ABOUT THE SPEAKER
Anthony Goldbloom - Machine learning expert
Anthony Goldbloom crowdsources solutions to difficult problems using machine learning.

Why you should listen

Anthony Goldbloom is the co-founder and CEO of Kaggle. Kaggle hosts machine learning competitions, where data scientists download data and upload solutions to difficult problems. Kaggle has a community of over 600,000 data scientists and has worked with companies ranging Facebook to GE on problems ranging from predicting friendships to flight arrival times.

Before Kaggle, Anthony worked as an econometrician at the Reserve Bank of Australia, and before that the Australian Treasury. In 2011 and 2012, Forbes named Anthony one of the 30 under 30 in technology; in 2013 the MIT Tech Review named him one of top 35 innovators under the age of 35, and the University of Melbourne awarded him an Alumni of Distinction Award. He holds a first call honors degree in Econometrics from the University of Melbourne.  

More profile about the speaker
Anthony Goldbloom | Speaker | TED.com
TED2016

Anthony Goldbloom: The jobs we'll lose to machines -- and the ones we won't

Anthony Goldbloom: 我们的工作将被机器取代,但也有例外

Filmed:
2,568,213 views

机器学习不再是完成简单的任务,如评估信用风险和检索邮件 - 如今,它能够承担更复杂的工作,如评判作文和诊断疾病。 这些进步带来了一个令人不安的问题:未来机器人会抢走你的工作吗?
- Machine learning expert
Anthony Goldbloom crowdsources solutions to difficult problems using machine learning. Full bio

Double-click the English transcript below to play the video.

00:12
So this is my niece侄女.
0
968
1262
这是我的侄女。
00:14
Her name名称 is YahliYahli.
1
2644
1535
她叫Yahl。
她只有九个月大。
00:16
She is nine months个月 old.
2
4203
1511
00:18
Her mum沉默 is a doctor医生,
and her dad is a lawyer律师.
3
6201
2528
她妈妈是一名医生,
爸爸是一名律师。
00:21
By the time YahliYahli goes to college学院,
4
9269
2006
等到Yahli上大学的时候,
像她父母这样的工作将面目全非。
00:23
the jobs工作 her parents父母 do
are going to look dramatically显着 different不同.
5
11299
3253
00:27
In 2013, researchers研究人员 at Oxford牛津 University大学
did a study研究 on the future未来 of work.
6
15347
5073
2013年,牛津大学的研究人员
做了一项关于未来就业的研究。
00:32
They concluded总结 that almost几乎 one
in every一切 two jobs工作 have a high risk风险
7
20766
4139
他们得出结论:差不多将近
一半的工作都有被机器
自动化取代的危险。
00:36
of being存在 automated自动化 by machines.
8
24929
1824
00:40
Machine learning学习 is the technology技术
9
28388
1905
而机器学习
应对这种颠覆负主要责任。
00:42
that's responsible主管 for most
of this disruption瓦解.
10
30317
2278
它是人工智能最强大的分支。
00:44
It's the most powerful强大 branch
of artificial人造 intelligence情报.
11
32619
2790
允许机器从现有数据中学习,
00:47
It allows允许 machines to learn学习 from data数据
12
35433
1882
00:49
and mimic模仿者 some of the things
that humans人类 can do.
13
37339
2592
并模仿人类的所作所为。
我的公司Kaggle
专注于尖端的机器学习。
00:51
My company公司, KaggleKaggle, operates操作
on the cutting切割 edge边缘 of machine learning学习.
14
39955
3415
我们召集了成千上万的专家
00:55
We bring带来 together一起
hundreds数以百计 of thousands数千 of experts专家
15
43394
2386
正为工业和学术界
寻找重要问题的答案。
00:57
to solve解决 important重要 problems问题
for industry行业 and academia学术界.
16
45804
3118
01:01
This gives us a unique独特 perspective透视
on what machines can do,
17
49279
3222
因此,我们可以从独特的视角来观察,
机器可以做什么,不可以做什么,
01:04
what they can't do
18
52525
1235
哪些工作可以被自动化或受到威胁。
01:05
and what jobs工作 they might威力
automate自动化 or threaten威胁.
19
53784
2939
01:09
Machine learning学习 started开始 making制造 its way
into industry行业 in the early '90s.
20
57316
3550
机器学习是在90年代初
进入人们的视野。
一开始,它只是执行
一些相对简单的任务。
01:12
It started开始 with relatively相对 simple简单 tasks任务.
21
60890
2124
01:15
It started开始 with things like assessing评估
credit信用 risk风险 from loan贷款 applications应用,
22
63406
4115
像评估贷款申请的信用风险,
通过识别手写的邮政编码来检索邮件。
01:19
sorting排序 the mail邮件 by reading
handwritten手写 characters人物 from zip压缩 codes代码.
23
67545
4053
01:24
Over the past过去 few少数 years年份, we have made制作
dramatic戏剧性 breakthroughs突破.
24
72036
3169
在过去几年里,我们取得了突破性进展。
01:27
Machine learning学习 is now capable
of far, far more complex复杂 tasks任务.
25
75586
3916
现在,机器学习可以
完成非常复杂的任务。
01:31
In 2012, KaggleKaggle challenged挑战 its community社区
26
79860
3231
2012年,Kaggle给当地学校出了个难题,
01:35
to build建立 an algorithm算法
that could grade年级 high-school中学 essays随笔.
27
83115
3189
设计一个算法来评判高中作文。
获胜的算法给出的分数居然
01:38
The winning胜利 algorithms算法
were able能够 to match比赛 the grades等级
28
86328
2604
和真正老师给出的分数相符。
01:40
given特定 by human人的 teachers教师.
29
88956
1665
01:43
Last year, we issued发行
an even more difficult challenge挑战.
30
91092
2984
去年,我们出了一道更难的题。
你能从拍摄出的眼睛图像中
诊断出糖尿病性
01:46
Can you take images图片 of the eye
and diagnose诊断 an eye disease疾病
31
94100
2953
视网膜病变吗?
01:49
called diabetic糖尿病患者 retinopathy视网膜病变?
32
97077
1694
01:51
Again, the winning胜利 algorithms算法
were able能够 to match比赛 the diagnoses诊断
33
99164
4040
再一次,获胜的演算法给出的诊断
和眼科医生的诊断相符。
01:55
given特定 by human人的 ophthalmologists眼科医生.
34
103228
1825
01:57
Now, given特定 the right data数据,
machines are going to outperform跑赢大市 humans人类
35
105561
3212
类似于这样的任务,
只要给定正确的数据,
机器将完全超越人类。
02:00
at tasks任务 like this.
36
108797
1165
02:01
A teacher老师 might威力 read 10,000 essays随笔
over a 40-year-年 career事业.
37
109986
3992
一位老师在40年的职业生涯中
可能审阅一万篇作文。
02:06
An ophthalmologist眼科医生 might威力 see 50,000 eyes眼睛.
38
114407
2360
一名眼科医生,大概可以检查
5万只眼睛。
但在短短几分钟之内,
机器可以审阅百万篇文章
02:08
A machine can read millions百万 of essays随笔
or see millions百万 of eyes眼睛
39
116791
3913
或检查数百万只眼睛。
02:12
within minutes分钟.
40
120728
1276
02:14
We have no chance机会 of competing竞争
against反对 machines
41
122456
2858
对于频繁,大批量的任务
我们无法与机器抗衡。
02:17
on frequent频繁, high-volume高音量 tasks任务.
42
125338
2321
02:20
But there are things we can do
that machines can't do.
43
128665
3724
但有些事情机器却无能为力。
02:24
Where machines have made制作
very little progress进展
44
132791
2200
机器在解决新情况方面
进展甚微。
02:27
is in tackling抢断 novel小说 situations情况.
45
135015
1854
它们还不能处理未曾反复接触的事情。
02:28
They can't handle处理 things
they haven't没有 seen看到 many许多 times before.
46
136893
3899
02:33
The fundamental基本的 limitations限制
of machine learning学习
47
141321
2584
机器学习致命的局限性在于
02:35
is that it needs需求 to learn学习
from large volumes of past过去 data数据.
48
143929
3394
它需要从大量已知的数据中总结经验。
人类则不然。
02:39
Now, humans人类 don't.
49
147347
1754
我们有一种能把看似毫不相关的事物
联系起来的能力,
02:41
We have the ability能力 to connect
seemingly似乎 disparate不同 threads线程
50
149125
3030
从而解决从未见过的问题
02:44
to solve解决 problems问题 we've我们已经 never seen看到 before.
51
152179
2238
02:46
Percy珀西 Spencer斯宾塞 was a physicist物理学家
working加工 on radar雷达 during World世界 War战争 IIII,
52
154808
4411
Percy Spencer是一个物理学家,
在二战期间从事雷达的研究工作,
他注意到磁控管融化了他的巧克力。
02:51
when he noticed注意到 the magnetron磁控
was melting融化 his chocolate巧克力 bar酒吧.
53
159243
3013
02:54
He was able能够 to connect his understanding理解
of electromagnetic电磁 radiation辐射
54
162970
3295
他从对电磁辐射的理解
联想到烹饪,
02:58
with his knowledge知识 of cooking烹饪
55
166289
1484
因此发明了——猜猜是什么?——
微波炉。
02:59
in order订购 to invent发明 -- any guesses猜测? --
the microwave微波 oven烤箱.
56
167797
3258
03:03
Now, this is a particularly尤其 remarkable卓越
example of creativity创造力.
57
171444
3073
这是个非常杰出的创新例子。
但这种跨界转型,每天正以
难以察觉的方式在我们身边
03:06
But this sort分类 of cross-pollination异花受粉
happens发生 for each of us in small ways方法
58
174541
3664
发生成千上百次。
03:10
thousands数千 of times per day.
59
178229
1828
03:12
Machines cannot不能 compete竞争 with us
60
180501
1661
在创新方面
03:14
when it comes to tackling抢断
novel小说 situations情况,
61
182186
2251
机器无法与我们抗衡。
这将使机器自动化取代人工
03:16
and this puts看跌期权 a fundamental基本的 limit限制
on the human人的 tasks任务
62
184461
3117
03:19
that machines will automate自动化.
63
187602
1717
受到限制。
03:22
So what does this mean
for the future未来 of work?
64
190041
2405
那么这对未来的工作意味着什么呢?
03:24
The future未来 state of any single job工作 lies
in the answer回答 to a single question:
65
192804
4532
未来工作的状态
完全取决于一个问题:
这种工作在多大程度上可以简化为
频繁,大批量的任务,
03:29
To what extent程度 is that job工作 reducible还原
to frequent频繁, high-volume高音量 tasks任务,
66
197360
4981
又涉及多少对创新能力的要求?
03:34
and to what extent程度 does it involve涉及
tackling抢断 novel小说 situations情况?
67
202365
3253
03:37
On frequent频繁, high-volume高音量 tasks任务,
machines are getting得到 smarter聪明 and smarter聪明.
68
205975
4035
对于那些频繁,大批量的任务,
机器变得越来越智能。
如今, 它们可以评判作文,
诊断某些疾病。
03:42
Today今天 they grade年级 essays随笔.
They diagnose诊断 certain某些 diseases疾病.
69
210034
2714
再过几年,它们将可以进行审计,
03:44
Over coming未来 years年份,
they're going to conduct进行 our audits审计,
70
212772
3157
将能审阅法律合同样本。
03:47
and they're going to read boilerplate样板
from legal法律 contracts合同.
71
215953
2967
尽管会计师和律师还是需要的。
03:50
Accountants会计师 and lawyers律师 are still needed需要.
72
218944
1997
但他们只需要研究复杂的税收结构,
03:52
They're going to be needed需要
for complex复杂 tax structuring结构,
73
220965
2682
或无先例的诉讼过程。
03:55
for pathbreaking开创性 litigation诉讼.
74
223671
1357
但机器将会挤占他们的位置,
03:57
But machines will shrink收缩 their ranks行列
75
225052
1717
增加就业难度。
03:58
and make these jobs工作 harder更难 to come by.
76
226793
1872
如上所述,
04:00
Now, as mentioned提到,
77
228689
1151
在创新方面机器没有取得太大进展。
04:01
machines are not making制造 progress进展
on novel小说 situations情况.
78
229864
2949
04:04
The copy复制 behind背后 a marketing营销 campaign运动
needs需求 to grab consumers'消费者 attention注意.
79
232837
3457
营销文案需要抓住消费者的心理。
脱颖而出是关键。
04:08
It has to stand out from the crowd人群.
80
236318
1715
商业策略需要找到市场上
04:10
Business商业 strategy战略 means手段
finding发现 gaps空白 in the market市场,
81
238057
2444
还无人问津的空白。
04:12
things that nobody没有人 else其他 is doing.
82
240525
1756
人类将是营销文案的创造者,
04:14
It will be humans人类 that are creating创建
the copy复制 behind背后 our marketing营销 campaigns活动,
83
242305
4118
人类才能推动商业战略发展。
04:18
and it will be humans人类 that are developing发展
our business商业 strategy战略.
84
246447
3517
所以Yahli,无论你将来决定做什么,
04:21
So YahliYahli, whatever随你 you decide决定 to do,
85
249988
2817
让每一天都带给你新的挑战。
04:24
let every一切 day bring带来 you a new challenge挑战.
86
252829
2361
04:27
If it does, then you will stay
ahead of the machines.
87
255587
2809
如果是那样,
你的未来将无法被机器取代。
04:31
Thank you.
88
259126
1176
谢谢。
(掌声 )
04:32
(Applause掌声)
89
260326
3104
Translated by Jing Peng
Reviewed by Julia Xu

▲Back to top

ABOUT THE SPEAKER
Anthony Goldbloom - Machine learning expert
Anthony Goldbloom crowdsources solutions to difficult problems using machine learning.

Why you should listen

Anthony Goldbloom is the co-founder and CEO of Kaggle. Kaggle hosts machine learning competitions, where data scientists download data and upload solutions to difficult problems. Kaggle has a community of over 600,000 data scientists and has worked with companies ranging Facebook to GE on problems ranging from predicting friendships to flight arrival times.

Before Kaggle, Anthony worked as an econometrician at the Reserve Bank of Australia, and before that the Australian Treasury. In 2011 and 2012, Forbes named Anthony one of the 30 under 30 in technology; in 2013 the MIT Tech Review named him one of top 35 innovators under the age of 35, and the University of Melbourne awarded him an Alumni of Distinction Award. He holds a first call honors degree in Econometrics from the University of Melbourne.  

More profile about the speaker
Anthony Goldbloom | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee