Anthony Goldbloom: The jobs we'll lose to machines -- and the ones we won't
Anthony Goldbloom: Los trabajos que se perderán por las máquinas y los que no
Anthony Goldbloom crowdsources solutions to difficult problems using machine learning. Full bio
Double-click the English transcript below to play the video.
and her dad is a lawyer.
serán drásticamente diferentes.
are going to look dramatically different.
de la Universidad de Oxford
did a study on the future of work.
sobre el futuro del trabajo.
in every two jobs have a high risk
puestos de trabajo tienen un alto riesgo
parte de esta alteración.
of this disruption.
of artificial intelligence.
la inteligencia artificial.
aprendan de datos
that humans can do.
que los humanos podemos hacer.
on the cutting edge of machine learning.
del aprendizaje automático.
hundreds of thousands of experts
para la industria y el mundo académico.
for industry and academia.
sobre qué pueden hacer las máquinas,
on what machines can do,
automate or threaten.
pueden automatizar o amenazar.
su camino en la industria en los años 90.
into industry in the early '90s.
credit risk from loan applications,
crédito de las solicitudes de préstamo,
leyendo caracteres escritos a mano
handwritten characters from zip codes.
dramatic breakthroughs.
hemos hecho grandes avances.
of far, far more complex tasks.
hacer tareas mucho más complejas.
that could grade high-school essays.
evaluar los ensayos del instituto.
were able to match the grades
pudieron igualar las calificaciones
an even more difficult challenge.
un reto aún más difícil.
and diagnose an eye disease
y diagnosticar una enfermedad ocular
were able to match the diagnoses
pudieron igualar los diagnósticos
las máquinas superarán a los humanos
machines are going to outperform humans
over a 40-year career.
durante un tiempo de 40 años.
or see millions of eyes
de ensayos o ver a millones de ojos
against machines
de competir contra las máquinas
y de gran volumen.
que las máquinas no pueden hacer.
that machines can't do.
very little progress
they haven't seen many times before.
que no han visto muchas veces antes.
del aprendizaje automático
of machine learning
de grandes volúmenes de datos del pasado.
from large volumes of past data.
seemingly disparate threads
los hilos aparentemente dispares
que nunca antes hemos visto.
working on radar during World War II,
el radar durante la 2ª Guerra Mundial,
was melting his chocolate bar.
derretía su barra de chocolate.
de la radiación electromagnética
of electromagnetic radiation
the microwave oven.
El horno de microondas.
example of creativity.
notable de creatividad.
happens for each of us in small ways
ocurre en cada uno de nosotros
miles de veces por día.
competir con nosotros
novel situations,
a situaciones nuevas,
on the human tasks
esto tienen un límite fundamental
for the future of work?
para el futuro del trabajo?
in the answer to a single question:
en la respuesta a una sola pregunta:
to frequent, high-volume tasks,
a las tareas frecuentes y de gran volumen,
tackling novel situations?
hacer frente a situaciones nuevas?
las máquinas son más y más inteligentes.
machines are getting smarter and smarter.
They diagnose certain diseases.
Diagnostican ciertas enfermedades.
they're going to conduct our audits,
harán nuestras auditorías,
from legal contracts.
de los contratos legales.
contadores y abogados.
for complex tax structuring,
la estructuración fiscal compleja,
sean más difíciles de conseguir.
on novel situations.
en situaciones nuevas.
needs to grab consumers' attention.
de marketing debe captar
se ha de destacar de la multitud.
finding gaps in the market,
de negocios vacíos en el mercado,
the copy behind our marketing campaigns,
detrás de las campañas de marketing,
our business strategy.
la estrategia de negocio.
que decidas hacer,
ahead of the machines.
por delante de las máquinas.
ABOUT THE SPEAKER
Anthony Goldbloom - Machine learning expertAnthony Goldbloom crowdsources solutions to difficult problems using machine learning.
Why you should listen
Anthony Goldbloom is the co-founder and CEO of Kaggle. Kaggle hosts machine learning competitions, where data scientists download data and upload solutions to difficult problems. Kaggle has a community of over 600,000 data scientists and has worked with companies ranging Facebook to GE on problems ranging from predicting friendships to flight arrival times.
Before Kaggle, Anthony worked as an econometrician at the Reserve Bank of Australia, and before that the Australian Treasury. In 2011 and 2012, Forbes named Anthony one of the 30 under 30 in technology; in 2013 the MIT Tech Review named him one of top 35 innovators under the age of 35, and the University of Melbourne awarded him an Alumni of Distinction Award. He holds a first call honors degree in Econometrics from the University of Melbourne.
Anthony Goldbloom | Speaker | TED.com