Anthony Goldbloom: The jobs we'll lose to machines -- and the ones we won't
Anthony Goldbloom: Os empregos que vamos perder para as máquinas - e os que não vamos
Anthony Goldbloom crowdsources solutions to difficult problems using machine learning. Full bio
Double-click the English transcript below to play the video.
and her dad is a lawyer.
are going to look dramatically different.
vai estar radicalmente diferente.
did a study on the future of work.
da Universidade de Oxford
sobre o futuro do trabalho
in every two jobs have a high risk
um em dois empregos possui um alto risco
of this disruption.
dessa revolução.
of artificial intelligence.
da inteligência artificial.
that humans can do.
que os humanos fazem.
no aprendizado de máquina, a Kaggle.
on the cutting edge of machine learning.
hundreds of thousands of experts
para a indústria e o mundo acadêmico.
for industry and academia.
on what machines can do,
sobre o que as máquinas podem fazer,
automate or threaten.
vão automatizar ou ameaçar.
into industry in the early '90s.
na indústria no início da década de 90.
relativamente fáceis,
credit risk from loan applications,
o risco creditício de empréstimos,
do número do CEP manuscrito.
handwritten characters from zip codes.
dramatic breakthroughs.
temos feito avanços incríveis.
of far, far more complex tasks.
é capaz de tarefas bem mais complexas.
that could grade high-school essays.
redações do ensino médio.
foram capazes de se equiparar
were able to match the grades
an even more difficult challenge.
um desafio ainda mais difícil:
diagnosticar uma doença ocular
and diagnose an eye disease
were able to match the diagnoses
capazes de se equiparar aos diagnósticos
machines are going to outperform humans
superarão os humanos nesse tipo de tarefa.
over a 40-year career.
ao longo de uma carreira de 40 anos.
examinar 50 mil olhos.
or see millions of eyes
ou examinar milhões de olhos
against machines
de competir com as máquinas
that machines can't do.
fazer, mas as máquinas não.
very little progress
em lidar com situações novas.
they haven't seen many times before.
que não viram muitas vezes antes.
of machine learning
do aprendizado de máquina
de grandes volumes de dados passados.
from large volumes of past data.
pontos aparentemente díspares
seemingly disparate threads
que nunca vimos antes.
working on radar during World War II,
com radar durante a Segunda Guerra,
was melting his chocolate bar.
derretendo sua barra de chocolate.
of electromagnetic radiation
de radiação eletromagnética
para inventar... algum palpite?
the microwave oven.
example of creativity.
notável de criatividade.
happens for each of us in small ways
acontece com todos nós em pequena escala,
quando se trata de situações novas,
novel situations,
on the human tasks
nas tarefas humanas
for the future of work?
para o futuro do trabalho?
in the answer to a single question:
está na resposta a uma única questão:
to frequent, high-volume tasks,
a tarefas frequentes e volumosas,
lidar com situações novas?"
tackling novel situations?
machines are getting smarter and smarter.
as máquinas estão cada vez melhores.
e diagnosticam certas doenças.
They diagnose certain diseases.
they're going to conduct our audits,
vão realizar auditorias
from legal contracts.
de contratos legais.
ainda serão necessários
for complex tax structuring,
e litígios inovadores.
a obtenção desses empregos.
on novel situations.
progresso em situações novas.
precisa prender a atenção do consumidor.
needs to grab consumers' attention.
finding gaps in the market,
mercado, algo que ninguém esteja fazendo.
the copy behind our marketing campaigns,
o texto dessas campanhas publicitárias,
our business strategy.
nossa estratégia de negócios.
o que você decida ser,
lhe traga um novo desafio.
ahead of the machines.
à frente das máquinas.
ABOUT THE SPEAKER
Anthony Goldbloom - Machine learning expertAnthony Goldbloom crowdsources solutions to difficult problems using machine learning.
Why you should listen
Anthony Goldbloom is the co-founder and CEO of Kaggle. Kaggle hosts machine learning competitions, where data scientists download data and upload solutions to difficult problems. Kaggle has a community of over 600,000 data scientists and has worked with companies ranging Facebook to GE on problems ranging from predicting friendships to flight arrival times.
Before Kaggle, Anthony worked as an econometrician at the Reserve Bank of Australia, and before that the Australian Treasury. In 2011 and 2012, Forbes named Anthony one of the 30 under 30 in technology; in 2013 the MIT Tech Review named him one of top 35 innovators under the age of 35, and the University of Melbourne awarded him an Alumni of Distinction Award. He holds a first call honors degree in Econometrics from the University of Melbourne.
Anthony Goldbloom | Speaker | TED.com