Anthony Goldbloom: The jobs we'll lose to machines -- and the ones we won't
Anthony Goldbloom: Kas masinad võtavad inimestelt töö?
Anthony Goldbloom crowdsources solutions to difficult problems using machine learning. Full bio
Double-click the English transcript below to play the video.
and her dad is a lawyer.
are going to look dramatically different.
vanemad, hoopis teistsugused.
did a study on the future of work.
teadlased tuleviku ameteid.
in every two jobs have a high risk
võetud üle masinate poolt.
of this disruption.
of artificial intelligence.
kõige võimsama haruga,
andmetest õppida
that humans can do.
on the cutting edge of machine learning.
masinõppe kõige uuemal tehnoloogial.
hundreds of thousands of experts
for industry and academia.
ja teaduse olulistele teemadele.
milleks masinad on võimelised
on what machines can do,
automate or threaten.
üle võtta või kasutuks kuulutada.
into industry in the early '90s.
esile kerkima 1990ndatel.
lihtsate ülesannetega.
laenutaotluste krediidiriski hindamine
credit risk from loan applications,
handwritten characters from zip codes.
käsitsikirjutatud suunanumbrite järgi.
erakordselt võimas edasiminek.
dramatic breakthroughs.
of far, far more complex tasks.
olulisemalt keerukamateks ülesanneteks.
erialaringkondadele väljakutse
that could grade high-school essays.
hinnata keskkooli kirjandeid.
were able to match the grades
suutsid anda samu hindeid,
an even more difficult challenge.
veelgi keerukama ülesande:
and diagnose an eye disease
diagnoosida silmahaigust,
suutsid panna sama diagnoosi
were able to match the diagnoses
suudavad masinad tulevikus
machines are going to outperform humans
inimesest mööda minna.
over a 40-year career.
jooksul 10 000 esseed.
or see millions of eyes
masinatega võistelda
against machines
hõlmavate ülesannete puhul.
that machines can't do.
suudab, aga masin mitte.
pole erilist edu saavutanud
very little progress
olukordadega toimetulek.
they haven't seen many times before.
nad ei ole varem korduvalt näinud.
of machine learning
piiratus seisneb selles,
from large volumes of past data.
suure andmehulga põhjal.
seemingly disparate threads
täiesti erinevaid asju,
pole varem kokku puutunud.
working on radar during World War II,
II maailmasõja ajal radarite alal
was melting his chocolate bar.
oli sulatanud üles ta šokolaaditahvli.
of electromagnetic radiation
elektromagneetilisest kiirgusest
the microwave oven.
näiteid loovast lähenemisest,
example of creativity.
happens for each of us in small ways
juhtub väiksemas plaanis meie kõigiga
novel situations,
on the human tasks
kuhu maale suudavad masinad
for the future of work?
töö tuleviku kontekstis?
in the answer to a single question:
peitub vastuses ühele küsimusele:
to frequent, high-volume tasks,
korduvaid suuremahulisi tegevusi
tackling novel situations?
tegeleda uudsete olukordadega?
machines are getting smarter and smarter.
täiustatakse arvuteid pidevalt.
ja haigusi diagnoosida,
They diagnose certain diseases.
nad läbiviima auditeid
they're going to conduct our audits,
from legal contracts.
lepingute tüüptingimusi.
on aga endiselt vaja
lahendamiseks
for complex tax structuring,
ka nende töötajate hulka
uudsetes olukordades.
on novel situations.
needs to grab consumers' attention.
haarata tarbija tähelepanu.
vastab turu vajadustele,
finding gaps in the market,
the copy behind our marketing campaigns,
kes mõtlevad välja turunduskampaaniaid,
our business strategy.
äristrateegia väljatöötajateks.
ka ei otsusta saada,
tooks sulle uusi väljakutseid.
ahead of the machines.
oled sa alati masinatest ees.
ABOUT THE SPEAKER
Anthony Goldbloom - Machine learning expertAnthony Goldbloom crowdsources solutions to difficult problems using machine learning.
Why you should listen
Anthony Goldbloom is the co-founder and CEO of Kaggle. Kaggle hosts machine learning competitions, where data scientists download data and upload solutions to difficult problems. Kaggle has a community of over 600,000 data scientists and has worked with companies ranging Facebook to GE on problems ranging from predicting friendships to flight arrival times.
Before Kaggle, Anthony worked as an econometrician at the Reserve Bank of Australia, and before that the Australian Treasury. In 2011 and 2012, Forbes named Anthony one of the 30 under 30 in technology; in 2013 the MIT Tech Review named him one of top 35 innovators under the age of 35, and the University of Melbourne awarded him an Alumni of Distinction Award. He holds a first call honors degree in Econometrics from the University of Melbourne.
Anthony Goldbloom | Speaker | TED.com