ABOUT THE SPEAKER
Kevin Kelly - Digital visionary
There may be no one better to contemplate the meaning of cultural change than Kevin Kelly, whose life story reads like a treatise on the value and impacts of technology.

Why you should listen

Kelly has been publisher of the Whole Earth Review, executive editor at Wired magazine (which he co-founded, and where he now holds the title of Senior Maverick), founder of visionary nonprofits and writer on biology, business and “cool tools.” He’s renounced all material things save his bicycle (which he then rode 3,000 miles), founded an organization (the All-Species Foundation) to catalog all life on Earth, championed projects that look 10,000 years into the future (at the Long Now Foundation), and more. He’s admired for his acute perspectives on technology and its relevance to history, biology and society. His new book, The Inevitable, just published, explores 12 technological forces that will shape our future.

More profile about the speaker
Kevin Kelly | Speaker | TED.com
TEDSummit

Kevin Kelly: How AI can bring on a second Industrial Revolution

凯文·凯利: 人工智能将如何推动第二次工业革命

Filmed:
1,739,624 views

“雨滴汇入山谷的具体路径是不可预测的,但它的大方向是必然的。”数字梦想家凯文·凯利如是说。技术在很大程度上也是如此,它的发展趋势令人惊奇但又具有某种必然性。他认为,未来20年里我们想要让事物变得智能化的努力将对我们身边的每件事情都产生深远影响。凯文·凯利指出了 AI 大潮中我们需要了解的三个趋势,以使我们能更好的拥抱 AI 并控制它的发展。“20年后人人都用的 AI 产品还没有被发明出来呢,”他说,“这意味着,你们还有机会。”
- Digital visionary
There may be no one better to contemplate the meaning of cultural change than Kevin Kelly, whose life story reads like a treatise on the value and impacts of technology. Full bio

Double-click the English transcript below to play the video.

00:14
I'm going to talk a little bit
about where technology's技术的 going.
0
2966
3817
我打算谈一谈技术的发展趋势。
00:19
And often经常 technology技术 comes to us,
1
7509
2671
当(新的)技术到来时,
常常会令我们感到惊讶。
00:22
we're surprised诧异 by what it brings带来.
2
10566
1865
00:24
But there's actually其实
a large aspect方面 of technology技术
3
12455
3683
但事实上,技术在很大程度上
00:28
that's much more predictable可预测,
4
16162
1802
是能够被预见的。
00:29
and that's because technological技术性 systems系统
of all sorts排序 have leanings倾向,
5
17988
4088
这是因为所有的技术
都有某种倾向性,
00:34
they have urgencies急症,
6
22100
1175
有某种冲动,
00:35
they have tendencies倾向.
7
23299
1561
有某种趋势。
00:36
And those tendencies倾向 are derived派生
from the very nature性质 of the physics物理,
8
24884
4932
这些趋势是由电线、开关、以及电子的
00:41
chemistry化学 of wires电线
and switches开关 and electrons电子,
9
29840
3150
物理和化学本质所决定的,
00:45
and they will make reoccurring再次发生
patterns模式 again and again.
10
33659
3602
并且呈现出不断重复的模式。
00:49
And so those patterns模式 produce生产
these tendencies倾向, these leanings倾向.
11
37745
4874
或者说,这些模式形成了
某种趋势、某种倾向。
00:54
You can almost几乎 think of it
as sort分类 of like gravity重力.
12
42643
2831
你可以把它看成类似于重力的东西。
00:57
Imagine想像 raindrops雨滴 falling落下 into a valley.
13
45498
2319
想象雨点汇入山谷:
00:59
The actual实际 path路径 of a raindrop雨滴
as it goes down the valley
14
47841
3088
一滴雨点流入山谷的实际路径
01:02
is unpredictable不可预料的.
15
50953
1169
是无法预测的。
01:04
We cannot不能 see where it's going,
16
52651
1518
我们并不知道它的具体走向,
01:06
but the general一般 direction方向
is very inevitable必然:
17
54193
2277
但大方向是很显然的:
01:08
it's downward向下.
18
56494
1234
它往下流。
01:10
And so these baked-in烤机
tendencies倾向 and urgencies急症
19
58377
4572
因此,这些内在趋势和冲动,
01:14
in technological技术性 systems系统
20
62973
1476
深深扎根于技术系统中,
01:17
give us a sense of where things
are going at the large form形成.
21
65051
3609
使我们能够感知它们的大体方向。
01:21
So in a large sense,
22
69149
1401
具体点说,
01:22
I would say that telephones电话
were inevitable必然,
23
70574
3361
电话是必然的,
01:27
but the iPhone苹果手机 was not.
24
75005
1342
但 iPhone 不是;
01:29
The Internet互联网 was inevitable必然,
25
77094
1478
因特网是必然的,
01:31
but Twitter推特 was not.
26
79274
1286
但推特不是。
01:33
So we have many许多 ongoing不断的
tendencies倾向 right now,
27
81036
3928
同样道理,
当下有许多正在发生的趋势,
01:36
and I think one of the chief首席 among其中 them
28
84988
2720
而我认为其中最重要的一个
01:39
is this tendency趋势 to make things
smarter聪明 and smarter聪明.
29
87732
3722
是让物体变得越来越聪明。
01:44
I call it cognifyingcognifying -- cognificationcognification --
30
92041
2212
我称之为“知化”,
01:46
also known已知 as artificial人造
intelligence情报, or AIAI.
31
94783
2782
也就是人们常说的
人工智能,或者 AI。
01:50
And I think that's going to be one
of the most influential有影响 developments发展
32
98025
3746
我认为在未来二十年中,
01:53
and trends趋势 and directions方向 and drives驱动器
in our society社会 in the next下一个 20 years年份.
33
101795
5575
这将是社会中最具影响力的
发展趋势和驱动力。
当然,它已经发生了。
02:00
So, of course课程, it's already已经 here.
34
108021
1985
02:02
We already已经 have AIAI,
35
110030
2204
我们已经有了 AI,
02:04
and often经常 it works作品 in the background背景,
36
112258
2398
它们通常都隐身在后台工作,
02:06
in the back offices办事处 of hospitals医院,
37
114680
1586
在医院里,
02:08
where it's used to diagnose诊断 X-raysX射线
better than a human人的 doctor医生.
38
116290
4686
AI 分析 X 光片的水准
比人类医生还要棒。
02:13
It's in legal法律 offices办事处,
39
121000
1726
在律所里,
02:14
where it's used to go
through通过 legal法律 evidence证据
40
122750
2368
AI 核查证物的本事
02:17
better than a human人的 paralawyerparalawyer.
41
125142
1855
比人类助理律师还要强。
02:19
It's used to fly the plane平面
that you came来了 here with.
42
127506
3656
我们乘坐的飞机是由 AI 在驾驶。
02:24
Human人的 pilots飞行员 only flew it
seven to eight minutes分钟,
43
132165
2381
人类驾驶员只飞个七、八分钟而已;
其他时间都是 AI 在操控。
02:26
the rest休息 of the time the AIAI was driving主动.
44
134570
1953
当然,在 Netflix 和亚马逊网站,
02:28
And of course课程, in NetflixNetflix公司 and Amazon亚马逊,
45
136547
2173
02:30
it's in the background背景,
making制造 those recommendations建议.
46
138744
2530
是AI在后台进行推荐。
这些都是我们已经实现的。
02:33
That's what we have today今天.
47
141298
1261
02:34
And we have an example, of course课程,
in a more front-facing面向前方的 aspect方面 of it,
48
142583
4801
我们也有一些更前沿的例子,
比如“阿尔法狗”战胜了
人类最强的围棋世界冠军。
02:39
with the win赢得 of the AlphaGoAlphaGo, who beat击败
the world's世界 greatest最大 Go champion冠军.
49
147408
6629
但还不止于此。
02:46
But it's more than that.
50
154478
4053
02:50
If you play a video视频 game游戏,
you're playing播放 against反对 an AIAI.
51
158555
2642
我们打电玩时,对手往往是 AI。
不过最近,谷歌教会了他们的 AI
02:53
But recently最近, Google谷歌 taught their AIAI
52
161221
4538
02:57
to actually其实 learn学习 how to play video视频 games游戏.
53
165783
2412
自己学习如何打电子游戏。
03:00
Again, teaching教学 video视频 games游戏
was already已经 doneDONE,
54
168686
2709
教(AI)打游戏
已经不是什么新鲜事了,
03:03
but learning学习 how to play
a video视频 game游戏 is another另一个 step.
55
171419
3897
但(AI)自己学习
打游戏则是另一个境界。
03:07
That's artificial人造 smartness机灵.
56
175340
1678
这就是人工智慧。
03:10
What we're doing is taking服用
this artificial人造 smartness机灵
57
178571
4522
我们正在以此为起点,
03:15
and we're making制造 it smarter聪明 and smarter聪明.
58
183117
2423
让它变得越来越聪明。
03:18
There are three aspects方面
to this general一般 trend趋势
59
186710
3895
在这个大趋势中,
我认为有三点尚未被充分认识;
03:22
that I think are underappreciated怀才不遇;
60
190629
1689
03:24
I think we would understand理解
AIAI a lot better
61
192342
2277
如果我们能理解这三点,
03:26
if we understood了解 these three things.
62
194643
2301
就能更好的理解 AI,
03:28
I think these things also would
help us embrace拥抱 AIAI,
63
196968
3283
并更加全身心的拥抱 AI。
03:32
because it's only by embracing拥抱 it
that we actually其实 can steer驾驶 it.
64
200275
3008
只有拥抱 AI,才能控制AI。
03:35
We can actually其实 steer驾驶 the specifics细节
by embracing拥抱 the larger trend趋势.
65
203887
3157
我们可以通过拥抱
大趋势来控制细节。
03:39
So let me talk about
those three different不同 aspects方面.
66
207467
2979
所以,请允许我谈谈这三点。
03:42
The first one is: our own拥有 intelligence情报
has a very poor较差的 understanding理解
67
210470
3673
第一点,我们自己尚未很好的理解
03:46
of what intelligence情报 is.
68
214167
1490
什么是智能。
03:48
We tend趋向 to think of intelligence情报
as a single dimension尺寸,
69
216110
3653
我们通常认为智能是单维度的,
03:51
that it's kind of like a note注意
that gets得到 louder and louder.
70
219787
2750
就像一个越来越响的音符。
我们用智商来衡量它。
03:54
It starts启动 like with IQ智商 measurement测量.
71
222561
2607
03:57
It starts启动 with maybe a simple简单
low IQ智商 in a rat or mouse老鼠,
72
225192
4092
老鼠的智商较低,
猩猩的智商较高,
04:01
and maybe there's more in a chimpanzee黑猩猩,
73
229308
2134
04:03
and then maybe there's more
in a stupid person,
74
231887
2191
接下来是比较笨的人,
然后是像我一样的普通人,
04:06
and then maybe an average平均
person like myself,
75
234102
2096
再往上是天才。
04:08
and then maybe a genius天才.
76
236222
1290
04:09
And this single IQ智商 intelligence情报
is getting得到 greater更大 and greater更大.
77
237536
4433
智商越高,智能就越高。
这种看法是完全错误的。
04:14
That's completely全然 wrong错误.
78
242516
1151
这根本就不是智能,
人类智能也并非如此。
04:15
That's not what intelligence情报 is --
not what human人的 intelligence情报 is, anyway无论如何.
79
243691
3608
04:19
It's much more like a symphony交响乐
of different不同 notes笔记,
80
247673
4506
智能更像由不同音符
组成的交响乐,
每个音符由不同的认知乐器来奏响。
04:24
and each of these notes笔记 is played发挥
on a different不同 instrument仪器 of cognition认识.
81
252203
3609
人类的心智包含了多种智能。
04:27
There are many许多 types类型
of intelligences智能 in our own拥有 minds头脑.
82
255836
3701
04:31
We have deductive演绎 reasoning推理,
83
259561
3048
我们可以进行演绎推理,
04:34
we have emotional情绪化 intelligence情报,
84
262633
2221
我们具备情绪智力,
04:36
we have spatial空间的 intelligence情报;
85
264878
1393
我们有空间智能。
04:38
we have maybe 100 different不同 types类型
that are all grouped分组 together一起,
86
266295
4021
我们可能有一百种
不同的智能集合在一起,
04:42
and they vary变化 in different不同 strengths优势
with different不同 people.
87
270340
3905
它们在不同人的身上也
体现得强弱不一。
04:46
And of course课程, if we go to animals动物,
they also have another另一个 basket --
88
274269
4526
而动物们则可能是另一套体系——
04:50
another另一个 symphony交响乐 of different不同
kinds of intelligences智能,
89
278819
2541
由其他智能组成的另一首交响乐,
04:53
and sometimes有时 those same相同 instruments仪器
are the same相同 that we have.
90
281384
3566
当然,有些乐器与人类是相同的。
04:56
They can think in the same相同 way,
but they may可能 have a different不同 arrangement安排,
91
284974
3561
可能思考的方式相同但侧重点不同,
某些方面可能还强于人类,
05:00
and maybe they're higher更高
in some cases than humans人类,
92
288559
2467
像松鼠的长期记忆就很了不得,
05:03
like long-term长期 memory记忆 in a squirrel松鼠
is actually其实 phenomenal非凡的,
93
291050
2837
能清楚记得坚果的埋藏之所。
05:05
so it can remember记得
where it buried隐藏 its nuts坚果.
94
293911
2287
05:08
But in other cases they may可能 be lower降低.
95
296222
1987
但在另外一些方面可能不如人类。
05:10
When we go to make machines,
96
298233
2730
当我们制造机器时,
05:12
we're going to engineer工程师
them in the same相同 way,
97
300987
2196
也会用同样的方式来设计它们,
它们在某些方面会比我们聪明得多,
05:15
where we'll make some of those types类型
of smartness机灵 much greater更大 than ours我们的,
98
303207
5010
05:20
and many许多 of them won't惯于 be
anywhere随地 near ours我们的,
99
308241
2571
而在其他方面则远远不如我们,
05:22
because they're not needed需要.
100
310836
1544
因为根本没必要。
05:24
So we're going to take these things,
101
312404
2203
我们会用这些东西,
05:26
these artificial人造 clusters集群,
102
314631
2081
这些人造的功能组合,
为我们的 AI 添加
各种各样的人工认知。
05:28
and we'll be adding加入 more varieties品种
of artificial人造 cognition认识 to our AIs认可.
103
316736
5362
05:34
We're going to make them
very, very specific具体.
104
322507
4071
我们会让它们(的功能)非常具体。
05:38
So your calculator计算器 is smarter聪明
than you are in arithmetic算术 already已经;
105
326602
6542
比方说,计算器在数学运算上
要比我们聪明得多;
GPS 的空间导航能力远胜过我们;
05:45
your GPS全球定位系统 is smarter聪明
than you are in spatial空间的 navigation导航;
106
333168
3697
05:49
Google谷歌, Bing, are smarter聪明
than you are in long-term长期 memory记忆.
107
337337
4258
谷歌、必应在长期记忆上完胜我们。
然后我们再把这些不同类型的智能
05:54
And we're going to take, again,
these kinds of different不同 types类型 of thinking思维
108
342339
4530
05:58
and we'll put them into, like, a car汽车.
109
346893
1933
塞到……比如说汽车里,
实现自动行驶。
06:00
The reason原因 why we want to put them
in a car汽车 so the car汽车 drives驱动器,
110
348850
3057
我们之所以这么做,
正是因为它的驾驶方式
06:03
is because it's not driving主动 like a human人的.
111
351931
2302
跟我们不一样。
06:06
It's not thinking思维 like us.
112
354257
1396
它不像我们那样思考。
06:07
That's the whole整个 feature特征 of it.
113
355677
1920
这恰恰是它的特点。
06:09
It's not being存在 distracted分心,
114
357621
1535
它不会分心,
06:11
it's not worrying令人担忧 about whether是否
it left the stove火炉 on,
115
359180
2754
不会担心是否忘记了关炉子,
06:13
or whether是否 it should have
majored主修 in finance金融.
116
361958
2138
不会纠结要不要选金融专业。
它只知道开车。
06:16
It's just driving主动.
117
364120
1153
06:17
(Laughter笑声)
118
365297
1142
(笑声)
06:18
Just driving主动, OK?
119
366463
1841
它会专心开车,对吧?
06:20
And we actually其实 might威力 even
come to advertise广告 these
120
368328
2937
我们甚至可以把这个做为卖点,
叫做“无意识”。
06:23
as "consciousness-free意识自由."
121
371289
1545
06:24
They're without consciousness意识,
122
372858
1774
它们没有意识,
不会东想西想,
06:26
they're not concerned关心 about those things,
123
374656
2104
不会分心。
06:28
they're not distracted分心.
124
376784
1156
所以,我们应该尽我们所能
06:29
So in general一般, what we're trying to do
125
377964
2966
06:32
is make as many许多 different不同
types类型 of thinking思维 as we can.
126
380954
4500
制造各种各样的思考(机器)。
06:37
We're going to populate填充 the space空间
127
385804
2083
我们应该去尝试
06:39
of all the different不同 possible可能 types类型,
or species种类, of thinking思维.
128
387911
4159
所有可能的思考方式。
06:44
And there actually其实 may可能 be some problems问题
129
392094
2068
在商业和科学上,
06:46
that are so difficult
in business商业 and science科学
130
394186
2800
我们会遇到一些难题,
06:49
that our own拥有 type类型 of human人的 thinking思维
may可能 not be able能够 to solve解决 them alone单独.
131
397010
4042
单凭人类自身的思考无法解决。
我们可能需要分两步走,
06:53
We may可能 need a two-step两步 program程序,
132
401076
1992
06:55
which哪一个 is to invent发明 new kinds of thinking思维
133
403092
4203
先发明出新的思考方式,
再与它们一起解决这些真正的难题,
06:59
that we can work alongside并肩 of to solve解决
these really large problems问题,
134
407692
3734
07:03
say, like dark黑暗 energy能源 or quantum量子 gravity重力.
135
411450
2918
比如暗能量和量子引力。
07:08
What we're doing
is making制造 alien外侨 intelligences智能.
136
416496
2646
我们实际上是在创造异形智能。
07:11
You might威力 even think of this
as, sort分类 of, artificial人造 aliens外星人
137
419166
4069
某种意义上,甚至可以将它们看作
人造异形。
07:15
in some senses感官.
138
423259
1207
07:16
And they're going to help
us think different不同,
139
424490
2300
它们将帮助我们用不同的方式思考,
07:18
because thinking思维 different不同
is the engine发动机 of creation创建
140
426814
3632
而换一种思考方式是创造的源泉,
07:22
and wealth财富 and new economy经济.
141
430470
1867
是财富和新经济的引擎。
07:25
The second第二 aspect方面 of this
is that we are going to use AIAI
142
433835
4923
第二点是,我们将用 AI
07:30
to basically基本上 make a second第二
Industrial产业 Revolution革命.
143
438782
2950
推动第二次工业革命。
07:34
The first Industrial产业 Revolution革命
was based基于 on the fact事实
144
442135
2773
在第一次工业革命中,
07:36
that we invented发明 something
I would call artificial人造 power功率.
145
444932
3462
人类发明了我称之为
“人造能源”的东西。
在此之前,
07:40
Previous以前 to that,
146
448879
1150
07:42
during the Agricultural农业的 Revolution革命,
147
450053
2034
在农业革命时期,
07:44
everything that was made制作
had to be made制作 with human人的 muscle肌肉
148
452111
3702
制造业靠人力驱动,
07:47
or animal动物 power功率.
149
455837
1307
或者靠畜力。
07:49
That was the only way
to get anything doneDONE.
150
457565
2063
除此之外别无他法。
07:51
The great innovation革新 during
the Industrial产业 Revolution革命 was,
151
459652
2945
工业革命时期的伟大发明就是
07:54
we harnessed驾驭 steam蒸汽 power功率, fossil化石 fuels燃料,
152
462621
3109
人们利用化石燃料和蒸汽
07:57
to make this artificial人造 power功率
that we could use
153
465754
3856
所产生的“人造能源”来做
08:01
to do anything we wanted to do.
154
469634
1669
我们想做的任何事情。
08:03
So today今天 when you drive驾驶 down the highway高速公路,
155
471327
2772
今天,当我们开车行驶在高速上,
08:06
you are, with a flick拂去 of the switch开关,
commanding司令 250 horses马匹 --
156
474571
4525
只需轻轻拨弄开关,
就能驾驭 250 匹马——
或者说,250 匹马的马力——
08:11
250 horsepower马力 --
157
479120
1572
08:12
which哪一个 we can use to build建立 skyscrapers摩天大楼,
to build建立 cities城市, to build建立 roads道路,
158
480716
4692
我们可以建造高楼大厦,
修建道路,建设城市,
08:17
to make factories工厂 that would churn搅动 out
lines线 of chairs椅子 or refrigerators冰箱
159
485432
5789
开办工厂,源源不断地
生产桌椅或冰箱,
08:23
way beyond our own拥有 power功率.
160
491245
1654
这些都远远超出了人力所为。
08:24
And that artificial人造 power功率 can also
be distributed分散式 on wires电线 on a grid
161
492923
6111
这种“人造能源”
还可以通过电网和电线
08:31
to every一切 home, factory, farmstead,
162
499058
3199
输送到家庭、工厂和农庄,
08:34
and anybody任何人 could buy购买
that artificial人造 power功率,
163
502281
4191
任何人都可以
购买这种“人造能源”,
08:38
just by plugging堵漏 something in.
164
506496
1472
只需插上插头就可以使用。
08:39
So this was a source资源
of innovation革新 as well,
165
507992
2439
它也带来了很多创新,
08:42
because a farmer农民 could take
a manual手册 hand pump,
166
510455
3418
农民可以为手动泵通上电,
08:45
and they could add this artificial人造
power功率, this electricity电力,
167
513897
2916
加上这种“人造能源”,
08:48
and he'd他会 have an electric电动 pump.
168
516837
1497
就变成了电泵。
08:50
And you multiply that by thousands数千
or tens of thousands数千 of times,
169
518358
3318
类似的改造成千上万,
08:53
and that formula was what brought us
the Industrial产业 Revolution革命.
170
521700
3159
这个(人力器械+人造能源的)
公式造就了工业革命。
08:56
All the things that we see,
all this progress进展 that we now enjoy请享用,
171
524883
3585
今天我们看到的所有事物,
享受的所有服务,
几乎都来源于此。
09:00
has come from the fact事实
that we've我们已经 doneDONE that.
172
528492
2063
现在我们要用 AI 做同样的事情。
09:02
We're going to do
the same相同 thing now with AIAI.
173
530579
2348
09:04
We're going to distribute分发 that on a grid,
174
532951
2075
我们用网路传输 AI,
把 AI 加载到
09:07
and now you can take that electric电动 pump.
175
535050
2374
09:09
You can add some artificial人造 intelligence情报,
176
537448
2968
诸如电泵之类的东西上,
09:12
and now you have a smart聪明 pump.
177
540440
1481
就得到了聪明的电泵。
09:13
And that, multiplied乘以 by a million百万 times,
178
541945
1928
类似的改造做上几百万次,
09:15
is going to be this second第二
Industrial产业 Revolution革命.
179
543897
2363
就会掀起第二次工业革命。
那么将来汽车行驶在高速上,
09:18
So now the car汽车 is going down the highway高速公路,
180
546284
2382
09:20
it's 250 horsepower马力,
but in addition加成, it's 250 minds头脑.
181
548690
4294
它不仅有 250倍马力,
还有 250倍的脑力。
这就是自动驾驶汽车。
09:25
That's the auto-driven自动驱动 car汽车.
182
553008
1769
09:26
It's like a new commodity商品;
183
554801
1389
它是一种新的商品,
09:28
it's a new utility效用.
184
556214
1303
是一种新的基础设施。
09:29
The AIAI is going to flow
across横过 the grid -- the cloud --
185
557541
3041
AI 将会在网络、在云端传输,
就像电一样。
09:32
in the same相同 way electricity电力 did.
186
560606
1567
09:34
So everything that we had electrified带电,
187
562197
2380
所以凡是可以用电的地方,
09:36
we're now going to cognifycognify.
188
564601
1723
都可以用 AI。
09:38
And I owe it to Jeff杰夫, then,
189
566693
1385
正如 Jeff 所说,
09:40
that the formula
for the next下一个 10,000 start-ups创业
190
568102
3732
未来一万家创业公司的秘诀
其实非常非常简单:
09:43
is very, very simple简单,
191
571858
1162
09:45
which哪一个 is to take x and add AIAI.
192
573044
3167
拿来某样东西,加上 AI。
09:49
That is the formula,
that's what we're going to be doing.
193
577100
2812
这个公式就是我们将要不断践行的。
09:51
And that is the way
in which哪一个 we're going to make
194
579936
3306
我们将以这种方式
09:55
this second第二 Industrial产业 Revolution革命.
195
583266
1858
来掀起第二次工业革命。
09:57
And by the way -- right now, this minute分钟,
196
585148
2154
顺便说一句,就在此时,
你可以登录谷歌,
09:59
you can log日志 on to Google谷歌
197
587326
1169
购买 AI:用6美分
购买100次服务。
10:00
and you can purchase采购
AIAI for six cents, 100 hits点击.
198
588519
3882
10:04
That's available可得到 right now.
199
592758
1604
这个服务现在就能用。
10:06
So the third第三 aspect方面 of this
200
594386
2286
第三点是,
10:09
is that when we take this AIAI
and embody体现 it,
201
597315
2678
我们将AI实体化,
10:12
we get robots机器人.
202
600017
1173
就得到了机器人。
机器人可以帮助我们,
10:13
And robots机器人 are going to be bots机器人,
203
601214
1703
10:14
they're going to be doing many许多
of the tasks任务 that we have already已经 doneDONE.
204
602941
3328
完成许多曾经需要
我们亲力亲为的任务。
10:20
A job工作 is just a bunch of tasks任务,
205
608357
1528
而工作就是一系列的任务,
10:21
so they're going to redefine重新定义 our jobs工作
206
609909
1762
我们的工作将会被重新定义,
10:23
because they're going to do
some of those tasks任务.
207
611695
2259
一部分任务将交给机器人来完成。
与此同时,也将产生一大批
10:25
But they're also going to curate策划
whole整个 new categories类别,
208
613978
3197
10:29
a whole整个 new slew of tasks任务
209
617199
2247
不同种类的新任务,
10:31
that we didn't know
we wanted to do before.
210
619470
2457
一批以往我们没有意识到
要去做的任务。
它们甚至有可能催生出新的职业,
10:33
They're going to actually其实
engender产生 new kinds of jobs工作,
211
621951
3637
10:37
new kinds of tasks任务 that we want doneDONE,
212
625612
2271
我们感兴趣的新工作,
10:39
just as automation自动化 made制作 up
a whole整个 bunch of new things
213
627907
3405
就像自动化带来的许多新事物,
10:43
that we didn't know we needed需要 before,
214
631336
1834
我们之前并不知道会需要它们,
10:45
and now we can't live生活 without them.
215
633194
1956
但今天我们已经离不开它们了。
10:47
So they're going to produce生产
even more jobs工作 than they take away,
216
635174
3956
所以机器人带来的
工作机会比它们抢走的要多。
10:51
but it's important重要 that a lot of the tasks任务
that we're going to give them
217
639154
3434
更重要的是,我们交给它们的
10:54
are tasks任务 that can be defined定义
in terms条款 of efficiency效率 or productivity生产率.
218
642612
4572
都是需要效率或生产率的任务。
如果一个任务,
10:59
If you can specify指定 a task任务,
219
647676
1828
11:01
either manual手册 or conceptual概念上的,
220
649528
2235
不管是体力的还是脑力的,
11:03
that can be specified规定 in terms条款
of efficiency效率 or productivity生产率,
221
651787
4780
可以用效率或生产率来衡量,
11:08
that goes to the bots机器人.
222
656591
1777
那么就应该交给机器人来完成。
11:10
Productivity生产率 is for robots机器人.
223
658758
2178
需要效率的事情交给机器人好了。
11:12
What we're really good at
is basically基本上 wasting浪费 time.
224
660960
3070
我们真正擅长的是浪费时间。
11:16
(Laughter笑声)
225
664054
1028
(笑声)
我们最擅长做那些没有效率的事情。
11:17
We're really good at things
that are inefficient低效.
226
665106
2316
11:19
Science科学 is inherently本质 inefficient低效.
227
667446
3025
科学从本质上来说是低效的。
我们一次又一次的失败,
11:22
It runs运行 on that fact事实 that you have
one failure失败 after another另一个.
228
670816
2906
11:25
It runs运行 on the fact事实 that you make tests测试
and experiments实验 that don't work,
229
673746
3424
很多试验和尝试都徒劳无功,
否则我们也学不到什么东西。
11:29
otherwise除此以外 you're not learning学习.
230
677194
1442
事实就是,
11:30
It runs运行 on the fact事实
231
678660
1162
科学研究没有什么效率。
11:31
that there is not
a lot of efficiency效率 in it.
232
679846
2083
11:33
Innovation革新 by definition定义 is inefficient低效,
233
681953
2779
创新从定义上来说就是低效的。
11:36
because you make prototypes原型,
234
684756
1391
毕竟我们需要制作原型,
11:38
because you try stuff东东 that fails失败,
that doesn't work.
235
686171
2707
需要做各种尝试,经历各种失败。
11:40
Exploration勘探 is inherently本质 inefficiency低效.
236
688902
3112
探索是低效的。
11:44
Art艺术 is not efficient高效.
237
692038
1531
艺术是低效的。
11:45
Human人的 relationships关系 are not efficient高效.
238
693593
2127
人际关系也是低效的。
11:47
These are all the kinds of things
we're going to gravitate受引力作用 to,
239
695744
2940
这些都是我们喜欢做的事情,
因为它们都是低效的。
11:50
because they're not efficient高效.
240
698708
1475
11:52
Efficiency效率 is for robots机器人.
241
700207
2315
高效是机器人的使命。
11:55
We're also going to learn学习
that we're going to work with these AIs认可
242
703338
4123
还要认识到,我们将和 AI 一起工作,
11:59
because they think differently不同 than us.
243
707485
1997
因为它们的思维方式与我们不同。
12:02
When Deep Blue蓝色 beat击败
the world's世界 best最好 chess champion冠军,
244
710005
4314
在“深蓝”战胜国际象棋的世界冠军后,
12:06
people thought it was the end结束 of chess.
245
714343
1929
人们以为国际象棋没什么玩头了。
但事实上,目前世界上
最厉害的国际象棋冠军
12:08
But actually其实, it turns out that today今天,
the best最好 chess champion冠军 in the world世界
246
716296
4402
并不是 AI,
12:12
is not an AIAI.
247
720722
1557
12:14
And it's not a human人的.
248
722906
1181
也不是人类,
12:16
It's the team球队 of a human人的 and an AIAI.
249
724111
2715
而是由人类和 AI 组成的团队。
12:18
The best最好 medical diagnostician诊断者
is not a doctor医生, it's not an AIAI,
250
726850
4000
最棒的医学诊疗师
既不是医生,也不是 AI,
而是他们组成的团队。
12:22
it's the team球队.
251
730874
1176
也就是说我们将和 AI 一起工作,
12:24
We're going to be working加工 with these AIs认可,
252
732074
2149
12:26
and I think you'll你会 be paid支付 in the future未来
253
734247
1995
你将来的薪酬,
12:28
by how well you work with these bots机器人.
254
736266
2391
很可能取决于
你跟机器人合作得如何。
12:31
So that's the third第三 thing,
is that they're different不同,
255
739026
4257
这就是我想说的第三点:
AI 是不同于我们的,
12:35
they're utility效用
256
743307
1165
它们是技术设备,
12:36
and they are going to be something
we work with rather than against反对.
257
744496
3816
我们将与它们合作,
12:40
We're working加工 with these
rather than against反对 them.
258
748336
2639
而非竞争。
12:42
So, the future未来:
259
750999
1477
那么,
未来会如何?
12:44
Where does that take us?
260
752500
1420
12:45
I think that 25 years年份 from now,
they'll他们会 look back
261
753944
3567
我想,25年后我们回头再看
12:49
and look at our understanding理解
of AIAI and say,
262
757535
3125
今天对 AI 的理解,我们会说:
“你们那都不叫 AI。
你们甚至都还没有真正的因特网,
12:52
"You didn't have AIAI. In fact事实,
you didn't even have the Internet互联网 yet然而,
263
760684
3300
25年后的因特网才能叫因特网呢。“
12:56
compared相比 to what we're going
to have 25 years年份 from now."
264
764008
2741
12:59
There are no AIAI experts专家 right now.
265
767849
3047
我们也还没有真正的 AI 专家。
13:02
There's a lot of money going to it,
266
770920
1699
而大量的资本正涌向这个领域,
动辄数十亿美金,
13:04
there are billions数十亿 of dollars美元
being存在 spent花费 on it;
267
772643
2268
13:06
it's a huge巨大 business商业,
268
774935
2164
这是一个巨大的产业。
13:09
but there are no experts专家, compared相比
to what we'll know 20 years年份 from now.
269
777123
4272
但我们尚未拥有真正的 AI 专家——
如果跟20年后相比的话。
13:14
So we are just at the beginning开始
of the beginning开始,
270
782064
2885
我们还处在最初的起步阶段,
13:16
we're in the first hour小时 of all this.
271
784973
2163
所有一切才刚刚开始。
13:19
We're in the first hour小时 of the Internet互联网.
272
787160
1935
因特网的历史才刚刚开始。
美好的未来才刚刚开始。
13:21
We're in the first hour小时 of what's coming未来.
273
789119
2040
未来20年最受欢迎的 AI 产品,
13:23
The most popular流行 AIAI product产品
in 20 years年份 from now,
274
791183
4153
最普及的 AI 产品,
13:27
that everybody每个人 uses使用,
275
795360
1444
还没有被发明呢。
13:29
has not been invented发明 yet然而.
276
797499
1544
13:32
That means手段 that you're not late晚了.
277
800464
2467
也就是说,你们还有机会。
13:35
Thank you.
278
803684
1151
谢谢!
(笑声)
13:36
(Laughter笑声)
279
804859
1026
13:37
(Applause掌声)
280
805909
2757
(掌声)
Translated by Jiamin Zhao
Reviewed by Alvin Lee

▲Back to top

ABOUT THE SPEAKER
Kevin Kelly - Digital visionary
There may be no one better to contemplate the meaning of cultural change than Kevin Kelly, whose life story reads like a treatise on the value and impacts of technology.

Why you should listen

Kelly has been publisher of the Whole Earth Review, executive editor at Wired magazine (which he co-founded, and where he now holds the title of Senior Maverick), founder of visionary nonprofits and writer on biology, business and “cool tools.” He’s renounced all material things save his bicycle (which he then rode 3,000 miles), founded an organization (the All-Species Foundation) to catalog all life on Earth, championed projects that look 10,000 years into the future (at the Long Now Foundation), and more. He’s admired for his acute perspectives on technology and its relevance to history, biology and society. His new book, The Inevitable, just published, explores 12 technological forces that will shape our future.

More profile about the speaker
Kevin Kelly | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee