ABOUT THE SPEAKER
Luis von Ahn - Computer scientist
Luis von Ahn builds systems that combine humans and computers to solve large-scale problems that neither can solve alone.

Why you should listen

Louis von Ahn is an associate professor of Computer Science at Carnegie Mellon University, and he's at the forefront of the crowdsourcing craze. His work takes advantage of the evergrowing Web-connected population to acheive collaboration in unprecedented numbers. His projects aim to leverage the crowd for human good. His company reCAPTCHA, sold to Google in 2009, digitizes human knowledge (books), one word at a time. His new project is Duolingo, which aims to get 100 million people translating the Web in every major language.

More profile about the speaker
Luis von Ahn | Speaker | TED.com
TEDxCMU

Luis von Ahn: Massive-scale online collaboration

路易斯・范・安:大型在线共同创作

Filmed:
1,740,008 views

路易斯・范・安带来了新一代的验证码,通过真人回复来将扫描书籍电子化。他琢磨这种无数个在线合作还能为我们带来什么更大的益处。他在 TEDxCMU介绍了他的新项目,叫Duolingo。这个项目能帮助成千上万的人学习外语,同时又把网页内容进行快速准确地翻译,而这一切都是免费的。
- Computer scientist
Luis von Ahn builds systems that combine humans and computers to solve large-scale problems that neither can solve alone. Full bio

Double-click the English transcript below to play the video.

00:15
How many许多 of you had to fill out some sort分类 of web卷筒纸 form形成
0
0
2000
有多少人在填写网页表格时
00:17
where you've been asked to read a distorted扭曲 sequence序列 of characters人物 like this?
1
2000
2000
需要识别像这样扭曲的词语?
00:19
How many许多 of you found发现 it really, really annoying恼人的?
2
4000
2000
有多少人觉得很烦人?
00:21
Okay, outstanding优秀. So I invented发明 that.
3
6000
3000
哇,不少呢。我就是发明这个的人。
00:24
(Laughter笑声)
4
9000
2000
(笑声)
00:26
Or I was one of the people who did it.
5
11000
2000
或者说我是其中之一
00:28
That thing is called a CAPTCHACAPTCHA.
6
13000
2000
这个称作验证码
00:30
And the reason原因 it is there is to make sure you, the entity实体 filling填充 out the form形成,
7
15000
2000
其理由是保证填写表格的是一个真人
00:32
are actually其实 a human人的 and not some sort分类 of computer电脑 program程序
8
17000
3000
而不是什么电脑程序在操作
00:35
that was written书面 to submit提交 the form形成 millions百万 and millions百万 of times.
9
20000
2000
可以不停地填写表格
00:37
The reason原因 it works作品 is because humans人类,
10
22000
2000
这是因为人类
00:39
at least最小 non-visually-impaired非视觉受损 humans人类,
11
24000
2000
至少是没有视力问题的人
00:41
have no trouble麻烦 reading these distorted扭曲 squiggly弯弯曲曲 characters人物,
12
26000
2000
可以识别这些扭曲的文字
00:43
whereas computer电脑 programs程式 simply只是 can't do it as well yet然而.
13
28000
3000
而机器做不到
00:46
So for example, in the case案件 of Ticketmaster特玛,
14
31000
2000
比如说在票务大全网站上
00:48
the reason原因 you have to type类型 these distorted扭曲 characters人物
15
33000
2000
你输入这些扭曲字符的原因
00:50
is to prevent避免 scalpers黄牛党 from writing写作 a program程序
16
35000
2000
是防止黄牛写一个电脑程序
00:52
that can buy购买 millions百万 of tickets门票, two at a time.
17
37000
2000
一次购买上万张票
00:54
CAPTCHAs验证码 are used all over the Internet互联网.
18
39000
2000
验证码在网络上普遍应用
00:56
And since以来 they're used so often经常,
19
41000
2000
因其普遍性
00:58
a lot of times the precise精确 sequence序列 of random随机 characters人物 that is shown显示 to the user用户
20
43000
2000
很多时候使用者就会看到一些
01:00
is not so fortunate幸运.
21
45000
2000
异常搭配的文字排序
01:02
So this is an example from the Yahoo雅虎 registration注册 page.
22
47000
3000
这个例子来自雅虎注册网页
01:05
The random随机 characters人物 that happened发生 to be shown显示 to the user用户
23
50000
2000
使用者看到的这几个随机字母
01:07
were W, A, I, T, which哪一个, of course课程, spell拼写 a word.
24
52000
3000
W,A,I, T,正好组成了“等”
01:10
But the best最好 part部分 is the message信息
25
55000
3000
最有意思的是
01:13
that the Yahoo雅虎 help desk got about 20 minutes分钟 later后来.
26
58000
3000
这是20分钟后的帮助页面
01:16
Text文本: "Help! I've been waiting等候 for over 20 minutes分钟, and nothing happens发生."
27
61000
3000
文字:“帮忙!我已经等了二十多分钟,没有任何变化。”
01:19
(Laughter笑声)
28
64000
4000
(笑声)
01:23
This person thought they needed需要 to wait.
29
68000
2000
这人以为网站让他等着
01:25
This of course课程, is not as bad as this poor较差的 person.
30
70000
3000
当然还有更倒霉的
01:28
(Laughter笑声)
31
73000
2000
(笑声)
01:30
CAPTCHACAPTCHA Project项目 is something that we did here at Carnegie卡内基 MelllonMelllon over 10 years年份 ago,
32
75000
3000
验证码计划是我们十多年前在卡内基梅隆大学做起来的
01:33
and it's been used everywhere到处.
33
78000
2000
并被广泛应用
01:35
Let me now tell you about a project项目 that we did a few少数 years年份 later后来,
34
80000
2000
现在谈谈几年后我们做的一个项目
01:37
which哪一个 is sort分类 of the next下一个 evolution演化 of CAPTCHACAPTCHA.
35
82000
3000
算是验证码的新生代版本
01:40
This is a project项目 that we call reCAPTCHA验证码,
36
85000
2000
这个计划我们称之“reCAPTCHA”
01:42
which哪一个 is something that we started开始 here at Carnegie卡内基 Mellon梅隆,
37
87000
2000
这个计划是从卡内基梅隆大学起步
01:44
then we turned转身 it into a startup启动 company公司.
38
89000
2000
成为我们的启动公司
01:46
And then about a year and a half ago,
39
91000
2000
一年半前
01:48
Google谷歌 actually其实 acquired后天 this company公司.
