ABOUT THE SPEAKER
Anthony Goldbloom - Machine learning expert
Anthony Goldbloom crowdsources solutions to difficult problems using machine learning.

Why you should listen

Anthony Goldbloom is the co-founder and CEO of Kaggle. Kaggle hosts machine learning competitions, where data scientists download data and upload solutions to difficult problems. Kaggle has a community of over 600,000 data scientists and has worked with companies ranging Facebook to GE on problems ranging from predicting friendships to flight arrival times.

Before Kaggle, Anthony worked as an econometrician at the Reserve Bank of Australia, and before that the Australian Treasury. In 2011 and 2012, Forbes named Anthony one of the 30 under 30 in technology; in 2013 the MIT Tech Review named him one of top 35 innovators under the age of 35, and the University of Melbourne awarded him an Alumni of Distinction Award. He holds a first call honors degree in Econometrics from the University of Melbourne.  

More profile about the speaker
Anthony Goldbloom | Speaker | TED.com
TED2016

Anthony Goldbloom: The jobs we'll lose to machines -- and the ones we won't

Anthony Goldbloom: 機器能夠或不能夠取代我哋嘅工作

Filmed:
2,568,213 views

今日機器學習已經唔再限於好似評估信用風險、分揀郵件咁簡單嘅工作。佢可以完成更加複雜嘅任務,例如評分同診斷疾病。一個難題隨著呢啲科技進步而嚟:未來機器人會唔會取代你嘅工作?
- Machine learning expert
Anthony Goldbloom crowdsources solutions to difficult problems using machine learning. Full bio

Double-click the English transcript below to play the video.

00:12
So this is my niece侄女.
0
968
1262
呢個係我嘅姪女/外甥女
00:14
Her name名字 is YahliYahli.
1
2644
1535
佢叫做 Yahli
00:16
She is nine months old.
2
4203
1511
佢依家 9 個月大
00:18
Her mum亞媽 is a doctor醫生,
and her dad老竇 is a lawyer律師.
3
6201
2528
佢嘅媽咪係醫生,爹哋係律師
00:21
By the time YahliYahli goes to college大學,
4
9269
2006
等到 Yahli 去返大學嗰時
00:23
the jobs工作 her parents父母 do
are going to look dramatically大幅 different不同.
5
11299
3253
佢父母依家做嘅工作將會有巨變
00:27
In 2013, researchers研究者 at Oxford牛津 University大學
did a study研究 on the future未來 of work.
6
15347
5073
牛津大學嘅研究人員喺2013年
做咗一個關於未來工作嘅研究
00:32
They concluded結束 that almost爭 D one
in every two jobs工作 have a high risk風險
7
20766
4139
佢哋推斷差不多每兩份工作
就有一份會面臨畀機器取代嘅危險
00:36
of being automated自動化 by machines機器.
8
24929
1824
00:40
Machine learning學習 is the technology技術
9
28388
1905
「機器學習」科技就係呢種威脅嘅元兇
00:42
that's responsible負責 for most
of this disruption中斷.
10
30317
2278
00:44
It's the most powerful強大 branch分公司
of artificial人工 intelligence情報.
11
32619
2790
佢係人工智能最強勁嘅學科分支
00:47
It allows允許 machines機器 to learn學習 from data數據
12
35433
1882
佢令到機器可以從數據中學習
00:49
and mimic some of the things
that humans人類 can do.
13
37339
2592
模仿有啲人類會做嘅事
00:51
My company公司, KaggleKaggle, operates經營
on the cutting切割 edge邊緣 of machine learning學習.
14
39955
3415
我間公司 Kaggle 企喺機器學習嘅最前線
00:55
We bring together一起
hundreds數以百計 of thousands數以千計 of experts專家
15
43394
2386
我哋匯聚咗成千上萬嘅專家
00:57
to solve解決 important重要 problems個問題
for industry行業 and academia學術界.
16
45804
3118
嚟解決工業、學術嘅重大問題
01:01
This gives us a unique獨特 perspective視角
on what machines機器 can do,
17
49279
3222
因為咁樣令我哋對機器有獨特嘅見解
知道乜嘢機器可以做
01:04
what they can't do
18
52525
1235
同乜嘢唔可以做
01:05
and what jobs工作 they might可能
automate自動化 or threaten威脅.
19
53784
2939
乜嘢工可以自動化同乜嘢工受到威脅
01:09
Machine learning學習 started初時 making決策 its way
into industry行業 in the early早期 '90s.
20
57316
3550
機器學習喺90年代初期喺工業起步
01:12
It started初時 with relatively相對 simple簡單 tasks任務.
21
60890
2124
一開始做啲比較簡單嘅任務
01:15
It started初時 with things like assessing評估
credit信用 risk風險 from loan貸款 applications應用,
22
63406
4115
例如評估貸款申請嘅信用風險
01:19
sorting排序 the mail郵件 by reading閲讀
handwritten手寫 characters字符 from zipZip codes代碼.
23
67545
4053
識別手寫嘅郵政編碼嚟揀信
01:24
Over the past過去 few幾個 years, we have made作出
dramatic戲劇性 breakthroughs突破.
24
72036
3169
喺過去幾年,我哋取得驚人嘅突破
01:27
Machine learning學習 is now capable可以
of far, far more complex複雜 tasks任務.
25
75586
3916
依家機器學習已經做到更加複雜嘅任務
01:31
In 2012, KaggleKaggle challenged挑戰 its community社區
26
79860
3231
2012 年, Kaggle 考驗佢嘅團隊
01:35
to build建立 an algorithm算法
that could grade年級 high-school高中 essays論文.
27
83115
3189
要佢哋設計一條批改高中習作嘅算法
01:38
The winning贏得 algorithms算法
were able to match匹配 the grades成績
28
86328
2604
獲勝算法嘅打分
能夠同人類老師嘅打分相符
01:40
given by human人類 teachers教師.
29
88956
1665
01:43
Last year, we issued發出
an even more difficult困難 challenge挑戰.
30
91092
2984
舊年,我哋提出咗更難嘅挑戰
01:46
Can you take images圖像 of the eye眼睛
and diagnose診斷 an eye眼睛 disease疾病
31
94100
2953
你可唔可以僅憑眼睛嘅圖像就診斷出
01:49
called diabetic糖尿病 retinopathy視網膜病變?
32
97077
1694
病人患有「糖尿病視網膜病變」?
01:51
Again, the winning贏得 algorithms算法
were able to match匹配 the diagnoses診斷
33
99164
4040
同樣,勝出嘅算法做嘅診斷結果
可以同人類眼科醫生嘅診斷結果符合
01:55
given by human人類 ophthalmologists眼科醫生.
34
103228
1825
01:57
Now, given the right data數據,
machines機器 are going to outperform勝過 humans人類
35
105561
3212
依家只要輸入正確數據,機器就可以
比人類做好似呢啲工作更加出色
02:00
at tasks任務 like this.
36
108797
1165
02:01
A teacher先生 might可能 read 10,000 essays論文
over a 40-year career職業.
37
109986
3992
喺 40 職業生涯入面
一位老師可以批改一萬份習作
02:06
An ophthalmologist眼科醫生 might可能 see 50,000 eyes眼睛.
38
114407
2360
一位眼科醫生可以為五萬雙眼睛診斷
02:08
A machine can read millions数百万 of essays論文
or see millions数百万 of eyes眼睛
39
116791
3913
而一部機器可以喺幾分鐘之內
批改成千上萬份習作
02:12
within minutes分鐘.
40
120728
1276
或者檢查數以百萬對嘅眼睛
02:14
We have no chance機會 of competing競爭
against machines機器
41
122456
2858
對於頻繁、大量嘅工作
02:17
on frequent頻繁, high-volume高容量 tasks任務.
42
125338
2321
我哋簡直無可能同機器競爭
02:20
But there are things we can do
that machines機器 can't do.
43
128665
3724
但係有啲嘢係機器無法取代我哋嘅
02:24
Where machines機器 have made作出
very little progress進展
44
132791
2200
就係當要處理新嘅情況時
02:27
is in tackling解決 novel小說 situations情況.
45
135015
1854
機器往往一籌莫展
02:28
They can't handle處理 things
they haven't seen看到 many好多 times before.
46
136893
3899
佢哋只可以處理多次出現嘅情況
02:33
The fundamental基本 limitations限制
of machine learning學習
47
141321
2584
機器學習嘅基本限制在於
02:35
is that it needs需要 to learn學習
from large volumes of past過去 data數據.
48
143929
3394
佢需要通過以前大量嘅數據嚟學習
02:39
Now, humans人類 don't.
49
147347
1754
但係,人類唔需要
02:41
We have the ability能力 to connect連接
seemingly看似 disparate不同 threads线程
50
149125
3030
我哋有能力串連看似無關嘅線索
02:44
to solve解決 problems個問題 we've我哋都 never seen看到 before.
51
152179
2238
嚟解決我哋從未遇見嘅情況
02:46
Percy珀西 Spencer斯宾塞 was a physicist物理學家
working工作 on radar雷達 during World世界 War戰爭 II第二,
52
154808
4411
Percy Spencer 係一名研究
雷達嘅物理學家
二戰時期佢發現磁電管可以融化朱古力
02:51
when he noticed注意 the magnetron磁控
was melting融化 his chocolate巧克力 bar酒吧.
53
159243
3013
02:54
He was able to connect連接 his understanding理解
of electromagnetic電磁 radiation輻射
54
162970
3295
佢將自己對電磁輻射嘅理解
02:58
with his knowledge知識 of cooking烹飪
55
166289
1484
同烹飪知識結合起嚟
02:59
in order to invent發明 -- any guesses猜測? --
the microwave微波 oven焗爐.
56
167797
3258
發明咗..要唔要估下?就係微波爐
呢個發明嘅例子,令人拍案叫絕
03:03
Now, this is a particularly特別 remarkable顯著
example例子 of creativity創造力.
57
171444
3073
03:06
But this sort排序 of cross-pollination交叉授粉
happens發生 for each每個 of us in small ways方式
58
174541
3664
但係呢種「異花傳粉」每一天都會
喺我哋生活細微處發生無數次
03:10
thousands數以千計 of times per day.
59
178229
1828
03:12
Machines機器 cannot唔可以 compete競爭 with us
60
180501
1661
要處理未知情況嗰陣
03:14
when it comes to tackling解決
novel小說 situations情況,
61
182186
2251
機器比唔上我哋
03:16
and this puts a fundamental基本 limit限制
on the human人類 tasks任務
62
184461
3117
咁樣做成咗機器取代
人類工作嘅基本限制
03:19
that machines機器 will automate自動化.
63
187602
1717
03:22
So what does this mean
for the future未來 of work?
64
190041
2405
所以佢對未來工作嘅意義係乜嘢?
03:24
The future未來 state狀態 of any single job工作 lies謊言
in the answer回答 to a single question個問題:
65
192804
4532
任何工作嘅前景都取決於一個問題
03:29
To what extent程度 is that job工作 reducible還原
to frequent頻繁, high-volume高容量 tasks任務,
66
197360
4981
呢份工可以減輕頻密又
大量嘅任務到乜嘢程度
03:34
and to what extent程度 does it involve涉及
tackling解決 novel小說 situations情況?
67
202365
3253
又喺幾大程度上會遇到未知情況?
03:37
On frequent頻繁, high-volume高容量 tasks任務,
machines機器 are getting得到 smarter and smarter.
68
205975
4035
機器處理頻繁又大量嘅任務越來越叻
03:42
Today今日 they grade年級 essays論文.
They diagnose診斷 certain一定 diseases疾病.
69
210034
2714
依家佢哋可以批改習作、診斷一啲疾病
03:44
Over coming years,
they're going to conduct進行 our audits審計,
70
212772
3157
幾年之後,雖然機器可以幫我哋做審計
03:47
and they're going to read boilerplate樣板
from legal法律 contracts合同.
71
215953
2967
閱讀法律合同中嘅樣板
03:50
Accountants會計師 and lawyers律師 are still needed需要.
72
218944
1997
但我哋依然需要會計師同律師
分析複雜嘅稅務架構
03:52
They're going to be needed需要
for complex複雜 tax structuring構建,
73
220965
2682
探索訴訟法律
03:55
for pathbreaking開創性 litigation訴訟.
74
223671
1357
但係機器會降低工作對人嘅要求
03:57
But machines機器 will shrink收縮 their佢哋 ranks行列
75
225052
1717
令人更難就業
03:58
and make these jobs工作 harder to come by.
76
226793
1872
依家,好似之前所講
04:00
Now, as mentioned提到,
77
228689
1151
機器喺處理未知情況方面毫無進展
04:01
machines機器 are not making決策 progress進展
on novel小說 situations情況.
78
229864
2949
04:04
The copy複製 behind背後 a marketing營銷 campaign運動
needs需要 to grab抓住 consumers'消費者 ' attention注意.
79
232837
3457
市場營銷為了捉住消費者嘅眼球
04:08
It has to stand out from the crowd人群.
80
236318
1715
需要脫穎而出
佢哋嘅策略係要喺市場夾縫中搵到商機
04:10
Business業務 strategy策略 means意味着
finding發現 gaps差距 in the market市場,
81
238057
2444
04:12
things that nobody else is doing.
82
240525
1756
尋找獨一無二之處
04:14
It will be humans人類 that are creating創建
the copy複製 behind背後 our marketing營銷 campaigns活動,
83
242305
4118
只有人類才能喺幕後策劃市場營銷
04:18
and it will be humans人類 that are developing發展
our business業務 strategy策略.
84
246447
3517
只有人類才能不斷升級商業戰略
04:21
So YahliYahli, whatever無論 you decide決定 to do,
85
249988
2817
所以 Yahli,無論你決定做乜嘢
04:24
let every day bring you a new新增功能 challenge挑戰.
86
252829
2361
請你每日都要面對新挑戰
04:27
If it does, then you will stay
ahead提前 of the machines機器.
87
255587
2809
咁樣你就可以比機器遙遙領先
04:31
Thank you.
88
259126
1176
多謝
04:32
(Applause掌聲)
89
260326
3104
(掌聲)
Translated by 潘 可儿
Reviewed by Wink Wong

▲Back to top

ABOUT THE SPEAKER
Anthony Goldbloom - Machine learning expert
Anthony Goldbloom crowdsources solutions to difficult problems using machine learning.

Why you should listen

Anthony Goldbloom is the co-founder and CEO of Kaggle. Kaggle hosts machine learning competitions, where data scientists download data and upload solutions to difficult problems. Kaggle has a community of over 600,000 data scientists and has worked with companies ranging Facebook to GE on problems ranging from predicting friendships to flight arrival times.

Before Kaggle, Anthony worked as an econometrician at the Reserve Bank of Australia, and before that the Australian Treasury. In 2011 and 2012, Forbes named Anthony one of the 30 under 30 in technology; in 2013 the MIT Tech Review named him one of top 35 innovators under the age of 35, and the University of Melbourne awarded him an Alumni of Distinction Award. He holds a first call honors degree in Econometrics from the University of Melbourne.  

More profile about the speaker
Anthony Goldbloom | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee