Anthony Goldbloom: The jobs we'll lose to machines -- and the ones we won't
Anthony Goldbloom: Zawody, w których zastąpią nas maszyny - i gdzie się to nie uda
Anthony Goldbloom crowdsources solutions to difficult problems using machine learning. Full bio
Double-click the English transcript below to play the video.
and her dad is a lawyer.
a mama prawnikiem.
are going to look dramatically different.
będą wyglądać zupełnie inaczej.
did a study on the future of work.
badali przyszłość rynku pracy.
in every two jobs have a high risk
of this disruption.
of artificial intelligence.
sztucznej inteligencji.
that humans can do.
on the cutting edge of machine learning.
w awangardzie uczenia maszynowego.
hundreds of thousands of experts
for industry and academia.
problemy przemysłu i nauki.
on what machines can do,
automate or threaten.
zautomatyzować, a jakim zagrozić.
into industry in the early '90s.
credit risk from loan applications,
wniosków o kredyty,
handwritten characters from zip codes.
ręcznie napisanego kodu pocztowego.
wielkiego przełomu.
dramatic breakthroughs.
wykonywać bardziej złożone zadania.
of far, far more complex tasks.
społeczności użytkowników,
that could grade high-school essays.
wypracowań uczniów liceum.
were able to match the grades
takie same oceny co nauczyciele.
an even more difficult challenge.
and diagnose an eye disease
cukrzycową na podstawie zdjęć?
were able to match the diagnoses
machines are going to outperform humans
lepiej niż ludzie.
over a 40-year career.
10 000 wypracowań przez 40 lat nauczania.
or see millions of eyes
przeanalizuje miliony oczu
against machines
z dużą ilością danych.
that machines can't do.
a maszyny nie.
very little progress
they haven't seen many times before.
przedtem wielokrotnie nie widziały.
of machine learning
fundamentalnie ogranicza to,
from large volumes of past data.
z danych zebranych wcześniej.
seemingly disparate threads
working on radar during World War II,
podczas II wojny światowej,
was melting his chocolate bar.
czekoladowy batonik w kieszeni.
of electromagnetic radiation
elektromagnetycznego
the microwave oven.
example of creativity.
happens for each of us in small ways
zdarza się każdemu z nas
novel situations,
nowych problemów,
on the human tasks
for the future of work?
in the answer to a single question:
w odpowiedzi na jedno pytanie:
to frequent, high-volume tasks,
do powtarzalnych, dużych zadań,
tackling novel situations?
nowych problemów?
machines are getting smarter and smarter.
komputery stają się coraz lepsze.
They diagnose certain diseases.
wykrywają niektóre choroby.
they're going to conduct our audits,
from legal contracts.
w dokumentach prawnych.
for complex tax structuring,
struktury podatków,
i utrudnią znalezienie pracy.
on novel situations.
w nieznanych sytuacjach.
needs to grab consumers' attention.
musi przyciągać uwagę konsumentów,
finding gaps in the market,
to znajdowanie niszy rynkowej,
the copy behind our marketing campaigns,
teksty kampanii reklamowych
our business strategy.
ahead of the machines.
ABOUT THE SPEAKER
Anthony Goldbloom - Machine learning expertAnthony Goldbloom crowdsources solutions to difficult problems using machine learning.
Why you should listen
Anthony Goldbloom is the co-founder and CEO of Kaggle. Kaggle hosts machine learning competitions, where data scientists download data and upload solutions to difficult problems. Kaggle has a community of over 600,000 data scientists and has worked with companies ranging Facebook to GE on problems ranging from predicting friendships to flight arrival times.
Before Kaggle, Anthony worked as an econometrician at the Reserve Bank of Australia, and before that the Australian Treasury. In 2011 and 2012, Forbes named Anthony one of the 30 under 30 in technology; in 2013 the MIT Tech Review named him one of top 35 innovators under the age of 35, and the University of Melbourne awarded him an Alumni of Distinction Award. He holds a first call honors degree in Econometrics from the University of Melbourne.
Anthony Goldbloom | Speaker | TED.com