40
93000
2000
谷歌收购了这个公司
01:50
So let me tell you what this project项目 started开始.
41
95000
2000
现在我来说说这个项目的初始
01:52
So this project项目 started开始 from the following以下 realization实现:
42
97000
3000
这个项目是出于以下认识:
01:55
It turns out that approximately 200 million百万 CAPTCHAs验证码
43
100000
2000
每天全球范围内有大约2亿次
01:57
are typed类型 everyday每天 by people around the world世界.
44
102000
3000
验证码输入
02:00
When I first heard听说 this, I was quite相当 proud骄傲 of myself.
45
105000
2000
我头次听到的时候还挺自豪
02:02
I thought, look at the impact碰撞 that my research研究 has had.
46
107000
2000
我想 我们的研究影响力不小啊
02:04
But then I started开始 feeling感觉 bad.
47
109000
2000
接着我就感觉很难受
02:06
See here's这里的 the thing, each time you type类型 a CAPTCHACAPTCHA,
48
111000
2000
因为每次你输入一个验证码
02:08
essentially实质上 you waste浪费 10 seconds of your time.
49
113000
3000
你就浪费了10秒钟
02:11
And if you multiply that by 200 million百万,
50
116000
2000
这个乘以2亿
02:13
you get that humanity人性 as a whole整个 is wasting浪费 about 500,000 hours小时 every一切 day
51
118000
3000
全人类每天就浪费了50万个小时
02:16
typing打字 these annoying恼人的 CAPTCHAs验证码.
52
121000
2000
来输入烦人的验证码
02:18
So then I started开始 feeling感觉 bad.
53
123000
2000
我就很难受了
02:20
(Laughter笑声)
54
125000
2000
(笑声)
02:22
And then I started开始 thinking思维, well, of course课程, we can't just get rid摆脱 of CAPTCHAs验证码,
55
127000
3000
我开始思考 既然不能放弃验证码
02:25
because the security安全 of the Web卷筒纸 sort分类 of depends依靠 on them.
56
130000
2000
因为网页安全依赖于此
02:27
But then I started开始 thinking思维, is there any way we can use this effort功夫
57
132000
3000
那么有什么方法可以利用它
02:30
for something that is good for humanity人性?
58
135000
2000
来做点好事呢?
02:32
So see, here's这里的 the thing.
59
137000
2000
关键在于
02:34
While you're typing打字 a CAPTCHACAPTCHA, during those 10 seconds,
60
139000
2000
当你在10秒钟内输入验证码的时候
02:36
your brain is doing something amazing惊人.
61
141000
2000
你的大脑在做了不起的工作
02:38
Your brain is doing something that computers电脑 cannot不能 yet然而 do.
62
143000
2000
这是电脑目前尚无法做到的
02:40
So can we get you to do useful有用 work for those 10 seconds?
63
145000
3000
那么能不能让这10秒钟的工作变得有意义呢?
02:43
Another另一个 way of putting it is,
64
148000
2000
也就是说
02:45
is there some humongous堆积如山 problem问题 that we cannot不能 yet然而 get computers电脑 to solve解决,
65
150000
2000
有没有什么目前电脑无法解决的难题
02:47
yet然而 we can split分裂 into tiny 10-second chunks
66
152000
3000
但是可以分割成10秒的单位小块
02:50
such这样 that each time somebody solves解决了 a CAPTCHACAPTCHA
67
155000
2000
这样每个人通过验证码
02:52
they solve解决 a little bit of this problem问题?
68
157000
2000
解决这个问题的一个小单位?
02:54
And the answer回答 to that is "yes," and this is what we're doing now.
69
159000
2000
答案是肯定的话 这就是我们目前在做的
02:56
So what you may可能 not know is that nowadays如今 while you're typing打字 a CAPTCHACAPTCHA,
70
161000
3000
也许你不知道 如今当你输入一个验证码
02:59
not only are you authenticating认证 yourself你自己 as a human人的,
71
164000
2000
不仅仅是在证明你是真人
03:01
but in addition加成 you're actually其实 helping帮助 us to digitize数字化 books图书.
72
166000
2000
也是在把书电子化
03:03
So let me explain说明 how this works作品.
73
168000
2000
我来解释一下
03:05
So there's a lot of projects项目 out there trying to digitize数字化 books图书.
74
170000
2000
目前有很多书籍电子化的项目
03:07
Google谷歌 has one. The Internet互联网 Archive档案 has one.
75
172000
3000
谷歌有一个。 “互联网档案”有一个
03:10
Amazon亚马逊, now with the Kindle点燃, is trying to digitize数字化 books图书.
76
175000
2000
现亚马逊的Kindle也有一个
03:12
Basically基本上 the way this works作品
77
177000
2000
方法就是
03:14
is you start开始 with an old book.
78
179000
2000
从一本旧书开始
03:16
You've seen看到 those things, right? Like a book?
79
181000
2000
你见过书对吧?一本书?
03:18
(Laughter笑声)
80
183000
2000
(笑声)
03:20
So you start开始 with a book, and then you scan扫描 it.
81
185000
2000
首先扫描一本书
03:22
Now scanning扫描 a book
82
187000
2000
扫描就是
03:24
is like taking服用 a digital数字 photograph照片 of every一切 page of the book.
83
189000
2000
相当于把每一页照一张数码照片
03:26
It gives you an image图片 for every一切 page of the book.
84
191000
2000
你就有了这本书每一页的照片
03:28
This is an image图片 with text文本 for every一切 page of the book.
85
193000
2000
这是一本书每一页文字内容的照片
03:30
The next下一个 step in the process处理
86
195000
2000
下一步就是
03:32
is that the computer电脑 needs需求 to be able能够 to decipher解码 all of the words in this image图片.
87
197000
3000
电脑得解读这些照片上的每一个字
03:35
That's using运用 a technology技术 called OCROCR,
88
200000
2000
这涉及到一个叫做OCR的技术
03:37
for optical光纤 character字符 recognition承认,
89
202000
2000
也就是光学字符识别
03:39
which哪一个 takes a picture图片 of text文本
90
204000
2000
拍下一段文字的照片
03:41
and tries尝试 to figure数字 out what text文本 is in there.
91
206000
2000
然后识别出文字内容
03:43
Now the problem问题 is that OCROCR is not perfect完善.
92
208000
2000
问题是光学字符识别的技术并不能解决所有问题
03:45
Especially特别 for older旧的 books图书
93
210000
2000
特别对于旧书
03:47
where the ink墨水 has faded褪色 and the pages网页 have turned转身 yellow黄色,
94
212000
3000
墨水褪色,书页泛黄
03:50
OCROCR cannot不能 recognize认识 a lot of the words.
95
215000
2000
很多字OCR无法识别
03:52
For example, for things that were written书面 more than 50 years年份 ago,
96
217000
2000
比如,五十多年前的书
03:54
the computer电脑 cannot不能 recognize认识 about 30 percent百分 of the words.
97
219000
3000
有百分之三十的单词电脑无法识别
03:57
So what we're doing now
98
222000
2000
我们做的就是
03:59
is we're taking服用 all of the words that the computer电脑 cannot不能 recognize认识
99
224000
2000
摘录出电脑无法识别的单词
04:01
and we're getting得到 people to read them for us
100
226000
2000
通过真人在网上输入验证码时
04:03
while they're typing打字 a CAPTCHACAPTCHA on the Internet互联网.
101
228000
2000
阅读识别出来
04:05
So the next下一个 time you type类型 a CAPTCHACAPTCHA, these words that you're typing打字
102
230000
3000
下次当你输入一个验证码时,你输入的那个单词
04:08
are actually其实 words that are coming未来 from books图书 that are being存在 digitized数字化
103
233000
3000
实际是我们电子化书籍里
04:11
that the computer电脑 could not recognize认识.
104
236000
2000
电脑无法识别的单词
04:13
And now the reason原因 we have two words nowadays如今 instead代替 of one
105
238000
2000
现在我们使用两个而非一个单词的理由是
04:15
is because, you see, one of the words
106
240000
2000
其中一个词是
04:17
is a word that the system系统 just got out of a book,
107
242000
2000
系统把一个电脑无法识别的单词
04:19
it didn't know what it was, and it's going to present当下 it to you.
108
244000
3000
提供给你
04:22
But since以来 it doesn't know the answer回答 for it, it cannot不能 grade年级 it for you.
109
247000
3000
因为系统不认识这个单词 所以无法判断你的答案
04:25
So what we do is we give you another另一个 word,
110
250000
2000
我们就加入另一个单词
04:27
one for which哪一个 the system系统 does know the answer回答.
111
252000
2000
一个系统已经认识的单词
04:29
We don't tell you which哪一个 one's那些 which哪一个, and we say, please type类型 both.
112
254000
2000
不告诉你哪个是已知的,哪个是未知的 请你将两者都输入
04:31
And if you type类型 the correct正确 word
113
256000
2000
如果你能拼写正确
04:33
for the one for which哪一个 the system系统 already已经 knows知道 the answer回答,
114
258000
2000
系统已认知的那个单词
04:35
it assumes假设 you are human人的,
115
260000
2000
就判断你为真人
04:37
and it also gets得到 some confidence置信度 that you typed类型 the other word correctly正确地.
116
262000
2000
这样对你输入的另一个单词就有所把握
04:39
And if we repeat重复 this process处理 to like 10 different不同 people
117
264000
3000
我们把这个过程让十个人重复进行
04:42
and all of them agree同意 on what the new word is,
118
267000
2000
如果他们对不识别单词的答案一致
04:44
then we get one more word digitized数字化 accurately准确.
119
269000
2000
我们就得到了一个准确电子化的新单词
04:46
So this is how the system系统 works作品.
120
271000
2000
这就是这个系统的工作原理
04:48
And basically基本上, since以来 we released发布 it about three or four years年份 ago,
121
273000
3000
大约三四年前我们导入这个系统
04:51
a lot of websites网站 have started开始 switching交换
122
276000
2000
许多网站已经从旧的验证码
04:53
from the old CAPTCHACAPTCHA where people wasted浪费 their time
123
278000
2000
换成新的来帮助书籍电子化
04:55
to the new CAPTCHACAPTCHA where people are helping帮助 to digitize数字化 books图书.
124
280000
2000
而不是浪费人们的时间
04:57
So for example, Ticketmaster特玛.
125
282000
2000
比如“票务大全”
04:59
So every一切 time you buy购买 tickets门票 on Ticketmaster特玛, you help to digitize数字化 a book.
126
284000
3000
每次你在它的网站上购票 就在帮助把书籍电子化
05:02
FacebookFacebook的: Every一切 time you add a friend朋友 or poke somebody,
127
287000
2000
脸书:每次你加好友或者打招呼
05:04
you help to digitize数字化 a book.
128
289000
2000
你就帮忙在把书籍电子化
05:06
Twitter推特 and about 350,000 other sites网站 are all using运用 reCAPTCHA验证码.
129
291000
3000
推特和其他350,000个网站都在用reCAPTCHA
05:09
And in fact事实, the number of sites网站 that are using运用 reCAPTCHA验证码 is so high
130
294000
2000
现在使用reCAPTCHA的网站是如此之多
05:11
that the number of words that we're digitizing数字化 per day is really, really large.
131
296000
3000
每天我们电子化的单词数量惊人
05:14
It's about 100 million百万 a day,
132
299000
2000
大概是每天一亿
05:16
which哪一个 is the equivalent当量 of about two and a half million百万 books图书 a year.
133
301000
4000
这就是每年大概250万本书
05:20
And this is all being存在 doneDONE one word at a time
134
305000
2000
而这一切仅仅都是通过人们在网上
05:22
by just people typing打字 CAPTCHAs验证码 on the Internet互联网.
135
307000
2000
输入验证码来做到的
05:24
(Applause掌声)
136
309000
8000
(掌声)
05:32
Now of course课程,
137
317000
2000
当然
05:34
since以来 we're doing so many许多 words per day,
138
319000
2000
因为每天处理的词是如此之多
05:36
funny滑稽 things can happen发生.
139
321000
2000
难免有搞笑的状况
05:38
And this is especially特别 true真正 because now we're giving people
140
323000
2000
特别是现在我们给出的单词是
05:40
two randomly随机 chosen选择 English英语 words next下一个 to each other.
141
325000
2000
两个随机组合的英语单词
05:42
So funny滑稽 things can happen发生.
142
327000
2000
就出现了有意思的事
05:44
For example, we presented呈现 this word.
143
329000
2000
比如 我们给出了这个词
05:46
It's the word "Christians基督徒"; there's nothing wrong错误 with it.
144
331000
2000
“基督徒” 这没什么问题
05:48
But if you present当下 it along沿 with another另一个 randomly随机 chosen选择 word,
145
333000
3000
问题是另外一个随机抽取的词
05:51
bad things can happen发生.
146
336000
2000
就把事情搞糟了
05:53
So we get this. (Text文本: bad christians基督徒)
147
338000
2000
比如这个 (恶基督徒)
05:55
But it's even worse更差, because the particular特定 website网站 where we showed显示 this
148
340000
3000
更糟的是 出现这个的网站
05:58
actually其实 happened发生 to be called The Embassy大使馆 of the Kingdom王国 of God.
149
343000
3000
正好是“神之国度大使馆”
06:01
(Laughter笑声)
150
346000
2000
(笑声)
06:03
Oops哎呀.
151
348000
2000
糟了
06:05
(Laughter笑声)
152
350000
3000
(笑声)
06:08
Here's这里的 another另一个 really bad one.
153
353000
2000
这儿还有一个
06:10
JohnEdwardsJohnEdwards.comCOM
154
355000
2000
JohnEdwards.com
06:12
(Text文本: Damn该死的 liberal自由主义的)
155
357000
3000
(该死的自由主义者)
06:15
(Laughter笑声)
156
360000
2000
(笑声)
06:17
So we keep on insulting侮辱 people left and right everyday每天.
157
362000
3000
我们就这么每天不停地羞辱别人
06:20
Now, of course课程, we're not just insulting侮辱 people.
158
365000
2000
当然 不仅是人
06:22
See here's这里的 the thing, since以来 we're presenting呈现 two randomly随机 chosen选择 words,
159
367000
3000
其他东西也难逃厄运 因为我们是随机选取的单词
06:25
interesting有趣 things can happen发生.
160
370000
2000
就有了很有趣的结果
06:27
So this actually其实 has given特定 rise上升
161
372000
2000
这个正在成为
06:29
to a really big Internet互联网 meme米姆
162
374000
3000
互联网上一个流行趋势
06:32
that tens of thousands数千 of people have participated参加 in,
163
377000
2000
无数的人参与这个
06:34
which哪一个 is called CAPTCHACAPTCHA art艺术.
164
379000
2000
所谓的验证码艺术
06:36
I'm sure some of you have heard听说 about it.
165
381000
2000
肯定有人听说过
06:38
Here's这里的 how it works作品.
166
383000
2000
是这样
06:40
Imagine想像 you're using运用 the Internet互联网 and you see a CAPTCHACAPTCHA
167
385000
2000
假设你在上网看到一个验证码
06:42
that you think is somewhat有些 peculiar奇特,
168
387000
2000
你觉得很特别
06:44
like this CAPTCHACAPTCHA. (Text文本: invisible无形 toaster烤面包机)
169
389000
2000
比如这个 (隐形的烤面包机)
06:46
Then what you're supposed应该 to do is you take a screen屏幕 shot射击 of it.
170
391000
2000
你要做的就是截图
06:48
Then of course课程, you fill out the CAPTCHACAPTCHA
171
393000
2000
然后当然就是输入验证码
06:50
because you help us digitize数字化 a book.
172
395000
2000
因为你在帮我们电子化书籍
06:52
But then, first you take a screen屏幕 shot射击,
173
397000
2000
接下来 你截了图
06:54
and then you draw something that is related有关 to it.
174
399000
2000
就画出与它相关的图像
06:56
(Laughter笑声)
175
401000
2000
(笑声)
06:58
That's how it works作品.
176
403000
3000
就是这样
07:01
There are tens of thousands数千 of these.
177
406000
3000
这样作品大概有一万个
07:04
Some of them are very cute可爱. (Text文本: clenched握紧 it)
178
409000
2000
有些很可爱 (握紧它)
07:06
(Laughter笑声)
179
411000
2000
(笑声)
07:08
Some of them are funnier有趣.
180
413000
2000
有些很好玩
07:10
(Text文本: stoned砸死 founders创始人)
181
415000
3000
(大醉的创始人)
07:13
(Laughter笑声)
182
418000
3000
(笑声)
07:16
And some of them,
183
421000
2000
还有一些
07:18
like paleontological古生物 shvisleshvisle,
184
423000
3000
比如 “古生物学的史维凿”
07:21
they contain包含 Snoop史努比 Dogg狗狗.
185
426000
2000
说不定那儿有史诺谱・道格(美国说唱歌手)
07:23
(Laughter笑声)
186
428000
3000
(笑声)
07:26
Okay, so this is my favorite喜爱 number of reCAPTCHA验证码.
187
431000
2000
这是我最喜欢的reCAPTCHA数字
07:28
So this is the favorite喜爱 thing that I like about this whole整个 project项目.
188
433000
3000
这是我最喜欢的这个项目的部分
07:31
This is the number of distinct不同 people
189
436000
2000
这个数字是
07:33
that have helped帮助 us digitize数字化 at least最小 one word out of a book through通过 reCAPTCHA验证码:
190
438000
3000
通过reCAPTCHA帮助我们电子化书籍中单词的人数
07:36
750 million百万,
191
441000
2000
7.5亿
07:38
which哪一个 is a little over 10 percent百分 of the world's世界 population人口,
192
443000
2000
多于世界总人口的十分之一的人们
07:40
has helped帮助 us digitize数字化 human人的 knowledge知识.
193
445000
2000
帮助我们电子化人类的知识
07:42
And it is numbers数字 like these that motivate刺激 my research研究 agenda议程.
194
447000
3000
正是这样的数字激励我的研究进程
07:45
So the question that motivates能够激励 my research研究 is the following以下:
195
450000
3000
那激励我研究进程的问题如下:
07:48
If you look at humanity's人类的 large-scale大规模 achievements成就,
196
453000
2000
试想人类的大型成就
07:50
these really big things
197
455000
2000
人类共同
07:52
that humanity人性 has gotten得到 together一起 and doneDONE historically历史 --
198
457000
3000
创造的那些大型历史性事物-
07:55
like for example, building建造 the pyramids金字塔 of Egypt埃及
199
460000
2000
比如 建造埃及金字塔
07:57
or the Panama巴拿马 Canal运河
200
462000
2000
开凿巴拿马运河
07:59
or putting a man on the Moon月亮 --
201
464000
2000
或者把人类送上月球-
08:01
there is a curious好奇 fact事实 about them,
202
466000
2000
这些工程都有个奇怪的事实
08:03
and it is that they were all doneDONE with about the same相同 number off people.
203
468000
2000
就是它们基本都是由一样数量的人们完成的
08:05
It's weird奇怪的; they were all doneDONE with about 100,000 people.
204
470000
3000
这很奇怪 这些工程都是由大概十万人完成
08:08
And the reason原因 for that is because, before the Internet互联网,
205
473000
3000
因为在互联网出现之前
08:11
coordinating协调 more than 100,000 people,
206
476000
2000
整合十万人
08:13
let alone单独 paying付款 them, was essentially实质上 impossible不可能.
207
478000
3000
这十万人的巨大酬劳基本上是无法支付的
08:16
But now with the Internet互联网, I've just shown显示 you a project项目
208
481000
2000
但是有了互联网 刚刚展示的这个项目
08:18
where we've我们已经 gotten得到 750 million百万 people
209
483000
2000
就找到了7.5亿人
08:20
to help us digitize数字化 human人的 knowledge知识.
210
485000
2000
来帮助我们电子化人类知识
08:22
So the question that motivates能够激励 my research研究 is,
211
487000
2000
那么 激励我的研究的问题就是
08:24
if we can put a man on the Moon月亮 with 100,000,
212
489000
3000
如果十万人能把一个人送上月球
08:27
what can we do with 100 million百万?
213
492000
2000
一亿人能做到什么呢?
08:29
So based基于 on this question,
214
494000
2000
基于这个问题
08:31
we've我们已经 had a lot of different不同 projects项目 that we've我们已经 been working加工 on.
215
496000
2000
我们有很多项目在进行中
08:33
Let me tell you about one that I'm most excited兴奋 about.
216
498000
3000
下面介绍一个最令我兴奋的项目
08:36
This is something that we've我们已经 been semi-quietly半悄然 working加工 on
217
501000
2000
这是过去一年半里
08:38
for the last year and a half or so.
218
503000
2000
我们低调进行的一个项目
08:40
It hasn't有没有 yet然而 been launched推出. It's called Duolingo听歌.
219
505000
2000
还没有真正投入使用 它叫做Duolingo
08:42
Since以来 it hasn't有没有 been launched推出, shhhhhshhhhh!
220
507000
2000
因为我们还没有投入使用 嘘!
08:44
(Laughter笑声)
221
509000
2000
(笑声)
08:46
Yeah, I can trust相信 you'll你会 do that.
222
511000
2000
我相信你们都会保密的
08:48
So this is the project项目. Here's这里的 how it started开始.
223
513000
2000
这个项目是这样开始的
08:50
It started开始 with me posing冒充 a question to my graduate毕业 student学生,
224
515000
2000
它始于我向我的一名研究生提的问题
08:52
Severin塞韦林 Hacker黑客.
225
517000
2000
塞韦林・骇客
08:54
Okay, that's Severin塞韦林 Hacker黑客.
226
519000
2000
这就是他
08:56
So I posed构成 the question to my graduate毕业 student学生.
227
521000
2000
我向他提了一个问题
08:58
By the way, you did hear me correctly正确地;
228
523000
2000
另外你确实没听错
09:00
his last name名称 is Hacker黑客.
229
525000
2000
他姓骇客
09:02
So I posed构成 this question to him:
230
527000
2000
我向他提了个问题:
09:04
How can we get 100 million百万 people
231
529000
2000
怎么才能找到一亿人
09:06
translating翻译 the Web卷筒纸 into every一切 major重大的 language语言 for free自由?
232
531000
3000
把互联网上的内容免费翻译成所有的主要语言?
09:09
Okay, so there's a lot of things to say about this question.
233
534000
2000
这个问题有好几个方面
09:11
First of all, translating翻译 the Web卷筒纸.
234
536000
2000
首先是翻译网页
09:13
So right now the Web卷筒纸 is partitioned分区 into multiple languages语言.
235
538000
3000
现在的网页内容主要分为几大语言
09:16
A large fraction分数 of it is in English英语.
236
541000
2000
其中一个大的分支是英语
09:18
If you don't know any English英语, you can't access访问 it.
237
543000
2000
如果你不会英语就无法使用
09:20
But there's large fractions馏分 in other different不同 languages语言,
238
545000
2000
但是还有其他几种不同的语言
09:22
and if you don't know those languages语言, you can't access访问 it.
239
547000
3000
如果你不会那几种也无法使用
09:25
So I would like to translate翻译 all of the Web卷筒纸, or at least最小 most of the Web卷筒纸,
240
550000
3000
我打算把所有网页 大部分网页
09:28
into every一切 major重大的 language语言.
241
553000
2000
翻译成主要语言
09:30
So that's what I would like to do.
242
555000
2000
这是我想做的
09:32
Now some of you may可能 say, why can't we use computers电脑 to translate翻译?
243
557000
3000
也许有人会说 怎么不用电脑翻译?
09:35
Why can't we use machine translation翻译?
244
560000
2000
为什么我们不用机器翻译?
09:37
Machine translation翻译 nowadays如今 is starting开始 to translate翻译 some sentences句子 here and there.
245
562000
2000
机器翻译已经在应用中
09:39
Why can't we use it to translate翻译 the whole整个 Web卷筒纸?
246
564000
2000
为什么不用它来翻译所有网页呢?
09:41
Well the problem问题 with that is that it's not yet然而 good enough足够
247
566000
2000
问题就是机器翻译还不够好
09:43
and it probably大概 won't惯于 be for the next下一个 15 to 20 years年份.
248
568000
2000
也许将来的15到20年内都不行
09:45
It makes品牌 a lot of mistakes错误.
249
570000
2000
机器翻译有很多错误
09:47
Even when it doesn't make a mistake错误,
250
572000
2000
甚至就算它翻对的时候
09:49
since以来 it makes品牌 so many许多 mistakes错误, you don't know whether是否 to trust相信 it or not.
251
574000
3000
因为它的错误率太高 你也不敢相信它
09:52
So let me show显示 you an example
252
577000
2000
比如这个例子
09:54
of something that was translated翻译 with a machine.
253
579000
2000
是由机器翻译的
09:56
Actually其实 it was a forum论坛 post岗位.
254
581000
2000
这是个论坛帖子
09:58
It was somebody who was trying to ask a question about JavaScriptJavaScript的.
255
583000
3000
有人提了关于Java语言的一个问题
10:01
It was translated翻译 from Japanese日本 into English英语.
256
586000
3000
是从日语翻译成英语
10:04
So I'll just let you read.
257
589000
2000
你可以读一下
10:06
This person starts启动 apologizing道歉
258
591000
2000
他首先道歉
10:08
for the fact事实 that it's translated翻译 with a computer电脑.
259
593000
2000
这是机器翻译的内容
10:10
So the next下一个 sentence句子 is is going to be the preamble前言 to the question.
260
595000
3000
下一个句子开始涉及问题
10:13
So he's just explaining说明 something.
261
598000
2000
他开始说明
10:15
Remember记得, it's a question about JavaScriptJavaScript的.
262
600000
3000
记住 这个问题是关于Java语言的
10:19
(Text文本: At often经常, the goat-time山羊时间 install安装 a error错误 is vomit呕吐.)
263
604000
4000
(文字:常常,山羊时间启动错误被吐出来)
10:23
(Laughter笑声)
264
608000
4000
(笑声)
10:27
Then comes the first part部分 of the question.
265
612000
3000
接下来是问题的第一部分
10:30
(Text文本: How many许多 times like the wind, a pole, and the dragon?)
266
615000
4000
(文字:有多少次像风,像杆子,像龙?)
10:34
(Laughter笑声)
267
619000
2000
(笑声)
10:36
Then comes my favorite喜爱 part部分 of the question.
268
621000
3000
接下来是最好玩的部分
10:39
(Text文本: This insult侮辱 to father's父亲的 stones石头?)
269
624000
3000
(文字:这是对父亲的石头的侮辱?)
10:42
(Laughter笑声)
270
627000
2000
(笑声)
10:44
And then comes the ending结尾, which哪一个 is my favorite喜爱 part部分 of the whole整个 thing.
271
629000
3000
接下来是结尾 我最喜欢的部分
10:47
(Text文本: Please apologize道歉 for your stupidity糊涂事. There are a many许多 thank you.)
272
632000
4000
(文字:请为你的愚蠢道歉,很多谢谢)
10:51
(Laughter笑声)
273
636000
2000
(笑声)
10:53
Okay, so computer电脑 translation翻译, not yet然而 good enough足够.
274
638000
2000
可见 机器翻译 还不够好
10:55
So back to the question.
275
640000
2000
回到问题上去
10:57
So we need people to translate翻译 the whole整个 Web卷筒纸.
276
642000
3000
我们需要人来翻译所有网页
11:00
So now the next下一个 question you may可能 have is,
277
645000
2000
下一个问题是
11:02
well why can't we just pay工资 people to do this?
278
647000
2000
为什么不付钱找人做呢?
11:04
We could pay工资 professional专业的 language语言 translators译者 to translate翻译 the whole整个 Web卷筒纸.
279
649000
3000
我们可以找专业翻译人员来翻译整个网页
11:07
We could do that.
280
652000
2000
可以这么做
11:09
Unfortunately不幸, it would be extremely非常 expensive昂贵.
281
654000
2000
但是 这会无比昂贵
11:11
For example, translating翻译 a tiny, tiny fraction分数 of the whole整个 Web卷筒纸, Wikipedia维基百科,
282
656000
3000
比如 翻译互联网很小很小的一个部分 维基百科
11:14
into one other language语言, Spanish西班牙语.
283
659000
3000
英语翻译成西班牙语
11:17
Wikipedia维基百科 exists存在 in Spanish西班牙语,
284
662000
2000
维基百科有西班牙语
11:19
but it's very small compared相比 to the size尺寸 of English英语.
285
664000
2000
但是相比英语部分小多了
11:21
It's about 20 percent百分 of the size尺寸 of English英语.
286
666000
2000
大概是英语内容的百分之二十
11:23
If we wanted to translate翻译 the other 80 percent百分 into Spanish西班牙语,
287
668000
3000
如果我们把剩下的百分之八十翻译成英语
11:26
it would cost成本 at least最小 50 million百万 dollars美元 --
288
671000
2000
就得至少五千万美元-
11:28
and this is at even the most exploited利用, outsourcing外包 country国家 out there.
289
673000
3000
这还是在最便宜的服务外包国家
11:31
So it would be very expensive昂贵.
290
676000
2000
所以这个方法很昂贵
11:33
So what we want to do is we want to get 100 million百万 people
291
678000
2000
我们要的是一亿人
11:35
translating翻译 the Web卷筒纸 into every一切 major重大的 language语言
292
680000
2000
免费把网页内容翻译成
11:37
for free自由.
293
682000
2000
所有主要语言
11:39
Now if this is what you want to do,
294
684000
2000
如果你要这么做的话
11:41
you pretty漂亮 quickly很快 realize实现 you're going to run into two pretty漂亮 big hurdles障碍,
295
686000
2000
就会意识到面临两个非常
11:43
two big obstacles障碍.
296
688000
2000
巨大的障碍
11:45
The first one is a lack缺乏 of bilinguals双语.
297
690000
3000
首先是缺乏掌握双语的人
11:48
So I don't even know
298
693000
2000
我甚至不知道
11:50
if there exists存在 100 million百万 people out there using运用 the Web卷筒纸
299
695000
3000
是否有一亿个互联网使用者
11:53
who are bilingual双语 enough足够 to help us translate翻译.
300
698000
2000
掌握双语来进行翻译
11:55
That's a big problem问题.
301
700000
2000
这是个大问题
11:57
The other problem问题 you're going to run into is a lack缺乏 of motivation动机.
302
702000
2000
另一个问题是缺少鼓励机制
11:59
How are we going to motivate刺激 people
303
704000
2000
怎么才能让人们
12:01
to actually其实 translate翻译 the Web卷筒纸 for free自由?
304
706000
2000
甘愿免费翻译网页?
12:03
Normally一般, you have to pay工资 people to do this.
305
708000
3000
通常你得付钱请人干活儿
12:06
So how are we going to motivate刺激 them to do it for free自由?
306
711000
2000
那么怎么才能让他们无偿劳动呢?
12:08
Now when we were starting开始 to think about this, we were blocked受阻 by these two things.
307
713000
3000
当我们着手考虑这个项目的时候这是拦在面前的两大问题
12:11
But then we realized实现, there's actually其实 a way
308
716000
2000
后来我们意识到
12:13
to solve解决 both these problems问题 with the same相同 solution.
309
718000
2000
有一个方法可以一举解决这两个问题
12:15
There's a way to kill two birds鸟类 with one stone.
310
720000
2000
一箭双雕
12:17
And that is to transform转变 language语言 translation翻译
311
722000
3000
这就是把翻译转化成
12:20
into something that millions百万 of people want to do,
312
725000
3000
无数人想做的事情
12:23
and that also helps帮助 with the problem问题 of lack缺乏 of bilinguals双语,
313
728000
3000
同时解决双语人员人手不够的问题
12:26
and that is language语言 education教育.
314
731000
3000
这就是语言学习
12:29
So it turns out that today今天,
315
734000
2000
当今
12:31
there are over 1.2 billion十亿 people learning学习 a foreign国外 language语言.
316
736000
3000
有超过12亿人口在学习外语
12:34
People really, really want to learn学习 a foreign国外 language语言.
317
739000
2000
人们迫切得想学习外语
12:36
And it's not just because they're being存在 forced被迫 to do so in school学校.
318
741000
3000
而且这不是学校里不得不做的功课
12:39
For example, in the United联合的 States状态 alone单独,
319
744000
2000
比如在美国
12:41
there are over five million百万 people who have paid支付 over $500
320
746000
2000
有超过五百万的人在为外语学习软件
12:43
for software软件 to learn学习 a new language语言.
321
748000
2000
每人支付超过五百美元
12:45
So people really, really want to learn学习 a new language语言.
322
750000
2000
所有人们非常想学外语
12:47
So what we've我们已经 been working加工 on for the last year and a half is a new website网站 --
323
752000
3000
过去一年半里我们建立的新网站
12:50
it's called Duolingo听歌 --
324
755000
2000
叫做Duolingo-
12:52
where the basic基本 idea理念 is people learn学习 a new language语言 for free自由
325
757000
3000
就是基于这个让人们免费学习外语
12:55
while simultaneously同时 translating翻译 the Web卷筒纸.
326
760000
2000
同时翻译网页的想法
12:57
And so basically基本上 they're learning学习 by doing.
327
762000
2000
就是让他们学以致用
12:59
So the way this works作品
328
764000
2000
使用方法是这样
13:01
is whenever每当 you're a just a beginner初学者, we give you very, very simple简单 sentences句子.
329
766000
3000
如果你是个新手 我们会给出非常非常简单的句子
13:04
There's, of course课程, a lot of very simple简单 sentences句子 on the Web卷筒纸.
330
769000
2000
网页上有很多简单的句子
13:06
We give you very, very simple简单 sentences句子
331
771000
2000
我们给出非常简单的句子
13:08
along沿 with what each word means手段.
332
773000
2000
以及句中单词释义
13:10
And as you translate翻译 them, and as you see how other people translate翻译 them,
333
775000
3000
然后你翻译一下 并且可以看到别人是如何翻译的
13:13
you start开始 learning学习 the language语言.
334
778000
2000
这样学习外语
13:15
And as you get more and more advanced高级,
335
780000
2000
当你级别提高后
13:17
we give you more and more complex复杂 sentences句子 to translate翻译.
336
782000
2000
我们会给出越来越复杂的句子让你翻译
13:19
But at all times, you're learning学习 by doing.
337
784000
2000
这整个过程 你都是边学边用
13:21
Now the crazy thing about this method方法
338
786000
2000
这个方法令人疯狂之处
13:23
is that it actually其实 really works作品.
339
788000
2000
是它居然确实有效
13:25
First of all, people are really, really learning学习 a language语言.
340
790000
2000
首先 人们可以通过它学外语
13:27
We're mostly大多 doneDONE building建造 it, and now we're testing测试 it.
341
792000
2000
我们建完了网站,它现正在测试中
13:29
People really can learn学习 a language语言 with it.
342
794000
2000
人们可以用它学习外语
13:31
And they learn学习 it about as well as the leading领导 language语言 learning学习 software软件.
343
796000
3000
完全可以跟外语学习软件媲美
13:34
So people really do learn学习 a language语言.
344
799000
2000
所以用它确实可以学外语
13:36
And not only do they learn学习 it as well,
345
801000
2000
不仅可以学好
13:38
but actually其实 it's way more interesting有趣.
346
803000
2000
而且更有趣味性
13:40
Because you see with Duolingo听歌, people are actually其实 learning学习 with real真实 content内容.
347
805000
3000
因为通过Duolingo人们学的是真正的语言使用内容
13:43
As opposed反对 to learning学习 with made-up捏造 sentences句子,
348
808000
2000
而不是编造的句子
13:45
people are learning学习 with real真实 content内容, which哪一个 is inherently本质 interesting有趣.
349
810000
3000
通过学习真正的文本内容,趣味性大大提高
13:48
So people really do learn学习 a language语言.
350
813000
2000
这样人们就实实在在学习外语
13:50
But perhaps也许 more surprisingly出奇,
351
815000
2000
最令人惊讶的是
13:52
the translations译文 that we get from people using运用 the site现场,
352
817000
3000
网站使用者的翻译
13:55
even though虽然 they're just beginners初学者,
353
820000
2000
甚至是初学者的翻译
13:57
the translations译文 that we get are as accurate准确 as those of professional专业的 language语言 translators译者,
354
822000
3000
和专业的翻译人员几乎不相上下
14:00
which哪一个 is very surprising奇怪.
355
825000
2000
这很让人惊讶
14:02
So let me show显示 you one example.
356
827000
2000
让我给你们看一个例子
14:04
This is a sentence句子 that was translated翻译 from German德语 into English英语.
357
829000
2000
这是一个从德语翻译成英语的例子
14:06
The top最佳 is the German德语.
358
831000
2000
上面是德语
14:08
The middle中间 is an English英语 translation翻译
359
833000
2000
中间是一名专业英语翻译人员
14:10
that was doneDONE by somebody who was a professional专业的 English英语 translator翻译者
360
835000
2000
翻译的句子
14:12
who we paid支付 20 cents a word for this translation翻译.
361
837000
2000
一个词二十美分的价钱
14:14
And the bottom底部 is a translation翻译 by users用户 of Duolingo听歌,
362
839000
3000
下面是Duolingo使用者的翻译
14:17
none没有 of whom knew知道 any German德语
363
842000
2000
他们在使用该网站前
14:19
before they started开始 using运用 the site现场.
364
844000
2000
不会任何德语
14:21
You can see, it's pretty漂亮 much perfect完善.
365
846000
2000
可以看到 几乎很完美
14:23
Now of course课程, we play a trick here
366
848000
2000
当然 为了让翻译达到专业水准
14:25
to make the translations译文 as good as professional专业的 language语言 translators译者.
367
850000
2000
我们也想了个办法
14:27
We combine结合 the translations译文 of multiple beginners初学者
368
852000
3000
我们把多名翻译者的翻译结合起来
14:30
to get the quality质量 of a single professional专业的 translator翻译者.
369
855000
3000
得到专业人员的水准
14:33
Now even though虽然 we're combining结合 the translations译文,
370
858000
5000
即使我们要结合翻译
14:38
the site现场 actually其实 can translate翻译 pretty漂亮 fast快速.
371
863000
2000
这个网站仍然可以迅速翻译
14:40
So let me show显示 you,
372
865000
2000
让我展示一下
14:42
this is our estimates估计 of how fast快速 we could translate翻译 Wikipedia维基百科
373
867000
2000
这是我们对维基百科翻译工程的预计
14:44
from English英语 into Spanish西班牙语.
374
869000
2000
从英语翻译成西班牙语
14:46
Remember记得, this is 50 million百万 dollars-worth美元价值 of value.
375
871000
3000
要记住 这可是价值五千万美元的工程
14:49
So if we wanted to translate翻译 Wikipedia维基百科 into Spanish西班牙语,
376
874000
2000
如果要把维基百科从英文翻译成西班牙语
14:51
we could do it in five weeks with 100,000 active活性 users用户.
377
876000
3000
十万名活跃用户可以在五周内完成
14:54
And we could do it in about 80 hours小时 with a million百万 active活性 users用户.
378
879000
3000
一百万活跃用户可以在八十小时内完成
14:57
Since以来 all the projects项目 that my group has worked工作 on so far have gotten得到 millions百万 of users用户,
379
882000
3000
现在我们的项目小组已经有了上百万使用者
15:00
we're hopeful有希望 that we'll be able能够 to translate翻译
380
885000
2000
我们希望可以以极快的速度
15:02
extremely非常 fast快速 with this project项目.
381
887000
2000
进行这个翻译工程
15:04
Now the thing that I'm most excited兴奋 about with Duolingo听歌
382
889000
3000
现在我对Duolingo最兴奋的就是
15:07
is I think this provides提供 a fair公平 business商业 model模型 for language语言 education教育.
383
892000
3000
它为外语教育创造了一个公平的商业模式
15:10
So here's这里的 the thing:
384
895000
2000
是这样:
15:12
The current当前 business商业 model模型 for language语言 education教育
385
897000
2000
目前外语教育的商业模式是
15:14
is the student学生 pays支付,
386
899000
2000
学生付钱
15:16
and in particular特定, the student学生 pays支付 Rosetta罗塞塔 Stone 500 dollars美元.
387
901000
2000
主要就是学生购买罗赛塔石碑五百美元的软件
15:18
(Laughter笑声)
388
903000
2000
(笑声)
15:20
That's the current当前 business商业 model模型.
389
905000
2000
这是目前的商业模式
15:22
The problem问题 with this business商业 model模型
390
907000
2000
这个模式的问题是
15:24
is that 95 percent百分 of the world's世界 population人口 doesn't have 500 dollars美元.
391
909000
3000
世界人口的百分之九十五没有五百美元
15:27
So it's extremely非常 unfair不公平 towards the poor较差的.
392
912000
3000
所以这个模式对穷人极度不公平
15:30
This is totally完全 biased towards the rich丰富.
393
915000
2000
这是个面向富人的模式
15:32
Now see, in Duolingo听歌,
394
917000
2000
而Duolingo
15:34
because while you learn学习
395
919000
2000
因为你学习的时候
15:36
you're actually其实 creating创建 value, you're translating翻译 stuff东东 --
396
921000
3000
也创造价值,你在翻译东西-
15:39
which哪一个 for example, we could charge收费 somebody for translations译文.
397
924000
3000
因为比如我们得付钱给人翻译东西
15:42
So this is how we could monetize赚钱 this.
398
927000
2000
这样你的学习过程就货币化了
15:44
Since以来 people are creating创建 value while they're learning学习,
399
929000
2000
因为人们学习的时候同时创造价值
15:46
they don't have to pay工资 their money, they pay工资 with their time.
400
931000
3000
他们就不用付钱 而是付出时间
15:49
But the magical神奇 thing here is that they're paying付款 with their time,
401
934000
3000
最妙的是 虽然人们得付出时间
15:52
but that is time that would have had to have been spent花费 anyways无论如何
402
937000
2000
但这个时间是他们学习外语无论如何
15:54
learning学习 the language语言.
403
939000
2000
都会付出的那部分时间
15:56
So the nice不错 thing about Duolingo听歌 is I think it provides提供 a fair公平 business商业 model模型 --
404
941000
3000
所以Duolingo做的好事就是提供了一个公平的商业模式-
15:59
one that doesn't discriminate辨析 against反对 poor较差的 people.
405
944000
2000
这个模式对穷人一样敞开机会
16:01
So here's这里的 the site现场. Thank you.
406
946000
2000
这就是这个网站 谢谢
16:03
(Applause掌声)
407
948000
8000
(掌声)
16:11
So here's这里的 the site现场.
408
956000
2000
这个网站
16:13
We haven't没有 yet然而 launched推出,
409
958000
2000
我们还没有投入应用
16:15
but if you go there, you can sign标志 up to be part部分 of our private私人的 beta公测,
410
960000
3000
但是如果你去我们的页面的话可以注册
16:18
which哪一个 is probably大概 going to start开始 in about three or four weeks.
411
963000
2000
也许三四周后就可以开始了
16:20
We haven't没有 yet然而 launched推出 this Duolingo听歌.
412
965000
2000
我们还没有投入使用Duolingo
16:22
By the way, I'm the one talking here,
413
967000
2000
另外 虽然是我在这里介绍Duolingo
16:24
but actually其实 Duolingo听歌 is the work of a really awesome真棒 team球队, some of whom are here.
414
969000
3000
但这个网站是一个优秀的团队的成果 这是其中一些人
16:27
So thank you.
415
972000
2000
谢谢你们
16:29
(Applause掌声)
416
974000
4000
(掌声)
Translated by Chunxiang Qian
Reviewed by Angelia King

▲Back to top

ABOUT THE SPEAKER
Luis von Ahn - Computer scientist
Luis von Ahn builds systems that combine humans and computers to solve large-scale problems that neither can solve alone.

Why you should listen

Louis von Ahn is an associate professor of Computer Science at Carnegie Mellon University, and he's at the forefront of the crowdsourcing craze. His work takes advantage of the evergrowing Web-connected population to acheive collaboration in unprecedented numbers. His projects aim to leverage the crowd for human good. His company reCAPTCHA, sold to Google in 2009, digitizes human knowledge (books), one word at a time. His new project is Duolingo, which aims to get 100 million people translating the Web in every major language.

More profile about the speaker
Luis von Ahn | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee