06:29
TEDYouth 2015

Raymond Wang: How germs travel on planes -- and how we can stop them

レイモンド・ワン: 飛行機内の病原菌の動き方と対処法

Filmed:

レイモンド・ワンは17歳の若さで、より衛生的な未来を作ろうとしています。飛行機の空気の流れ方を、流体力学を使ってシュミレーションしたところ、心配な結果を得ました。客室でくしゃみをする乗客がいると、空気の流れが病原菌を他の乗客に運んでいくのです。ワンの作成したアニメーションは、客室内でくしゃみがどのように動くのかを描き、一度見たら忘れられないでしょう。小さなフィンを用いて空調からの流れを増やし、病原菌を含んだ空気がいつまでも循環することがないようにするという彼の提案した解決策は表彰されました。

- Inventor
Raymond Wang won the top prize in the 2015 Intel Science and Engineering Fair for his invention that circulates fresh air on planes and reduces transmission of germs between passengers. Full bio

Can I get a show of hands --
手を上げてみてください
00:13
how many of you in this room
have been on a plane in this past year?
この会場でこの1年間に
飛行機に乗られた方?
00:15
That's pretty good.
かなりいますね
00:20
Well, it turns out that you
share that experience
ということは
毎年30億人以上の人々と
00:21
with more than three billion
people every year.
同じ経験をしているのです
00:24
And when we put so many people
in all these metal tubes
飛行機がこんなにも多くの乗客を乗せて
00:27
that fly all over the world,
世界中を飛び回わると
00:30
sometimes, things like this can happen
時として
こういうことも起こりうり
00:31
and you get a disease epidemic.
伝染病にかかるのです
00:34
I first actually got into this topic
私が最初に
このテーマを取り上げたのは
00:37
when I heard about the Ebola
outbreak last year.
去年のエボラ出血熱の
大流行を聞いた時です
00:39
And it turns out that,
こんなことが分かりました
00:41
although Ebola spreads
through these more range-limited,
エボラの感染は
大粒の飛沫を経由するので
00:43
large-droplet routes,
到達範囲は狭いですが
00:46
there's all these other sorts of diseases
様々な種類の病気が
00:47
that can be spread in the airplane cabin.
飛行機の客室内で伝染しうるのです
00:49
The worst part is, when we take
a look at some of the numbers,
困ったことに
調べてみるとこんな数字が出てきて
00:51
it's pretty scary.
恐ろしくなってきます
00:54
So with H1N1,
H1N1のケースでは
00:56
there was this guy that decided
to go on the plane
感染者が飛行機を利用すると
00:57
and in the matter of a single flight
1回のフライトで
01:00
actually spread the disease
to 17 other people.
17人に感染しました
01:02
And then there was this
other guy with SARS,
SARSの感染者のケースでは
01:04
who managed to go on a three-hour flight
3時間のフライトで
01:06
and spread the disease to 22 other people.
22人に感染しました
01:08
That's not exactly my idea
of a great superpower.
これはあまり好ましい
超能力ではありません
01:11
When we take a look at this,
what we also find
さらに これらの病気を事前に検知するのが
01:15
is that it's very difficult
to pre-screen for these diseases.
非常に難しいのです
01:18
So when someone actually
goes on a plane,
実際飛行機の乗客が
01:21
they could be sick
病気だったり
01:23
and they could actually
be in this latency period
潜伏期で
01:24
in which they could actually
have the disease
症状が出る前ではあるけれども
01:27
but not exhibit any symptoms,
病原菌を持っていたりすると
01:29
and they could, in turn,
spread the disease
キャビンにいる多くの乗客に
01:31
to many other people in the cabin.
病気が感染してしまうかもしれません
01:33
How that actually works is that right now
実際どのように
感染するのでしょうか?
01:35
we've got air coming in
from the top of the cabin
青の矢印で示すように
01:37
and from the side of the cabin,
as you see in blue.
キャビンの天井や横から
空気が送られ
01:39
And then also, that air goes out
through these very efficient filters
フィルターから排出されます
フィルターの効率は高く
01:41
that eliminate 99.97 percent
of pathogens near the outlets.
排気口では病原菌を
99.97%も除去します
01:46
What happens right now, though,
お見せしているのは
01:51
is that we have this
mixing airflow pattern.
気流が渦巻くパターンです
01:52
So if someone were to actually sneeze,
くしゃみをする人がいると
01:55
that air would get swirled
around multiple times
その空気がフィルターを通って
排気されるまでに
01:56
before it even has a chance
to go out through the filter.
何度も循環します
01:59
So I thought: clearly, this
is a pretty serious problem.
私は「これは問題だ」
と思いました
02:03
I didn't have the money
to go out and buy a plane,
私にはこれを避けるために
自家用飛行機を買うお金はありません
02:07
so I decided to build a computer instead.
その代り
コンピュータのソフトを作ることにしました
02:10
It actually turns out that
with computational fluid dynamics,
コンピュータによる流体力学で
02:13
what we're able to do
is create these simulations
シュミレーションを作ってみると
02:16
that give us higher resolutions
実際に飛行機に乗って
計測するよりも
02:18
than actually physically going
in and taking readings in the plane.
より高い解像度のデータが得られます
02:20
And so how, essentially, this works
is you would start out
どのようにするのでしょうか?
02:24
with these 2D drawings --
2次元図面から始めてみましょう
02:27
these are floating around
in technical papers around the Internet.
これらはネット上で
公開されている技術文書です
02:29
I take that and then I put it
into this 3D-modeling software,
これらを3次元モデリングのソフトに
落とし込むと
02:32
really building that 3D model.
3次元モデルができます
02:35
And then I divide that model
that I just built into these tiny pieces,
そのモデルを細分した
小さな格子状の要素に分解し
02:37
essentially meshing it so that
the computer can better understand it.
コンピュータがうまく扱えるようにします
02:41
And then I tell the computer where
the air goes in and out of the cabin,
空気がキャビンの
どこから出入りするのかを入力し
02:45
throw in a bunch of physics
物理を一式投入したら
02:49
and basically sit there and wait until
the computer calculates the simulation.
コンピュータがシュミレーションを
計算するのを待つだけです
02:50
So what we get, actually,
with the conventional cabin is this:
従来のキャビンを調べて
分かったことは
02:56
you'll notice the middle person sneezing,
真ん中に座っている乗客が
くしゃみをすると
02:59
and we go "Splat!" -- it goes
right into people's faces.
「ペシャ!」とそれが
他の乗客の顔につくのです
03:02
It's pretty disgusting.
ゾッとしますね
03:06
From the front, you'll notice
those two passengers
前から見ると
その両脇に座る乗客にとって
03:08
sitting next to the central passenger
良い状態とは言えないことが
03:11
not exactly having a great time.
わかります
03:12
And when we take a look
at that from the side,
横から見ると 病原菌は
03:14
you'll also notice those pathogens
spreading across the length of the cabin.
前後の方向に広がっていくのが分かります
03:16
The first thing I thought was,
"This is no good."
「これは良くないな」と
まず思いました
03:22
So I actually conducted
more than 32 different simulations
32回以上の
シュミレーションを重ねた末
03:24
and ultimately, I came up
with this solution right here.
このソリューションに
辿り着きました
03:27
This is what I call a -- patent pending --
Global Inlet Director.
グローバル・インレット・ディレクター
と名付け 特許出願中です
03:31
With this, we're able to reduce
pathogen transmission
これにより病原菌の伝染を
03:34
by about 55 times,
55分の1まで削減でき
03:37
and increase fresh-air inhalation
by about 190 percent.
また呼吸できる新鮮な空気の割合が
190%も増えます
03:39
So how this actually works
これが実際
どう機能するかというと
03:42
is we would install this piece
of composite material
複合材料のこのピースを
03:44
into these existing spots
that are already in the plane.
飛行機内の既存のスポットに
設置します
03:47
So it's very cost-effective to install
設置の費用効率は非常に高く
03:50
and we can do this directly overnight.
一晩あれば設置可能です
03:52
All we have to do is put a couple
of screws in there and you're good to go.
2か所ネジ止めするだけです
03:54
And the results that we get
are absolutely amazing.
でも その成果には
目を見張るものがあります
03:57
Instead of having those problematic
swirling airflow patterns,
病原菌を含んだ空気が
旋回する代わりに
04:00
we can create these walls of air
乗客の間に空気の壁を作るのです
04:04
that come down in-between the passengers
乗客の間に空気の壁を作るのです
04:05
to create personalized breathing zones.
すると個別に呼吸できるエリアが出来ます
04:08
So you'll notice the middle passenger
here is sneezing again,
また真ん中の乗客が
くしゃみをしますが
04:09
but this time, we're able
to effectively push that down
今回は効率的に飛沫を
押し下げるので
04:12
to the filters for elimination.
フィルターで
除去できるのが分かります
04:15
And same thing from the side,
横からでも同様に
04:18
you'll notice we're able to directly
push those pathogens down.
病原菌が直接押し下げられるのが
分かります
04:19
So if you take a look again now
at the same scenario
同じシナリオですが
04:23
but with this innovation installed,
これを設置すると
04:27
you'll notice the middle
passenger sneezes,
真ん中の乗客が
くしゃみをしても
04:28
and this time, we're pushing
that straight down into the outlet
今回は排気口へと
まっすぐ流れるので
04:30
before it gets a chance
to infect any other people.
他の乗客に
感染することはありません
04:34
So you'll notice the two passengers
sitting next to the middle guy
だから 両脇に座っている
2人の乗客は呼吸をしても
04:37
are breathing virtually
no pathogens at all.
実質的に
病原菌に全く感染しないのです
04:40
Take a look at that from the side as well,
横から見ても同様に
とても効果的なシステムで
04:43
you see a very efficient system.
あることが分かります
04:45
And in short, with this system, we win.
要するにこのシステムは
素晴らしく効果的なのです
04:47
When we take a look at what this means,
これが意味すること―
04:51
what we see is that this not only works
if the middle passenger sneezes,
真ん中の乗客のくしゃみに
効果があるだけでなく
04:54
but also if the window-seat
passenger sneezes
窓側や通路側の
乗客のくしゃみにも
04:57
or if the aisle-seat passenger sneezes.
効果があることです
05:00
And so with this solution, what does
this mean for the world?
世界にとって
このソリューションの意味とは何でしょうか?
05:03
Well, when we take a look at this
コンピュータ・シュミレーションを
05:06
from the computer simulation
into real life,
実際に当て嵌めてみましょう
05:09
we can see with this 3D model
that I built over here,
私が3D印刷技術を使って作った
3次元モデルで
05:12
essentially using 3D printing,
見ることができます
05:15
we can see those same
airflow patterns coming down,
同様に空気の流れが
乗客の方に
05:17
right to the passengers.
流れているのが分かります
05:20
In the past, the SARS epidemic
actually cost the world
過去にSARSが流行した時は
05:22
about 40 billion dollars.
世界で5兆円規模の
損失がありました
05:26
And in the future,
将来的に
05:27
a big disease outbreak
could actually cost the world
大きな病気が大流行すると
損失は360兆円以上
05:29
in excess of three trillion dollars.
になるかもしれません
05:31
So before, it used to be that you had
to take an airplane out of service
以前なら飛行機に
何か改良を加えるには
05:33
for one to two months,
1、2カ月程運休させて
05:37
spend tens of thousands of man hours
and several million dollars
数万時間の工数と数億円を
05:39
to try to change something.
費す必要がありました
05:42
But now, we're able to install
something essentially overnight
でも今は
これを一晩で設置できて
05:44
and see results right away.
成果はすぐに現れるのです
05:47
So it's really now a matter of taking
this through to certification,
これを実用化するには認定や
05:49
flight testing,
フライト・テスト
05:52
and going through all of these
regulatory approvals processes.
そして規制当局の承認を
得なくてはなりません
05:54
But it just really goes to show
that sometimes the best solutions
しかし お見せしましたように
時として最もシンプルなのが
05:57
are the simplest solutions.
ベスト・ソリューションなのです
06:00
And two years ago, even,
2年前でしたら
06:01
this project would not have happened,
このプロジェクトはありませんでした
06:05
just because the technology then
wouldn't have supported it.
当時の技術では
できなかったことなのです
06:06
But now with advanced computing
でも今はコンピュータの進歩や
06:09
and how developed our Internet is,
インターネットの発展のお蔭で
06:12
it's really the golden era for innovation.
まさしくイノベーションの
黄金時代なのです
06:14
And so the question I ask all
of you today is: why wait?
今日皆さんに聞きたいこと―
「なぜ待つのですか?」
06:17
Together, we can build the future today.
一緒に今日から
未来を作っていきましょう
06:20
Thanks.
ありがとう
06:23
(Applause)
(拍手)
06:24
Translated by Masako Kigami
Reviewed by Eriko T.

▲Back to top

About the Speaker:

Raymond Wang - Inventor
Raymond Wang won the top prize in the 2015 Intel Science and Engineering Fair for his invention that circulates fresh air on planes and reduces transmission of germs between passengers.

Why you should listen

Raymond Wang is a Canadian youth innovator who is passionate about science, technology, engineering and entrepreneurship. He is one of Canada's Top 20 Under 20, and most recently, the recipient of the Gordon E. Moore award for the Top Project at the 2015 Intel International Science and Engineering Fair (ISEF).

Raymond enjoys exploring STEM and promoting global sustainability. His latest engineering innovations, including his work with aircraft cabin airflow and his inventions of the “Weather Harvester,” “Smart Knee Assistant” and "Smart Bin,” have achieved international recognition.

Raymond is enthusiastic about inspiring others to pursue STEM opportunities. He actively reaches out to the local community through camps & associations, in addition to communities around the world through YouTube & Modern Media.

Having a strong passion for sustainability, Raymond has founded Sustainable Youth Canada, a youth-led non-profit organization dedicated to empowering young people in Affiliated Regions established from coast to coast to be leaders in tackling issues with environmental and energy sustainability.

In his spare time, Raymond enjoys exploring music as both a National Youth Band clarinetist and an avid pianist. He is also a keen director of films and videos; many of his productions have been recognized at local film festivals. 

Raymond envisions himself pursuing a career in science, applying research and innovation with a business approach to do his part in bettering the world.

More profile about the speaker
Raymond Wang | Speaker | TED.com