ABOUT THE SPEAKER
Kevin Kelly - Digital visionary
There may be no one better to contemplate the meaning of cultural change than Kevin Kelly, whose life story reads like a treatise on the value and impacts of technology.

Why you should listen

Kelly has been publisher of the Whole Earth Review, executive editor at Wired magazine (which he co-founded, and where he now holds the title of Senior Maverick), founder of visionary nonprofits and writer on biology, business and “cool tools.” He’s renounced all material things save his bicycle (which he then rode 3,000 miles), founded an organization (the All-Species Foundation) to catalog all life on Earth, championed projects that look 10,000 years into the future (at the Long Now Foundation), and more. He’s admired for his acute perspectives on technology and its relevance to history, biology and society. His new book, The Inevitable, just published, explores 12 technological forces that will shape our future.

More profile about the speaker
Kevin Kelly | Speaker | TED.com
TEDSummit

Kevin Kelly: How AI can bring on a second Industrial Revolution

凱文·凱利: 人工智慧將如何引領第二次工業革命?

Filmed:
1,739,624 views

數位觀察家凱文·凱利說:「雨水流入山谷的實際路徑是不可預測的,但它的大方向是必然的。」,而科技在很大程度上也是如此,它是由令人驚奇但又具有某種必然性的趨勢所推動。他說,未來二十年,我們讓事物變得越來越聰明的傾向,將會對我們身邊的每件事情產生深遠的影響。凱利向我們揭露了 AI 大潮中我們需要了解的三個趨勢,了解這三個趨勢可以讓我們能更好的擁抱 AI 並駕馭它的發展。凱利說:「二十年後人人都要用的 AI 產品還沒有被發明出來,意思就是,你還為時未晚」。 翻譯:余易帆
- Digital visionary
There may be no one better to contemplate the meaning of cultural change than Kevin Kelly, whose life story reads like a treatise on the value and impacts of technology. Full bio

Double-click the English transcript below to play the video.

00:14
I'm going to talk a little bit
about where technology's技術的 going.
0
2966
3817
我準備來談談未來科技的走勢。
00:19
And often經常 technology技術 comes to us,
1
7509
2671
每當新的科技發明,
00:22
we're surprised詫異 by what it brings帶來.
2
10566
1865
我們總是驚嘆它所帶給我們的驚喜。
00:24
But there's actually其實
a large aspect方面 of technology技術
3
12455
3683
但是實際上更大程度的是對科技的形勢
00:28
that's much more predictable可預測,
4
16162
1802
這是很容易預測的,
00:29
and that's because technological技術性 systems系統
of all sorts排序 have leanings傾向,
5
17988
4088
因為所有的科技系統
都有一定的脈絡可循,
00:34
they have urgencies急症,
6
22100
1175
它們有迫切性,
00:35
they have tendencies傾向.
7
23299
1561
有一定的趨勢,
00:36
And those tendencies傾向 are derived派生
from the very nature性質 of the physics物理,
8
24884
4932
而這些趨勢都是來自於
電線、開關、電子
00:41
chemistry化學 of wires電線
and switches開關 and electrons電子,
9
29840
3150
的物理本質與化學原理,
00:45
and they will make reoccurring再次發生
patterns模式 again and again.
10
33659
3602
而這些模式會周而復始地發生。
00:49
And so those patterns模式 produce生產
these tendencies傾向, these leanings傾向.
11
37745
4874
所以是這些模式造就了
科技的趨勢及走向。
00:54
You can almost幾乎 think of it
as sort分類 of like gravity重力.
12
42643
2831
你幾乎可以把它看做是一種「萬有引力」。
00:57
Imagine想像 raindrops雨滴 falling落下 into a valley.
13
45498
2319
想像一下,就像雨滴落到山谷中,
00:59
The actual實際 path路徑 of a raindrop雨滴
as it goes down the valley
14
47841
3088
雨滴流到山谷中的實際路徑
01:02
is unpredictable不可預料的.
15
50953
1169
是無法預測的。
01:04
We cannot不能 see where it's going,
16
52651
1518
我們看不到雨滴會怎麼流,
01:06
but the general一般 direction方向
is very inevitable必然:
17
54193
2277
但大致上的方向是一定的:
01:08
it's downward向下.
18
56494
1234
這個方向是向下的。
01:10
And so these baked-in烤機
tendencies傾向 and urgencies急症
19
58377
4572
而這些深根在科技系統裡的
01:14
in technological技術性 systems系統
20
62973
1476
趨勢及迫切性,
01:17
give us a sense of where things
are going at the large form形成.
21
65051
3609
告訴了我們科技的大方向。
01:21
So in a large sense,
22
69149
1401
具體說,
01:22
I would say that telephones電話
were inevitable必然,
23
70574
3361
我認為電話的發明是必然的,
01:27
but the iPhone蘋果手機 was not.
24
75005
1342
但 iPhone 就不是了。
01:29
The Internet互聯網 was inevitable必然,
25
77094
1478
網際網路的發明是必然的,
01:31
but Twitter推特 was not.
26
79274
1286
但推特就不是了。
01:33
So we have many許多 ongoing不斷的
tendencies傾向 right now,
27
81036
3928
所以我們現在有很多趨勢正在進行,
01:36
and I think one of the chief首席 among其中 them
28
84988
2720
而我認為它們其中一個
主要的趨勢就是,
01:39
is this tendency趨勢 to make things
smarter聰明 and smarter聰明.
29
87732
3722
東西越來越聰明了。
01:44
I call it cognifyingcognifying -- cognificationcognification --
30
92041
2212
我稱這個過程為
「認知化 」——認知——
01:46
also known已知 as artificial人造
intelligence情報, or AIAI.
31
94783
2782
也就是大家知道的
人工智慧,或者「AI」
01:50
And I think that's going to be one
of the most influential有影響 developments發展
32
98025
3746
我認為未來20年,
AI 將成為我們社會其中一個
最有影響力的發展、趨勢及驅動力。
01:53
and trends趨勢 and directions方向 and drives驅動器
in our society社會 in the next下一個 20 years年份.
33
101795
5575
02:00
So, of course課程, it's already已經 here.
34
108021
1985
當然,AI 已經出現了,
02:02
We already已經 have AIAI,
35
110030
2204
我們已經有 AI 了,
02:04
and often經常 it works作品 in the background背景,
36
112258
2398
而且它經常在幕後幫助我們,
02:06
in the back offices辦事處 of hospitals醫院,
37
114680
1586
它出現在醫院後面的辦公室,
02:08
where it's used to diagnose診斷 X-raysX射線
better than a human人的 doctor醫生.
38
116290
4686
用 AI 來診斷 X 光片的能力
比人類醫生還精準。
02:13
It's in legal法律 offices辦事處,
39
121000
1726
它會出現在律師事務所,
02:14
where it's used to go
through通過 legal法律 evidence證據
40
122750
2368
用 AI 審閱法律文件,
02:17
better than a human人的 paralawyerparalawyer.
41
125142
1855
速度比人類的律師還要快。
02:19
It's used to fly the plane平面
that you came來了 here with.
42
127506
3656
各位今天坐的飛機也有人工智慧,
02:24
Human人的 pilots飛行員 only flew it
seven to eight minutes分鐘,
43
132165
2381
人工駕駛只有 7~8 分鐘,
02:26
the rest休息 of the time the AIAI was driving主動.
44
134570
1953
剩下的都是 AI 在駕駛
02:28
And of course課程, in NetflixNetflix公司 and Amazon亞馬遜,
45
136547
2173
當然, Netflix 和 Amazon也有,
02:30
it's in the background背景,
making製造 those recommendations建議.
46
138744
2530
它在幕後給出做出推薦和建議。
02:33
That's what we have today今天.
47
141298
1261
這是我們目前已經實現的。
02:34
And we have an example, of course課程,
in a more front-facing面向前方的 aspect方面 of it,
48
142583
4801
當然,還有一個更先進的案例,
02:39
with the win贏得 of the AlphaGoAlphaGo, who beat擊敗
the world's世界 greatest最大 Go champion冠軍.
49
147408
6629
就是打敗世界圍棋冠軍的 AlphaGo。
02:46
But it's more than that.
50
154478
4053
但人工智慧不僅於此。
02:50
If you play a video視頻 game遊戲,
you're playing播放 against反對 an AIAI.
51
158555
2642
如果你在玩電動,你對抗的是 AI,
02:53
But recently最近, Google谷歌 taught their AIAI
52
161221
4538
但最近,Google開始教他們的 AI
02:57
to actually其實 learn學習 how to play video視頻 games遊戲.
53
165783
2412
實際意義上的學習如何打電動。
03:00
Again, teaching教學 video視頻 games遊戲
was already已經 doneDONE,
54
168686
2709
重申一下,教 AI 「打電動」是一種層次,
03:03
but learning學習 how to play
a video視頻 game遊戲 is another另一個 step.
55
171419
3897
但教 AI 「學習如何打電動」又是另一種層次。
03:07
That's artificial人造 smartness機靈.
56
175340
1678
這是人造的智能產品。
03:10
What we're doing is taking服用
this artificial人造 smartness機靈
57
178571
4522
而我們正在做的就是將
這種人造的智能產品
03:15
and we're making製造 it smarter聰明 and smarter聰明.
58
183117
2423
變得越來越聰明。
03:18
There are three aspects方面
to this general一般 trend趨勢
59
186710
3895
這個趨勢大致上有三個面向,
03:22
that I think are underappreciated懷才不遇;
60
190629
1689
我認為尚未被充分認知;
03:24
I think we would understand理解
AIAI a lot better
61
192342
2277
我想如果搞懂這三個面向,
03:26
if we understood了解 these three things.
62
194643
2301
我們對 AI 的了解,會更深入一些。
03:28
I think these things also would
help us embrace擁抱 AIAI,
63
196968
3283
我認為了解這些事,
也可以幫助我們擁抱 AI,
03:32
because it's only by embracing擁抱 it
that we actually其實 can steer駕駛 it.
64
200275
3008
唯有擁抱 AI 才能駕馭 AI。
03:35
We can actually其實 steer駕駛 the specifics細節
by embracing擁抱 the larger trend趨勢.
65
203887
3157
藉由懷抱更大趨勢來駕馭細節。
03:39
So let me talk about
those three different不同 aspects方面.
66
207467
2979
所以容我來談談 AI 的三個不同面向。
03:42
The first one is: our own擁有 intelligence情報
has a very poor較差的 understanding理解
67
210470
3673
第一:以人類目前對智慧的了解,
我們對智慧的認知仍相當貧乏。
03:46
of what intelligence情報 is.
68
214167
1490
03:48
We tend趨向 to think of intelligence情報
as a single dimension尺寸,
69
216110
3653
我們似乎把智能看的太單一面向了,
03:51
that it's kind of like a note注意
that gets得到 louder and louder.
70
219787
2750
它有點像是個音符,會越來越大聲。
03:54
It starts啟動 like with IQ智商 measurement測量.
71
222561
2607
剛開始像個 IQ 測量儀。
03:57
It starts啟動 with maybe a simple簡單
low IQ智商 in a rat or mouse老鼠,
72
225192
4092
一開始的智商也許跟老鼠一樣低,
04:01
and maybe there's more in a chimpanzee黑猩猩,
73
229308
2134
有的像猩猩,稍微多一點,
04:03
and then maybe there's more
in a stupid person,
74
231887
2191
之後開始像個低智商的人類,
04:06
and then maybe an average平均
person like myself,
75
234102
2096
然後進化到像我一樣的普通人,
04:08
and then maybe a genius天才.
76
236222
1290
然後變成一個天才。
04:09
And this single IQ智商 intelligence情報
is getting得到 greater更大 and greater更大.
77
237536
4433
IQ 智能分數越來越高,
04:14
That's completely全然 wrong錯誤.
78
242516
1151
這種看法完全是錯誤的。
04:15
That's not what intelligence情報 is --
not what human人的 intelligence情報 is, anyway無論如何.
79
243691
3608
這不是智慧該有的樣子——
人類的智慧不僅於此。
04:19
It's much more like a symphony交響樂
of different不同 notes筆記,
80
247673
4506
它像是一首交響樂,
或者由不同的音符組成,
04:24
and each of these notes筆記 is played發揮
on a different不同 instrument儀器 of cognition認識.
81
252203
3609
而每一個音符,
由不同的認知樂器所伴奏。
04:27
There are many許多 types類型
of intelligences智能 in our own擁有 minds頭腦.
82
255836
3701
人類腦中有很多不同種類的智慧,
04:31
We have deductive演繹 reasoning推理,
83
259561
3048
我們有演繹推理的能力,
04:34
we have emotional情緒化 intelligence情報,
84
262633
2221
我們有情感的智慧,
04:36
we have spatial空間的 intelligence情報;
85
264878
1393
我們有空間概念的智慧,
04:38
we have maybe 100 different不同 types類型
that are all grouped分組 together一起,
86
266295
4021
我們可能有100多種
不同的智能聚合在一起,
04:42
and they vary變化 in different不同 strengths優勢
with different不同 people.
87
270340
3905
而且每個人各有各的強項。
04:46
And of course課程, if we go to animals動物,
they also have another另一個 basket --
88
274269
4526
當然,以動物而言,
牠們可能是另一套體系——
04:50
another另一個 symphony交響樂 of different不同
kinds of intelligences智能,
89
278819
2541
另一種不同的智能交響樂,
04:53
and sometimes有時 those same相同 instruments儀器
are the same相同 that we have.
90
281384
3566
有時候跟我們人類的一樣。
04:56
They can think in the same相同 way,
but they may可能 have a different不同 arrangement安排,
91
284974
3561
牠們可能思考方式相同
但著重點不同,
05:00
and maybe they're higher更高
in some cases than humans人類,
92
288559
2467
也許在某些方面超過人類,
05:03
like long-term長期 memory記憶 in a squirrel松鼠
is actually其實 phenomenal非凡的,
93
291050
2837
像是松鼠的長期記憶力,相當出色,
05:05
so it can remember記得
where it buried隱藏 its nuts堅果.
94
293911
2287
能清楚記得堅果的埋藏之處。
05:08
But in other cases they may可能 be lower降低.
95
296222
1987
但其它方面,牠們也許就比較弱了。
05:10
When we go to make machines,
96
298233
2730
當我們要製造機器時,
05:12
we're going to engineer工程師
them in the same相同 way,
97
300987
2196
我們會用同樣的方式來設計機器,
05:15
where we'll make some of those types類型
of smartness機靈 much greater更大 than ours我們的,
98
303207
5010
有些智慧型裝置做得比人類聰明得多,
05:20
and many許多 of them won't慣於 be
anywhere隨地 near ours我們的,
99
308241
2571
但其它方面則遠遠不如我們,
05:22
because they're not needed需要.
100
310836
1544
因為根本不需要。
05:24
So we're going to take these things,
101
312404
2203
我們會將這些產品
05:26
these artificial人造 clusters集群,
102
314631
2081
這些人工產品,
05:28
and we'll be adding加入 more varieties品種
of artificial人造 cognition認識 to our AIs認可.
103
316736
5362
在不同的 AI 上,
裝置不同的人工認知功能,
05:34
We're going to make them
very, very specific具體.
104
322507
4071
我們可以把它們的特定功能
做得相當、相當出色。
05:38
So your calculator計算器 is smarter聰明
than you are in arithmetic算術 already已經;
105
326602
6542
所以你的計算機在計算方面
比你聰明許多;
05:45
your GPS全球定位系統 is smarter聰明
than you are in spatial空間的 navigation導航;
106
333168
3697
你的 GPS 在空間導航上比你聰明得多;
05:49
Google谷歌, Bing, are smarter聰明
than you are in long-term長期 memory記憶.
107
337337
4258
Googl, Bing 的長期記憶比你強。
05:54
And we're going to take, again,
these kinds of different不同 types類型 of thinking思維
108
342339
4530
然後我們再把這些不同種類的智能,
05:58
and we'll put them into, like, a car汽車.
109
346893
1933
放在,像是,車子裡。
06:00
The reason原因 why we want to put them
in a car汽車 so the car汽車 drives驅動器,
110
348850
3057
我們之所以這麼做的原因,
06:03
is because it's not driving主動 like a human人的.
111
351931
2302
是因為它們不會像人類那樣開車,
06:06
It's not thinking思維 like us.
112
354257
1396
它們不會像人類那樣思考。
06:07
That's the whole整個 feature特徵 of it.
113
355677
1920
這是它唯一的特色。
06:09
It's not being存在 distracted分心,
114
357621
1535
它不會分心,
06:11
it's not worrying令人擔憂 about whether是否
it left the stove火爐 on,
115
359180
2754
它不用擔心瓦斯爐沒關,
06:13
or whether是否 it should have
majored主修 in finance金融.
116
361958
2138
它不用考慮要不要主修財經。
06:16
It's just driving主動.
117
364120
1153
它只會開車。
06:17
(Laughter笑聲)
118
365297
1142
(笑聲)
06:18
Just driving主動, OK?
119
366463
1841
只會開車,好嗎?
06:20
And we actually其實 might威力 even
come to advertise廣告 these
120
368328
2937
而我們最終可能會拿它來廣告
06:23
as "consciousness-free意識自由."
121
371289
1545
「無意識」。
06:24
They're without consciousness意識,
122
372858
1774
它們沒有意識,
06:26
they're not concerned關心 about those things,
123
374656
2104
它們不會關心這些瑣事,
06:28
they're not distracted分心.
124
376784
1156
它們不會分心。
06:29
So in general一般, what we're trying to do
125
377964
2966
所以,我們應該盡我們所能
06:32
is make as many許多 different不同
types類型 of thinking思維 as we can.
126
380954
4500
去嘗試做出一些不同的想法。
06:37
We're going to populate填充 the space空間
127
385804
2083
我們將會天馬行空,
06:39
of all the different不同 possible可能 types類型,
or species種類, of thinking思維.
128
387911
4159
去嘗試所有可能的思考方式。
06:44
And there actually其實 may可能 be some problems問題
129
392094
2068
也許還有一些
06:46
that are so difficult
in business商業 and science科學
130
394186
2800
相當不好解決的商業及科學問題,
06:49
that our own擁有 type類型 of human人的 thinking思維
may可能 not be able能夠 to solve解決 them alone單獨.
131
397010
4042
單憑人類自身的想法可能無法解決。
06:53
We may可能 need a two-step兩步 program程序,
132
401076
1992
我們可能需要分兩步走,
06:55
which哪一個 is to invent發明 new kinds of thinking思維
133
403092
4203
先發明出新的思考方式,
06:59
that we can work alongside並肩 of to solve解決
these really large problems問題,
134
407692
3734
再來解決這些真正的難題,
07:03
say, like dark黑暗 energy能源 or quantum量子 gravity重力.
135
411450
2918
比如說,像是暗能量或量子引力。
07:08
What we're doing
is making製造 alien外僑 intelligences智能.
136
416496
2646
我們所做的實際上
就是在創造「異形智能」。
07:11
You might威力 even think of this
as, sort分類 of, artificial人造 aliens外星人
137
419166
4069
在某種程度上,
這概念有點像是,人造異形。
07:15
in some senses感官.
138
423259
1207
07:16
And they're going to help
us think different不同,
139
424490
2300
它們將幫助我們從不同的角度思考,
07:18
because thinking思維 different不同
is the engine發動機 of creation創建
140
426814
3632
因為不同的想法是創新、
07:22
and wealth財富 and new economy經濟.
141
430470
1867
財富和新經濟的引擎。
07:25
The second第二 aspect方面 of this
is that we are going to use AIAI
142
433835
4923
第二方面:我們將用 AI
進行第二次的工業革命。
07:30
to basically基本上 make a second第二
Industrial產業 Revolution革命.
143
438782
2950
07:34
The first Industrial產業 Revolution革命
was based基於 on the fact事實
144
442135
2773
在第一次工業革命中,
是以我稱之為「人工力量」為基礎的革命。
07:36
that we invented發明 something
I would call artificial人造 power功率.
145
444932
3462
07:40
Previous以前 to that,
146
448879
1150
在此之前,
07:42
during the Agricultural農業的 Revolution革命,
147
450053
2034
在農業革命時期,
07:44
everything that was made製作
had to be made製作 with human人的 muscle肌肉
148
452111
3702
每樣東西都需要用人力
07:47
or animal動物 power功率.
149
455837
1307
或畜力完成。
07:49
That was the only way
to get anything doneDONE.
150
457565
2063
除此之外別無它法。
07:51
The great innovation革新 during
the Industrial產業 Revolution革命 was,
151
459652
2945
在工業革命期間最偉大的發明就是
07:54
we harnessed駕馭 steam蒸汽 power功率, fossil化石 fuels燃料,
152
462621
3109
我們利用水蒸氣、石化燃料
07:57
to make this artificial人造 power功率
that we could use
153
465754
3856
產生人工力量,
來做任何我們想做的事情。
08:01
to do anything we wanted to do.
154
469634
1669
08:03
So today今天 when you drive駕駛 down the highway高速公路,
155
471327
2772
今日,當你開車行駛在高速公路上,
08:06
you are, with a flick拂去 of the switch開關,
commanding司令 250 horses馬匹 --
156
474571
4525
只要輕輕撥弄開關,
就相當於在駕馭250匹馬,
08:11
250 horsepower馬力 --
157
479120
1572
或者說,250馬力。
08:12
which哪一個 we can use to build建立 skyscrapers摩天大樓,
to build建立 cities城市, to build建立 roads道路,
158
480716
4692
它可以讓我們蓋大樓、
建造城市、修建道路,
08:17
to make factories工廠 that would churn攪動 out
lines of chairs椅子 or refrigerators冰箱
159
485432
5789
開辦能夠源源不斷
生產椅子或冰箱的工廠,
這都遠遠超出人力所為。
08:23
way beyond our own擁有 power功率.
160
491245
1654
08:24
And that artificial人造 power功率 can also
be distributed分散式 on wires電線 on a grid
161
492923
6111
而且這樣的人工電力可以透過電線、電網
08:31
to every一切 home, factory, farmstead,
162
499058
3199
輸送到每一個家庭、工廠、農場,
08:34
and anybody任何人 could buy購買
that artificial人造 power功率,
163
502281
4191
讓每個人都可以買到這樣的人工電力,
只要插上插頭就可以使用。
08:38
just by plugging堵漏 something in.
164
506496
1472
08:39
So this was a source資源
of innovation革新 as well,
165
507992
2439
所以,這也是創新的來源之一,
08:42
because a farmer農民 could take
a manual手冊 hand pump,
166
510455
3418
因為農民可以為手工幫浦通上電,
08:45
and they could add this artificial人造
power功率, this electricity電力,
167
513897
2916
有了這種人工力量,
08:48
and he'd他會 have an electric電動 pump.
168
516837
1497
就變成了電動幫浦。
08:50
And you multiply that by thousands數千
or tens of thousands數千 of times,
169
518358
3318
你將這種力量擴大成千上萬倍,
08:53
and that formula was what brought us
the Industrial產業 Revolution革命.
170
521700
3159
而這個公式為我們帶來了工業革命。
08:56
All the things that we see,
all this progress進展 that we now enjoy請享用,
171
524883
3585
而我們所看到的一切、
那些我們現今享受的過程,
09:00
has come from the fact事實
that we've我們已經 doneDONE that.
172
528492
2063
幾乎都來源於此。
09:02
We're going to do
the same相同 thing now with AIAI.
173
530579
2348
現在我們也要在 AI 上做同樣的事。
09:04
We're going to distribute分發 that on a grid,
174
532951
2075
我們將用網路傳送 AI,
09:07
and now you can take that electric電動 pump.
175
535050
2374
現在好比你有一個“電泵”
09:09
You can add some artificial人造 intelligence情報,
176
537448
2968
你把”電泵“加上人工智能,
09:12
and now you have a smart聰明 pump.
177
540440
1481
你就會得到聰明的”電泵”,
09:13
And that, multiplied乘以 by a million百萬 times,
178
541945
1928
類似的改造做上幾百萬次,
09:15
is going to be this second第二
Industrial產業 Revolution革命.
179
543897
2363
就會引爆第二次的工業革命。
09:18
So now the car汽車 is going down the highway高速公路,
180
546284
2382
將來汽車行駛在高速公路上,
09:20
it's 250 horsepower馬力,
but in addition加成, it's 250 minds頭腦.
181
548690
4294
它不僅有250 匹馬力,還有 250 種腦力。
09:25
That's the auto-driven自動驅動 car汽車.
182
553008
1769
這就是自動駕駛車。
09:26
It's like a new commodity商品;
183
554801
1389
它是一種新的商品;
09:28
it's a new utility效用.
184
556214
1303
它是一種新的基礎設施。
09:29
The AIAI is going to flow
across橫過 the grid -- the cloud --
185
557541
3041
AI 將會在網路、雲端上傳輸
09:32
in the same相同 way electricity電力 did.
186
560606
1567
就跟電一樣。
09:34
So everything that we had electrified帶電,
187
562197
2380
所以之前每樣東西我們都把它們電力化,
09:36
we're now going to cognifycognify.
188
564601
1723
現在,我們要把它們認知化,
09:38
And I owe it to Jeff傑夫, then,
189
566693
1385
所以,誠如 Jeff 所說的,
09:40
that the formula
for the next下一個 10,000 start-ups創業
190
568102
3732
接下來的一萬家初創公司的公式,
09:43
is very, very simple簡單,
191
571858
1162
相當, 相當簡單,
09:45
which哪一個 is to take x and add AIAI.
192
573044
3167
就是拿某樣東西 X,加上 AI
09:49
That is the formula,
that's what we're going to be doing.
193
577100
2812
這個公式就是我們將來要做的。
09:51
And that is the way
in which哪一個 we're going to make
194
579936
3306
我們將以這種方式
09:55
this second第二 Industrial產業 Revolution革命.
195
583266
1858
創造第二次的工業革命。
09:57
And by the way -- right now, this minute分鐘,
196
585148
2154
順帶一提,目前,此時此刻,
09:59
you can log日誌 on to Google谷歌
197
587326
1169
你可以登入Google
10:00
and you can purchase採購
AIAI for six cents, 100 hits點擊.
198
588519
3882
用六美分購買 AI
來提交一百個圖像識別請求。
10:04
That's available可得到 right now.
199
592758
1604
目前已經有這項服務了。
10:06
So the third第三 aspect方面 of this
200
594386
2286
第三個形勢:
10:09
is that when we take this AIAI
and embody體現 it,
201
597315
2678
如果我們將 AI 編組起來,
10:12
we get robots機器人.
202
600017
1173
我們會得到機械人。
10:13
And robots機器人 are going to be bots機器人,
203
601214
1703
而機械人就是一些小型的任務執行器,
10:14
they're going to be doing many許多
of the tasks任務 that we have already已經 doneDONE.
204
602941
3328
它們將會取代我們現在已經在做的事。
10:20
A job工作 is just a bunch of tasks任務,
205
608357
1528
工作只是一堆任務,
10:21
so they're going to redefine重新定義 our jobs工作
206
609909
1762
所以人類的工作會被重新定義,
10:23
because they're going to do
some of those tasks任務.
207
611695
2259
因為它們會幫我們執行這些任務。
10:25
But they're also going to curate策劃
whole整個 new categories類別,
208
613978
3197
但它們也會創造出全新的分類
10:29
a whole整個 new slew of tasks任務
209
617199
2247
很多全新種類的任務,
10:31
that we didn't know
we wanted to do before.
210
619470
2457
一些我們從未聽過的工作。
10:33
They're going to actually其實
engender產生 new kinds of jobs工作,
211
621951
3637
它們實際上會催生出新的職業,
10:37
new kinds of tasks任務 that we want doneDONE,
212
625612
2271
一些我們願意從事的新工作,
10:39
just as automation自動化 made製作 up
a whole整個 bunch of new things
213
627907
3405
就像自動化所引發的許多新事物,
10:43
that we didn't know we needed需要 before,
214
631336
1834
我們之前並知道會需要它們,
10:45
and now we can't live生活 without them.
215
633194
1956
但時至今日,我們已經離不開它們了。
10:47
So they're going to produce生產
even more jobs工作 than they take away,
216
635174
3956
機器人產生的新工作
比我們被取代的工作還要多,
10:51
but it's important重要 that a lot of the tasks任務
that we're going to give them
217
639154
3434
更重要的是,我們交給它們的那些任務
10:54
are tasks任務 that can be defined定義
in terms條款 of efficiency效率 or productivity生產率.
218
642612
4572
都需要效率或生產率。
10:59
If you can specify指定 a task任務,
219
647676
1828
如果一個任務,不管是體力的還是腦力的,
可以用效率或生產率來衡量的話,
11:01
either manual手冊 or conceptual概念上的,
220
649528
2235
11:03
that can be specified規定 in terms條款
of efficiency效率 or productivity生產率,
221
651787
4780
那麽就應該交給機器人來完成。
11:08
that goes to the bots機器人.
222
656591
1777
11:10
Productivity生產率 is for robots機器人.
223
658758
2178
機器人擅長的就是生產率。
11:12
What we're really good at
is basically基本上 wasting浪費 time.
224
660960
3070
我們真正擅長的是浪費時間。
11:16
(Laughter笑聲)
225
664054
1028
(笑聲)
11:17
We're really good at things
that are inefficient低效.
226
665106
2316
我們最擅長做那些沒有效率的事情。
11:19
Science科學 is inherently本質 inefficient低效.
227
667446
3025
科學從本質上來說是低效的。
11:22
It runs運行 on that fact事實 that you have
one failure失敗 after another另一個.
228
670816
2906
它的運作方式實際上是
一次又一次的失敗,
11:25
It runs運行 on the fact事實 that you make tests測試
and experiments實驗 that don't work,
229
673746
3424
很多試驗和嘗試都徒勞無功,
11:29
otherwise除此以外 you're not learning學習.
230
677194
1442
不這樣做,你學不到東西。
11:30
It runs運行 on the fact事實
231
678660
1162
事實就是,
11:31
that there is not
a lot of efficiency效率 in it.
232
679846
2083
科學研究沒有效率可言。
11:33
Innovation革新 by definition定義 is inefficient低效,
233
681953
2779
創新從定義上來說就是低效的。
11:36
because you make prototypes原型,
234
684756
1391
因為我們需要製作原型,
11:38
because you try stuff東東 that fails失敗,
that doesn't work.
235
686171
2707
需要做各種嘗試,經歷各種失敗。
11:40
Exploration勘探 is inherently本質 inefficiency低效.
236
688902
3112
探索本質上是低效的。
11:44
Art藝術 is not efficient高效.
237
692038
1531
藝術是低效的。
11:45
Human人的 relationships關係 are not efficient高效.
238
693593
2127
人際關係也是低效的。
11:47
These are all the kinds of things
we're going to gravitate受引力作用 to,
239
695744
2940
這些都是我們喜歡做的事情,
11:50
because they're not efficient高效.
240
698708
1475
因為它們是低效的。
11:52
Efficiency效率 is for robots機器人.
241
700207
2315
要效率找機器人才對。
11:55
We're also going to learn學習
that we're going to work with these AIs認可
242
703338
4123
我們要知道,我們將和 AI 一起工作,
11:59
because they think differently不同 than us.
243
707485
1997
因為它們的思維與我們不同。
12:02
When Deep Blue藍色 beat擊敗
the world's世界 best最好 chess champion冠軍,
244
710005
4314
當深藍打敗西洋棋的世界冠軍後,
12:06
people thought it was the end結束 of chess.
245
714343
1929
人們認為西洋棋玩完了。
12:08
But actually其實, it turns out that today今天,
the best最好 chess champion冠軍 in the world世界
246
716296
4402
但事實上,如今全世界最厲害的西洋棋冠軍
12:12
is not an AIAI.
247
720722
1557
並不是 AI,
12:14
And it's not a human人的.
248
722906
1181
也不是人類,
12:16
It's the team球隊 of a human人的 and an AIAI.
249
724111
2715
而是由人類和 AI 組成的團隊。
12:18
The best最好 medical diagnostician診斷者
is not a doctor醫生, it's not an AIAI,
250
726850
4000
最棒的醫學診療師不是醫生,也不是 AI,
12:22
it's the team球隊.
251
730874
1176
而是他們組成的團隊。
12:24
We're going to be working加工 with these AIs認可,
252
732074
2149
我們將和 AI 一起工作,
12:26
and I think you'll你會 be paid支付 in the future未來
253
734247
1995
你將來的薪資,
12:28
by how well you work with these bots機器人.
254
736266
2391
很可能取決於你跟機器人合作得如何。
12:31
So that's the third第三 thing,
is that they're different不同,
255
739026
4257
這就是我想說的第三點:AI 是不同於我們的,
12:35
they're utility效用
256
743307
1165
它們是基礎設施,
12:36
and they are going to be something
we work with rather than against反對.
257
744496
3816
我們將與它們一起工作,
12:40
We're working加工 with these
rather than against反對 them.
258
748336
2639
而非競爭。
12:42
So, the future未來:
259
750999
1477
所以,未來:
12:44
Where does that take us?
260
752500
1420
AI 將帶我們到哪裡?
12:45
I think that 25 years年份 from now,
they'll他們會 look back
261
753944
3567
我想,二十五年後,
12:49
and look at our understanding理解
of AIAI and say,
262
757535
3125
人們回頭看今日我們對 AI 的理解,
他們會說:
12:52
"You didn't have AIAI. In fact事實,
you didn't even have the Internet互聯網 yet然而,
263
760684
3300
「你們那都不叫 AI,實際上,你們甚至都還沒有真正的網際網路呢!」
12:56
compared相比 to what we're going
to have 25 years年份 from now."
264
764008
2741
和25年後相比較的話
12:59
There are no AIAI experts專家 right now.
265
767849
3047
我們還沒有真正的 AI 專家。
13:02
There's a lot of money going to it,
266
770920
1699
目前有大量的資本投資在這個領域,
已經花了數十億美金;
13:04
there are billions數十億 of dollars美元
being存在 spent花費 on it;
267
772643
2268
13:06
it's a huge巨大 business商業,
268
774935
2164
這是一個巨大的產業。
13:09
but there are no experts專家, compared相比
to what we'll know 20 years年份 from now.
269
777123
4272
和20 年後相比較,我們尚未有真正的 AI 專家。
13:14
So we are just at the beginning開始
of the beginning開始,
270
782064
2885
我們還處在剛開始的開始,
13:16
we're in the first hour小時 of all this.
271
784973
2163
所有這一切才剛開始。
13:19
We're in the first hour小時 of the Internet互聯網.
272
787160
1935
我們處在網際網路的第一個小時裏。
13:21
We're in the first hour小時 of what's coming未來.
273
789119
2040
我們正處在所有事物到來的
第一個小時裏。
13:23
The most popular流行 AIAI product產品
in 20 years年份 from now,
274
791183
4153
二十年後最受人們喜愛的 AI 產品,
13:27
that everybody每個人 uses使用,
275
795360
1444
人人都會用的 AI 產品,
13:29
has not been invented發明 yet然而.
276
797499
1544
還沒有被發明出來。
13:32
That means手段 that you're not late晚了.
277
800464
2467
也就是說,你還為時未晚。
13:35
Thank you.
278
803684
1151
謝謝!
13:36
(Laughter笑聲)
279
804859
1026
(笑聲)
13:37
(Applause掌聲)
280
805909
2757
(掌聲)
Translated by Yi-Fan Yu
Reviewed by Xueting Wang

▲Back to top

ABOUT THE SPEAKER
Kevin Kelly - Digital visionary
There may be no one better to contemplate the meaning of cultural change than Kevin Kelly, whose life story reads like a treatise on the value and impacts of technology.

Why you should listen

Kelly has been publisher of the Whole Earth Review, executive editor at Wired magazine (which he co-founded, and where he now holds the title of Senior Maverick), founder of visionary nonprofits and writer on biology, business and “cool tools.” He’s renounced all material things save his bicycle (which he then rode 3,000 miles), founded an organization (the All-Species Foundation) to catalog all life on Earth, championed projects that look 10,000 years into the future (at the Long Now Foundation), and more. He’s admired for his acute perspectives on technology and its relevance to history, biology and society. His new book, The Inevitable, just published, explores 12 technological forces that will shape our future.

More profile about the speaker
Kevin Kelly | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee