rreth 100 milion per nje dite,
05:16
which is the equivalent of about two and a half million books a year.
133
301000
4000
e cila eshte ekuivalente rreth dy e gjysme milioni libra per nje vite.
05:20
And this is all being done one word at a time
134
305000
2000
dhe e gjith kjo eshte duke u ber me nga nje fjali per njeher
05:22
by just people typing CAPTCHAs on the Internet.
135
307000
2000
me njerzit duke shtypur CAPTCHA ne internet.
05:24
(Applause)
136
309000
8000
(Duartrokitje)
05:32
Now of course,
137
317000
2000
Tani sigurisht,
05:34
since we're doing so many words per day,
138
319000
2000
meqe jemi duke i ber shum fjali per nje dit,
05:36
funny things can happen.
139
321000
2000
gjera te quditshme munden te ndodhin.
05:38
And this is especially true because now we're giving people
140
323000
2000
Dhe tani me te vertet eshte sepse ne jemi duke i dhen njerezve
05:40
two randomly chosen English words next to each other.
141
325000
2000
dy zgjidhje te rendomta ne anglisht fjali ngjitur me njera tjetren.
05:42
So funny things can happen.
142
327000
2000
pra gjera qesharake munden te ndodhin.
05:44
For example, we presented this word.
143
329000
2000
pershembull, ne prezentuam ket fjali.
05:46
It's the word "Christians"; there's nothing wrong with it.
144
331000
2000
eshte fjali "Kristianet" nuk ka asgje te keqe me te.
05:48
But if you present it along with another randomly chosen word,
145
333000
3000
mirpo nese e prezentoni se bashku me nje fjali tjeter te rendomt,
05:51
bad things can happen.
146
336000
2000
gjera te keqija mund te ndodhin.
05:53
So we get this. (Text: bad christians)
147
338000
2000
pra kemi kete tekst keq Krishtianisum
05:55
But it's even worse, because the particular website where we showed this
148
340000
3000
madje edhe me keq, sepse disa web faqe ishin duke e shfaqur kete
05:58
actually happened to be called The Embassy of the Kingdom of God.
149
343000
3000
faktikisht ndodhi te jen quajtur Ambasada e zotit te britanis se madhe.
06:01
(Laughter)
150
346000
2000
(Qeshen)
06:03
Oops.
151
348000
2000
Opps.
06:05
(Laughter)
152
350000
3000
(Qeshen)
06:08
Here's another really bad one.
153
353000
2000
Ketu eshte nje tjeter shum e keqe
06:10
JohnEdwards.com
154
355000
2000
JohnEdwards.com
06:12
(Text: Damn liberal)
155
357000
3000
(Teksti: libreralet e kqninje)
06:15
(Laughter)
156
360000
2000
(Qeshen)
06:17
So we keep on insulting people left and right everyday.
157
362000
3000
pra e mbajke kete majtas dhe djathtas gjdo dite.
06:20
Now, of course, we're not just insulting people.
158
365000
2000
Tani, sigurisht ne nuk jemi duke i inslutura njerzit.
06:22
See here's the thing, since we're presenting two randomly chosen words,
159
367000
3000
shiqoni ketu, meqe ne jemi duke ju prezentuar dy fjalo te rendomta zgjedhore,
06:25
interesting things can happen.
160
370000
2000
gjera interesante munden te ndodhin.
06:27
So this actually has given rise
161
372000
2000
pra ne fakt ka nje rritje
06:29
to a really big Internet meme
162
374000
3000
tek nje gje shum e madhe ne internet
06:32
that tens of thousands of people have participated in,
163
377000
2000
ku qindra dhe mijera njerz kan participuar ne te,
06:34
which is called CAPTCHA art.
164
379000
2000
e cila eshte quajtur arti i CAPTCHA.
06:36
I'm sure some of you have heard about it.
165
381000
2000
Jam shum i sigurt qe disa nga ju keni degjuar per kete.
06:38
Here's how it works.
166
383000
2000
ketu eshte se si punon.
06:40
Imagine you're using the Internet and you see a CAPTCHA
167
385000
2000
Imagjinoni ju jeni duke perdorur internetin dhe e shifni nje CAPTCHA
06:42
that you think is somewhat peculiar,
168
387000
2000
dhe ju mendoni se eshte diqka e njohur nga diku,
06:44
like this CAPTCHA. (Text: invisible toaster)
169
389000
2000
sikurse kjo CAPTCHA
06:46
Then what you're supposed to do is you take a screen shot of it.
170
391000
2000
Pastaj qfar ju duhet te beni eshte te shtypni butnin per te marruar ekranin tuaj.
06:48
Then of course, you fill out the CAPTCHA
171
393000
2000
pastaj sigurisht qe do te mbushni formen e CAPTCHA
06:50
because you help us digitize a book.
172
395000
2000
sepse ju ndihmoni te digjitalizoni nje liber.
06:52
But then, first you take a screen shot,
173
397000
2000
mirpo se pari shtypni butonin per printimin e kranit,
06:54
and then you draw something that is related to it.
174
399000
2000
dhe pastaj ju vizatoni diqka qe lidhet me te.
06:56
(Laughter)
175
401000
2000
(Qeshen)
06:58
That's how it works.
176
403000
3000
Pra keshtu punon.
07:01
There are tens of thousands of these.
177
406000
3000
Jan dhjetra dhe mira nga keto.
07:04
Some of them are very cute. (Text: clenched it)
178
409000
2000
disa nga to jan shum te lezetshme
07:06
(Laughter)
179
411000
2000
(Qeshen)
07:08
Some of them are funnier.
180
413000
2000
disa nga to jane qesharake
07:10
(Text: stoned founders)
181
415000
3000
(Tekst: ideatoret)
07:13
(Laughter)
182
418000
3000
(Qeshen)
07:16
And some of them,
183
421000
2000
dhe disa nga ta,
07:18
like paleontological shvisle,
184
423000
3000
sikurse gurdhendesit,
07:21
they contain Snoop Dogg.
185
426000
2000
ata permbajn snoop dogg
07:23
(Laughter)
186
428000
3000
(Qeshen)
07:26
Okay, so this is my favorite number of reCAPTCHA.
187
431000
2000
Ne rregull, pra ky eshte numri im i preferuar i re-CAPTCHA
07:28
So this is the favorite thing that I like about this whole project.
188
433000
3000
pra ky eshte pjesa dhe gjeja kryesore qe u dua me se shumti mbi te gjith ket projekt.
07:31
This is the number of distinct people
189
436000
2000
My eshte numri i dalluar i njerezve
07:33
that have helped us digitize at least one word out of a book through reCAPTCHA:
190
438000
3000
te cilet na kan ndihmuar neve per te digjitalizuar te pakten nje nga fjalit e librave nepermjet reCAPTCHA:
07:36
750 million,
191
441000
2000
750 milion,
07:38
which is a little over 10 percent of the world's population,
192
443000
2000
i cili eshte me pak se 10 perqindshi i popllsis botrore,
07:40
has helped us digitize human knowledge.
193
445000
2000
te cilet na kane ndihmuar neve te digjitalizojme njohurit e njerzimit.
07:42
And it is numbers like these that motivate my research agenda.
194
447000
3000
dhe numrat sikurse ky te cilet me motivojne ne agjenden e kerkimit tim.
07:45
So the question that motivates my research is the following:
195
450000
3000
Pra pyetja e cila me motivon kerkimin tim eshte:
07:48
If you look at humanity's large-scale achievements,
196
453000
2000
Po ta shiqoni te arrituart e njerezimit ne nje mas te madhe,
07:50
these really big things
197
455000
2000
jane me te vertet gjera shum te mdha
07:52
that humanity has gotten together and done historically --
198
457000
3000
qe humaniteti i ka bere se bashku dhe i ka krijuar neper histori --
07:55
like for example, building the pyramids of Egypt
199
460000
2000
sirkuse per shembull, ndertimi i piradimave te Egjiptit
07:57
or the Panama Canal
200
462000
2000
apo Kanalin e panamase
07:59
or putting a man on the Moon --
201
464000
2000
ose vendosja e njeriut ne Hene-
08:01
there is a curious fact about them,
202
466000
2000
eshte nje fakt kurioz rreth tyre,
08:03
and it is that they were all done with about the same number off people.
203
468000
2000
dhe e gjitha eshte bere pothuajse me te njejtin numer te njerezve
08:05
It's weird; they were all done with about 100,000 people.
204
470000
3000
eshte e quditshme; te gjitha keto ishin bere me rreth 100,000 njerez
08:08
And the reason for that is because, before the Internet,
205
473000
3000
dhe arsyeja per ate eshte sepse , perpara internetit,
08:11
coordinating more than 100,000 people,
206
476000
2000
te kordinosh me teper se 100,000 njerez
08:13
let alone paying them, was essentially impossible.
207
478000
3000
te paguash veqmash per secili ishte pothuajse e pamundur.
08:16
But now with the Internet, I've just shown you a project
208
481000
2000
mirpo tani me internetin, Ju kam treguar nje projekt
08:18
where we've gotten 750 million people
209
483000
2000
ku patem 750 milion njerez
08:20
to help us digitize human knowledge.
210
485000
2000
te cilet na ndihmuan te digjitalizojme njohurit e njerezimit.
08:22
So the question that motivates my research is,
211
487000
2000
pra pyetja e cila me motivon kerkimin tim eshte,
08:24
if we can put a man on the Moon with 100,000,
212
489000
3000
Nese ne mundemi ta vendosim nje njeri ne hene me 100,000
08:27
what can we do with 100 million?
213
492000
2000
qfar mundemi te bejeme me 100 milion?
08:29
So based on this question,
214
494000
2000
pra bazuar ne kete pyetje,
08:31
we've had a lot of different projects that we've been working on.
215
496000
2000
ne kemi pasur shum lloje projektesh te cilat kemi punuar ne.
08:33
Let me tell you about one that I'm most excited about.
216
498000
3000
Me lejoni t'ju them rreth nje projekti te cilin jam shum i knaqur me.
08:36
This is something that we've been semi-quietly working on
217
501000
2000
Kjo eshte diqka qe kemi punuar koh-pas-kohe
08:38
for the last year and a half or so.
218
503000
2000
vitin e fundit apo me teper.
08:40
It hasn't yet been launched. It's called Duolingo.
219
505000
2000
akoma nuk eshte lansuar. E quajme Duolingo.
08:42
Since it hasn't been launched, shhhhh!
220
507000
2000
me qe nuk eshte lancuar akoma , shhhhh!
08:44
(Laughter)
221
509000
2000
(Qeshen)
08:46
Yeah, I can trust you'll do that.
222
511000
2000
po, Une mundem t'ju besoj juve ate.
08:48
So this is the project. Here's how it started.
223
513000
2000
Pra ky eshte projekti. Ja se si filloi.
08:50
It started with me posing a question to my graduate student,
224
515000
2000
Filloj me mua duke postuar nje pyetje tek studentat e mi.
08:52
Severin Hacker.
225
517000
2000
Severin hacker.
08:54
Okay, that's Severin Hacker.
226
519000
2000
Ne rregull, ai eshte Severn Hacker.
08:56
So I posed the question to my graduate student.
227
521000
2000
Pra e postova pyetjen tek studentat e mi
08:58
By the way, you did hear me correctly;
228
523000
2000
mirpo menyra se si ju me degjuat mua saktesisht;
09:00
his last name is Hacker.
229
525000
2000
mbiemri i tij eshte Hacker.
09:02
So I posed this question to him:
230
527000
2000
Pra i postova pyetjen atij:
09:04
How can we get 100 million people
231
529000
2000
Si mund ti marrim 100 milion njerez
09:06
translating the Web into every major language for free?
232
531000
3000
ta perkthejm web-in ne secilen gjuh kryesore pa pages?
09:09
Okay, so there's a lot of things to say about this question.
233
534000
2000
Ne rregull, jane shum gjera per te thene rreth kesaj pyetje.
09:11
First of all, translating the Web.
234
536000
2000
Se pari , per ta perkthyer web-in
09:13
So right now the Web is partitioned into multiple languages.
235
538000
3000
Per momentin web-i eshte i pozicionuar ne shumicen e gjuheve.
09:16
A large fraction of it is in English.
236
541000
2000
Nje shum e madhe e tij eshte ne Anglisht.
09:18
If you don't know any English, you can't access it.
237
543000
2000
Nese nuk e di fare Anglishten, ju smuneni te keni akces tek ai.
09:20
But there's large fractions in other different languages,
238
545000
2000
mirpo jan edhe shum pjes tjera ne gjuh te ndryshme,
09:22
and if you don't know those languages, you can't access it.
239
547000
3000
dhe nese nuk i din ato gjuh nuk mundesh te kesh akcez tek ai.
09:25
So I would like to translate all of the Web, or at least most of the Web,
240
550000
3000
Pra une deshiroj te perkthej te gjith web-in apo pjesen me te madhe te tij,
09:28
into every major language.
241
553000
2000
ne te gjitha gjuhet kryesore.
09:30
So that's what I would like to do.
242
555000
2000
pra kjo eshte ajo qe une dua te beje.
09:32
Now some of you may say, why can't we use computers to translate?
243
557000
3000
Tani disa nga ju mundeni te thoni , perse nuk mundemi te perdorim kompjuterin per ta perkthyer ate?
09:35
Why can't we use machine translation?
244
560000
2000
perse nuk mundemi te perdorim perkthyesin makin?
09:37
Machine translation nowadays is starting to translate some sentences here and there.
245
562000
2000
Perkthyesit makin koheve te fundit jane duke perkthyer disa fjali ketu atu.
09:39
Why can't we use it to translate the whole Web?
246
564000
2000
perse nuk mundemi te perdorim ta perkthejme te gjith web-in?
09:41
Well the problem with that is that it's not yet good enough
247
566000
2000
Mire por problemi eshte sepse nuk mundemi te jemi shum te mire per ta bere kete
09:43
and it probably won't be for the next 15 to 20 years.
248
568000
2000
dhe perafersisht nuk do te mund ta bejem kete edhe per 15 apo 20 vitet e ardheshme.
09:45
It makes a lot of mistakes.
249
570000
2000
Ben shume gabime.
09:47
Even when it doesn't make a mistake,
250
572000
2000
Madje edhe kur nuk bene ndonje gabim,
09:49
since it makes so many mistakes, you don't know whether to trust it or not.
251
574000
3000
meqe bene shume gabime ne nuk e dim se a ti besoj apo jo.
09:52
So let me show you an example
252
577000
2000
Pra me lejoni t'ju jap nje shembull
09:54
of something that was translated with a machine.
253
579000
2000
apo diqka qe ishte perkthyer me nje makineri.
09:56
Actually it was a forum post.
254
581000
2000
Faktikisht ishte nje postim ne forum.
09:58
It was somebody who was trying to ask a question about JavaScript.
255
583000
3000
Ishte dikush qe kishte provuar te beje nje pyetje rreth JavaScritp-it (program per programera)
10:01
It was translated from Japanese into English.
256
586000
3000
Ishte perkthyer nga Japonishtja ne Anglisht.
10:04
So I'll just let you read.
257
589000
2000
Pra vetem do t'ju le te lexoni.
10:06
This person starts apologizing
258
591000
2000
Personi filloj te kerkoj falje
10:08
for the fact that it's translated with a computer.
259
593000
2000
per faktin qe ishte perkthyer me nje kompjuer.
10:10
So the next sentence is is going to be the preamble to the question.
260
595000
3000
Pra fjalia tjeter do te jet direkt e marrur nga pyetja.
10:13
So he's just explaining something.
261
598000
2000
Pra ai vetem po sqaron diqka.
10:15
Remember, it's a question about JavaScript.
262
600000
3000
Kujtoni, eshte pyetja rreth JavaScritp-it.
10:19
(Text: At often, the goat-time install a error is vomit.)
263
604000
4000
(Teksti: shpesh, koha e instalimit gabim kaniher)
10:23
(Laughter)
264
608000
4000
(Qeshen)
10:27
Then comes the first part of the question.
265
612000
3000
Pastaj vjen pjesa e pare e pyetjes.
10:30
(Text: How many times like the wind, a pole, and the dragon?)
266
615000
4000
Tekst: Sa herë si era, një shtyllë, dhe dragon
10:34
(Laughter)
267
619000
2000
(Qeshen)
10:36
Then comes my favorite part of the question.
268
621000
3000
Pastaj vjen pjesa ime e preferuar e pyetjes.
10:39
(Text: This insult to father's stones?)
269
624000
3000
(Tekst: ky ka instulim per baban e gurve?)
10:42
(Laughter)
270
627000
2000
(Qeshen)
10:44
And then comes the ending, which is my favorite part of the whole thing.
271
629000
3000
dhe pastaj vjen pjesa e fundit,e cila eshte me e preferuar e te gjith kesaj gjeje.
10:47
(Text: Please apologize for your stupidity. There are a many thank you.)
272
632000
4000
(Tekst: Ju lutem me falni per marrezin tuaj. Jan shum faliminderit.)
10:51
(Laughter)
273
636000
2000
(Qeshen)
10:53
Okay, so computer translation, not yet good enough.
274
638000
2000
Ne rregull, pra perkthimi me kompjuteri, nuk eshte akom i mire.
10:55
So back to the question.
275
640000
2000
Pra kthehemi tek pyetja.
10:57
So we need people to translate the whole Web.
276
642000
3000
Pra na nevoiten njerez per ta perkthyer te gjithe web-in.
11:00
So now the next question you may have is,
277
645000
2000
Tani pyetja tjeter te cilin ju mund ta keni eshte,
11:02
well why can't we just pay people to do this?
278
647000
2000
mire, perse nuk mundemi te paguaj njerez per ta bere kete?
11:04
We could pay professional language translators to translate the whole Web.
279
649000
3000
Ne mundemi te paguaj perkthyer profesional per ta perkthyer te gjith web-in.
11:07
We could do that.
280
652000
2000
Ne mundemi te ta beje kete.
11:09
Unfortunately, it would be extremely expensive.
281
654000
2000
Fatkeqesisht, do te ishte ekstremisht e shtrenjet.
11:11
For example, translating a tiny, tiny fraction of the whole Web, Wikipedia,
282
656000
3000
Per shembull, perkthimi ne pjes te vogla fraksion te te gjithe web-it, Wikipedia,
11:14
into one other language, Spanish.
283
659000
3000
ne nje gjuh tjeter, Spanjollisht.
11:17
Wikipedia exists in Spanish,
284
662000
2000
Wikipedia eksiston ne Spanjollisht,
11:19
but it's very small compared to the size of English.
285
664000
2000
mirpoo eshte shum e vogel nese e krahazojme me madhesin e Anglishtes.
11:21
It's about 20 percent of the size of English.
286
666000
2000
eshte rreth 20 perqind te madhesis se Anglishtes.
11:23
If we wanted to translate the other 80 percent into Spanish,
287
668000
3000
nese deshirojme te perkthejme pjesen e 80 perqindeshit ne Spanjollisht,
11:26
it would cost at least 50 million dollars --
288
671000
2000
do te kushtonte se paku 50 milion dollare --
11:28
and this is at even the most exploited, outsourcing country out there.
289
673000
3000
dhe ky eshte sepaku shteti me outsort jasht.
11:31
So it would be very expensive.
290
676000
2000
pra do te jet shume e shtrejte.
11:33
So what we want to do is we want to get 100 million people
291
678000
2000
Pra qfar deshirojme te bejme eshte deshirojme ti marrim 100 milion njerez
11:35
translating the Web into every major language
292
680000
2000
perkthimin e te gjith web-it ne shumicen e gjuheve
11:37
for free.
293
682000
2000
pa pages.
11:39
Now if this is what you want to do,
294
684000
2000
Tashi nese kjo eshte ajo se qfar deshirojme te bejme,
11:41
you pretty quickly realize you're going to run into two pretty big hurdles,
295
686000
2000
shum shpejt do te zbulonin qe ju jeni duke diqka shum te madhe,
11:43
two big obstacles.
296
688000
2000
dy pengesa te medhaja.
11:45
The first one is a lack of bilinguals.
297
690000
3000
E para eshte mungesa e pageses.
11:48
So I don't even know
298
693000
2000
Pra une nuk e di
11:50
if there exists 100 million people out there using the Web
299
695000
3000
nese eksistojne 100 milion njerez atje te cilet e perdorin web-in
11:53
who are bilingual enough to help us translate.
300
698000
2000
kush eshte i interesuar te na ndihmoje neve per ta perkthyer.
11:55
That's a big problem.
301
700000
2000
Ky eshte nje problem i madh.
11:57
The other problem you're going to run into is a lack of motivation.
302
702000
2000
Problemi tjeter ne te cilin do te hasim eshte mungesa e motivimit.
11:59
How are we going to motivate people
303
704000
2000
Si do ti motivojme njerezit
12:01
to actually translate the Web for free?
304
706000
2000
per ta perkthyer Webin pa pages?
12:03
Normally, you have to pay people to do this.
305
708000
3000
Normalisht, ju duhet te paguni njerezit per ta bere kete.
12:06
So how are we going to motivate them to do it for free?
306
711000
2000
pra si do ti motivojme ata per ta bere kete pa pages?
12:08
Now when we were starting to think about this, we were blocked by these two things.
307
713000
3000
Tashi kur ne filluam te mendojme per kete, ne ishim te bllokuar nga keto dy gjera.
12:11
But then we realized, there's actually a way
308
716000
2000
Mirpo ne e gjetem, se ne te vertet eshte nje menyr
12:13
to solve both these problems with the same solution.
309
718000
2000
per ti zgjidhur te dyja keto probleme me te njejten menyre
12:15
There's a way to kill two birds with one stone.
310
720000
2000
Eshte nje menyre per te vrare dy zogj me te njejtin guri.
12:17
And that is to transform language translation
311
722000
3000
dhe kjo eshte per ta transpormuar gjuhen ne nje perkthim
12:20
into something that millions of people want to do,
312
725000
3000
ne diqka qe miliona njere deshirojne te bejne,
12:23
and that also helps with the problem of lack of bilinguals,
313
728000
3000
dhe ajo gjithashtu na ndihmon neve me mungeses se pagesave.
12:26
and that is language education.
314
731000
3000
dhe kjo eshe edukimi gjuhesore.
12:29
So it turns out that today,
315
734000
2000
pra u kthye qe sot,
12:31
there are over 1.2 billion people learning a foreign language.
316
736000
3000
jan mbi 1.2 miljard njereze te cilet mesoje nje gjuh te huaje.
12:34
People really, really want to learn a foreign language.
317
739000
2000
Njerezit me te vertet deshirojne te mesojne nje gjuh te huaje.
12:36
And it's not just because they're being forced to do so in school.
318
741000
3000
dhe nuk eshte sepse jan te detyruar me force per te mesuar kete ne shkolle.
12:39
For example, in the United States alone,
319
744000
2000
Pershembull, ne ShBA vetem,
12:41
there are over five million people who have paid over $500
320
746000
2000
jane me teper se 5 milion njereze te cilet kan paguar mbi 500 dollar
12:43
for software to learn a new language.
321
748000
2000
per nje softuer per te mesuar nje gjuhe te re.
12:45
So people really, really want to learn a new language.
322
750000
2000
pra njerezit me te vertet deshirojne te mesojne nje gjuhe te re.
12:47
So what we've been working on for the last year and a half is a new website --
323
752000
3000
pra ne qfar kemi punuar ne vitin e fundit eshte nje web i ri --
12:50
it's called Duolingo --
324
755000
2000
i quajtur Duolingo --
12:52
where the basic idea is people learn a new language for free
325
757000
3000
idea eshte qe njerezit te mesojne nje gjuh te re pa pages
12:55
while simultaneously translating the Web.
326
760000
2000
e cila stimulon perkthimin e web-it
12:57
And so basically they're learning by doing.
327
762000
2000
dhe faktikisht eshte e thjesht sikurse te mesuarit duke e bere.
12:59
So the way this works
328
764000
2000
Pra menyra se si funksionon
13:01
is whenever you're a just a beginner, we give you very, very simple sentences.
329
766000
3000
kurdohere qe ju jeni nje fillestar, ne ju japim fjali shum shum te thjeshta.
13:04
There's, of course, a lot of very simple sentences on the Web.
330
769000
2000
Sigurisht qe ka shum shum fjali te thjeshta ne web.
13:06
We give you very, very simple sentences
331
771000
2000
Ne ju japim shum shum fjali te thjeshta
13:08
along with what each word means.
332
773000
2000
sebashku me te dhe kuptimin e fjalise.
13:10
And as you translate them, and as you see how other people translate them,
333
775000
3000
dhe duke i perkthyer ato, dhe duke i pare njerezit duke i perkthyer ato
13:13
you start learning the language.
334
778000
2000
ju filloni te mesoni gjuhen.
13:15
And as you get more and more advanced,
335
780000
2000
dhe sa me shum qe ju profesionalizoheni,
13:17
we give you more and more complex sentences to translate.
336
782000
2000
ne ju japim me shum fjali te veshtira per ti perkthyer.
13:19
But at all times, you're learning by doing.
337
784000
2000
mirpo gjat gjith kohes, ju jeni duke mesuar duke e bere.
13:21
Now the crazy thing about this method
338
786000
2000
Tashi gjeja e qmenduar rreth kesaj metode
13:23
is that it actually really works.
339
788000
2000
eshte sa ne fakt funksionon per mrekulli.
13:25
First of all, people are really, really learning a language.
340
790000
2000
se pari njerezit jane me te vertet per te mesuar nje gjuhe.
13:27
We're mostly done building it, and now we're testing it.
341
792000
2000
Jemi pothuajse te perfunduar, te ndertuari ate, tashi jemi duke e testuar ate.
13:29
People really can learn a language with it.
342
794000
2000
Njerezit munden te mesojne nje gjuh me te.
13:31
And they learn it about as well as the leading language learning software.
343
796000
3000
Dhe ata e mesojne ate sikurse programi per mesimin e gjuheve.
13:34
So people really do learn a language.
344
799000
2000
Pra njerezit me te vertet mesojne nje gjuhe.
13:36
And not only do they learn it as well,
345
801000
2000
dhe jo vetem qe e mesojne,
13:38
but actually it's way more interesting.
346
803000
2000
por eshte shum me interesante.
13:40
Because you see with Duolingo, people are actually learning with real content.
347
805000
3000
Sepse ju e shihni me Duolingo, njerezit e mesojne kontentin real.
13:43
As opposed to learning with made-up sentences,
348
808000
2000
Jo sikurse te mesuarit me fjali te bera gati,
13:45
people are learning with real content, which is inherently interesting.
349
810000
3000
njerezit jane duke mesuar me kontentin reale, i cili eshte me te vertet interesante.
13:48
So people really do learn a language.
350
813000
2000
Pra njerezit me te vertet mesojnje nje gjuhe.
13:50
But perhaps more surprisingly,
351
815000
2000
Miporo ndoshta me surprizuese,
13:52
the translations that we get from people using the site,
352
817000
3000
perkthimi qe marrim nga njerezit duke perkthyer web-in
13:55
even though they're just beginners,
353
820000
2000
madje edhe pse jan vetem fillestar,
13:57
the translations that we get are as accurate as those of professional language translators,
354
822000
3000
perkthimi qe ne marrim eshte aq i saket sikruse ai i marr nga ndonje perkthyer profesionale.
14:00
which is very surprising.
355
825000
2000
i cili eshte shum suprizues.
14:02
So let me show you one example.
356
827000
2000
pra me lejoni te marr nje shembull.
14:04
This is a sentence that was translated from German into English.
357
829000
2000
Kjo eshte nje fjali e cila eshte perkthyer nga Gjermanishtja ne Anglisht.
14:06
The top is the German.
358
831000
2000
Fillimi eshte Gjermanisht
14:08
The middle is an English translation
359
833000
2000
Mesi eshte perkthim ne Anglisht
14:10
that was done by somebody who was a professional English translator
360
835000
2000
kjo eshte kryer nga dikush qe ishte nje perkthyer profesional Englisht
14:12
who we paid 20 cents a word for this translation.
361
837000
2000
te cilin e paguam 20 cent per nje fjal per perkthim.
14:14
And the bottom is a translation by users of Duolingo,
362
839000
3000
dhe ne fund eshte nje perkthim nga nje shfrytzues i Duolingo,
14:17
none of whom knew any German
363
842000
2000
qe nuk dinte asnje copez te Gjermanishtes
14:19
before they started using the site.
364
844000
2000
para se te fillonin te perdorin sajtin.
14:21
You can see, it's pretty much perfect.
365
846000
2000
Mund ta shihni eshe shum perfekt.
14:23
Now of course, we play a trick here
366
848000
2000
Tani sirusiht,ne bejme nje trik ketu
14:25
to make the translations as good as professional language translators.
367
850000
2000
per te bere perkthimin aq te mri sa nje perkthyer profesional mund te beje.
14:27
We combine the translations of multiple beginners
368
852000
3000
Ne i kombinojme disa perkthyes fillestare
14:30
to get the quality of a single professional translator.
369
855000
3000
per te fituar kualitetin e nje profesionalisti te vetem.
14:33
Now even though we're combining the translations,
370
858000
5000
Tani edhe pese ne jemi duke i kombinuar keto perkthime,
14:38
the site actually can translate pretty fast.
371
863000
2000
sajti mundet te perkthej shum shpejt.
14:40
So let me show you,
372
865000
2000
Ja t'ju tregoj,
14:42
this is our estimates of how fast we could translate Wikipedia
373
867000
2000
kjo eshte perllogaritje se sa shpejt mundemi ta perkthejme Wikipedia-në
14:44
from English into Spanish.
374
869000
2000
Nga Anglishtja ne Spanjollisht.
14:46
Remember, this is 50 million dollars-worth of value.
375
871000
3000
Kujdoni, ky eshte 50 milion dollar vler
14:49
So if we wanted to translate Wikipedia into Spanish,
376
874000
2000
Pra nese deshirojme ta perkthejme Wikipedian ne Spanjollisht
14:51
we could do it in five weeks with 100,000 active users.
377
876000
3000
mundemi ta bejme kete ne pese jave me 100,000 shfrytzues aktive
14:54
And we could do it in about 80 hours with a million active users.
378
879000
3000
dhe mundemi ta bejme kete me rreth 80 ore me 1 milion shfrytzues aktive
14:57
Since all the projects that my group has worked on so far have gotten millions of users,
379
882000
3000
Meqe te gjitha projektet qe grupi ime ka punuar deri me tani kan marrur mbi 100 milion shfrytzues
15:00
we're hopeful that we'll be able to translate
380
885000
2000
jemi te kenaqur qe do te jemi ne gjendje ta perkthejme
15:02
extremely fast with this project.
381
887000
2000
ekstremisht shpejt me kete projekt.
15:04
Now the thing that I'm most excited about with Duolingo
382
889000
3000
Tani gjeja qe une jam i gezuar rreth Duolingo
15:07
is I think this provides a fair business model for language education.
383
892000
3000
eshte se mendoj qe ne jep nje model te biznesit te drejt per edukimin gjuhesore.
15:10
So here's the thing:
384
895000
2000
Ja ku eshte gjeja:
15:12
The current business model for language education
385
897000
2000
Modeli i bizesit per edukimin gjuhesore
15:14
is the student pays,
386
899000
2000
eshte studenti paguane,
15:16
and in particular, the student pays Rosetta Stone 500 dollars.
387
901000
2000
dhe ne pergjigjethsi studentet kan paguar Rosetta Stone 500 dollar.
15:18
(Laughter)
388
903000
2000
(Qeshen)
15:20
That's the current business model.
389
905000
2000
Ky eshte modeli i tanishum i binesit !
15:22
The problem with this business model
390
907000
2000
Problemi me modelin e biznesit eshte
15:24
is that 95 percent of the world's population doesn't have 500 dollars.
391
909000
3000
se 95 perqind e popullsis botrore nuk ka 500 dollar.
15:27
So it's extremely unfair towards the poor.
392
912000
3000
Pra nuk eshte e drejt per njerezit e varfer
15:30
This is totally biased towards the rich.
393
915000
2000
Totalisht e drejt per te pasurit.
15:32
Now see, in Duolingo,
394
917000
2000
Tashi me Duolingo,
15:34
because while you learn
395
919000
2000
gjersa ju jeni duke mesuar
15:36
you're actually creating value, you're translating stuff --
396
921000
3000
ju faktikisht jeni duke krijuar vlera, ju jeni duke perkthyer gjera --
15:39
which for example, we could charge somebody for translations.
397
924000
3000
te cilat pershembull, ne mundemi ta ngrakojme dike per te perkthyer.
15:42
So this is how we could monetize this.
398
927000
2000
Pra kjo eshte menyra se si mund ta bejeme te gjith kete.
15:44
Since people are creating value while they're learning,
399
929000
2000
Meqe njerezit jane duke krijuar vlera dhe gjithashtu duke mesuar,
15:46
they don't have to pay their money, they pay with their time.
400
931000
3000
Ata nuk duhet te paguajne me parat e tyre, ata paguajne me kohen e tyre.
15:49
But the magical thing here is that they're paying with their time,
401
934000
3000
Mirpo gjeja magjike ketu eshte sepse ata po paguajne me kohen e tyre,
15:52
but that is time that would have had to have been spent anyways
402
937000
2000
mirpo kjo eshte koha te cilen ata eshte dashur qe ta hargjojne sidoqoft
15:54
learning the language.
403
939000
2000
duke mesuar gjuhen.
15:56
So the nice thing about Duolingo is I think it provides a fair business model --
404
941000
3000
pra gjeja me e mire rreth Duolingo-it eshte sepse une mendoj se eshte nje model i biznesit te drejt --
15:59
one that doesn't discriminate against poor people.
405
944000
2000
nje i cili nuk eshte diskriminues kunder njerezve te varfer.
16:01
So here's the site. Thank you.
406
946000
2000
Pra ketu eshte sajti. Faliminderit
16:03
(Applause)
407
948000
8000
(Duartrokitje)
16:11
So here's the site.
408
956000
2000
Ketu eshte sajti.
16:13
We haven't yet launched,
409
958000
2000
Akoma nuk e kemi lansuar,
16:15
but if you go there, you can sign up to be part of our private beta,
410
960000
3000
mirpo nese shkon atje, mundesh te kyqesh te jesh pjes private e versioni te pa leshuar per publikun ( beta)
16:18
which is probably going to start in about three or four weeks.
411
963000
2000
i cili do te filloj se shpejti besoj ne 3 apo kater jave.
16:20
We haven't yet launched this Duolingo.
412
965000
2000
Akoma nuk e kemi lancuar kete Duolingo.
16:22
By the way, I'm the one talking here,
413
967000
2000
Me qe ra fjala.Une jam duke folur ketu,
16:24
but actually Duolingo is the work of a really awesome team, some of whom are here.
414
969000
3000
faktikisht Duolingo eshte nje pune e mrekullueshme e nje ekimi shum te mir, ku pjes e saj jane edhe ketu.
16:27
So thank you.
415
972000
2000
Pra faliminderit shume.
16:29
(Applause)
416
974000
4000
(Duartrokitje)
Translated by Liridon Shala
Reviewed by Robert Lokaj

▲Back to top

ABOUT THE SPEAKER
Luis von Ahn - Computer scientist
Luis von Ahn builds systems that combine humans and computers to solve large-scale problems that neither can solve alone.

Why you should listen

Louis von Ahn is an associate professor of Computer Science at Carnegie Mellon University, and he's at the forefront of the crowdsourcing craze. His work takes advantage of the evergrowing Web-connected population to acheive collaboration in unprecedented numbers. His projects aim to leverage the crowd for human good. His company reCAPTCHA, sold to Google in 2009, digitizes human knowledge (books), one word at a time. His new project is Duolingo, which aims to get 100 million people translating the Web in every major language.

More profile about the speaker
Luis von Ahn | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee