ABOUT THE SPEAKER
Anthony Goldbloom - Machine learning expert
Anthony Goldbloom crowdsources solutions to difficult problems using machine learning.

Why you should listen

Anthony Goldbloom is the co-founder and CEO of Kaggle. Kaggle hosts machine learning competitions, where data scientists download data and upload solutions to difficult problems. Kaggle has a community of over 600,000 data scientists and has worked with companies ranging Facebook to GE on problems ranging from predicting friendships to flight arrival times.

Before Kaggle, Anthony worked as an econometrician at the Reserve Bank of Australia, and before that the Australian Treasury. In 2011 and 2012, Forbes named Anthony one of the 30 under 30 in technology; in 2013 the MIT Tech Review named him one of top 35 innovators under the age of 35, and the University of Melbourne awarded him an Alumni of Distinction Award. He holds a first call honors degree in Econometrics from the University of Melbourne.  

More profile about the speaker
Anthony Goldbloom | Speaker | TED.com
TED2016

Anthony Goldbloom: The jobs we'll lose to machines -- and the ones we won't

Anthony Goldbloom: Službe, ki jih bodo prevzele naprave - in tiste, ki jih ne bodo

Filmed:
2,568,213 views

Strojno učenje ni več samo za lahke naloge kot oceniti kreditno tveganje in sortiranje pošte - danes so sposobne veliko bolj kompleksnih stvari, kot je ocenjevanje esejev in diagnoze bolezni. S tem napredkom pa pride tudi neprijetno vprašanje: Bo robot v prihodnosti opravljal tvoje delo?
- Machine learning expert
Anthony Goldbloom crowdsources solutions to difficult problems using machine learning. Full bio

Double-click the English transcript below to play the video.

00:12
So this is my niecenečakinja.
0
968
1262
To je moja nečakinja.
00:14
Her nameime is YahliYahli.
1
2644
1535
Ime ji je Yahli.
00:16
She is ninedevet monthsmesecev oldstar.
2
4203
1511
Stara je devet mesecev.
00:18
Her mummama is a doctorzdravnik,
and her dadOče is a lawyerodvetnik.
3
6201
2528
Njena mama je zdravnica
in njen oče je odvetnik.
00:21
By the time YahliYahli goesgre to collegekolegij,
4
9269
2006
Ko bo šla Yahli na fakulteto,
00:23
the jobsslužbe her parentsstarši do
are going to look dramaticallydramatično differentdrugačen.
5
11299
3253
bodo poklici, ki jih opravljata
njena starša, izgledali zelo drugače.
00:27
In 2013, researchersraziskovalci at OxfordOxford UniversityUniverza
did a studyštudija on the futureprihodnost of work.
6
15347
5073
2013 so raziskovalci Oxfordske univerze
naredili študijo o prihodnosti dela.
00:32
They concludedzaključil that almostskoraj one
in everyvsak two jobsslužbe have a highvisoko risktveganje
7
20766
4139
Ugotovili so, da ima skoraj ena
od dveh služb visoko tveganje,
00:36
of beingbiti automatedavtomatsko by machinesstroji.
8
24929
1824
da jo zamenja stroj.
00:40
MachineStroj learningučenje is the technologytehnologijo
9
28388
1905
Strojno učenje je tehnologija,
ki je najbolj zaslužna za to motnjo.
00:42
that's responsibleodgovoren for mostnajbolj
of this disruptionprekinitev.
10
30317
2278
00:44
It's the mostnajbolj powerfulmočno branchpodružnica
of artificialumetno intelligenceinteligenca.
11
32619
2790
Je najbolj uspešna veja
umetne inteligence.
00:47
It allowsdovoljuje machinesstroji to learnučiti se from datapodatkov
12
35433
1882
Strojem omogoča, da se učijo iz podatkov
00:49
and mimicposnema some of the things
that humansljudje can do.
13
37339
2592
in posnemajo stvari,
ki jih ljudje lahko počnejo.
00:51
My companypodjetje, KaggleKaggle, operatesdeluje
on the cuttingrezanje edgerob of machinestroj learningučenje.
14
39955
3415
Moje podjetje, Kaggle,
je najbolj napredno v strojnem učenju.
00:55
We bringprinesi togetherskupaj
hundredsstotine of thousandstisoče of expertsstrokovnjaki
15
43394
2386
Združujemo sto tisoče strokovnjakov,
00:57
to solverešiti importantpomembno problemstežave
for industryindustrijo and academiaakademiki.
16
45804
3118
da rešujejo pomembne probleme
za industrijo in znanost.
01:01
This givesdaje us a uniqueedinstven perspectiveperspektive
on what machinesstroji can do,
17
49279
3222
To nam daje edinstveno perspektivo
o tem, kaj stroji zmorejo,
01:04
what they can't do
18
52525
1235
česa ne,
01:05
and what jobsslužbe they mightmorda
automateavtomatizacijo or threatenogrožajo.
19
53784
2939
in katere službe bodo
avtomatizirali ali ogrozili.
01:09
MachineStroj learningučenje startedzačel makingizdelavo its way
into industryindustrijo in the earlyzgodaj '90s.
20
57316
3550
Strojno učenje je začelo prodirati
v industrijo v zgodnjih 90-ih.
01:12
It startedzačel with relativelyrelativno simplepreprosto tasksnaloge.
21
60890
2124
Začelo se je z relativno
preprostimi nalogami.
01:15
It startedzačel with things like assessingocenjevanje
creditkredit risktveganje from loanposojilo applicationsaplikacije,
22
63406
4115
Začelo se je z ocenjevanjem
tveganja pri prosilcih za kredite,
01:19
sortingrazvrščanje the mailpošta by readingbranje
handwrittenročno napisan charactersznakov from zipzip codeskode.
23
67545
4053
sortiranje pošte, tako da so brali
na roke napisane poštne številke.
01:24
Over the pastpreteklost fewmalo yearslet, we have madeizdelane
dramaticdramatično breakthroughsprodorih.
24
72036
3169
V zadnjih nekaj letih smo naredili
nekaj dramatičnih prebojev.
01:27
MachineStroj learningučenje is now capablesposoben
of fardaleč, fardaleč more complexkompleksno tasksnaloge.
25
75586
3916
Strojno učenje je sedaj sposobno
veliko, veliko bolj kompleksnih nalog.
01:31
In 2012, KaggleKaggle challengedizpodbijano its communityskupnosti
26
79860
3231
Leta 2012 je Kaggle izzval svojo skupnost,
01:35
to buildzgraditi an algorithmalgoritem
that could graderazred high-schoolSrednja šola essayseseji.
27
83115
3189
naj zgradi algoritem, ki bo lahko
ocenjeval srednješolske eseje.
01:38
The winningzmagovalec algorithmsalgoritmi
were ablesposoben to matchtekmo the gradesrazredov
28
86328
2604
Ocene zmagovalnih algoritmov so se ujemale
01:40
givendan by humančlovek teachersučitelji.
29
88956
1665
s tistimi, ki so jih dali učitelji.
01:43
Last yearleto, we issuedizdala
an even more difficulttežko challengeizziv.
30
91092
2984
Lani smo dali še težji izziv.
01:46
Can you take imagesslike of the eyeoči
and diagnosediagnosticirati an eyeoči diseasebolezen
31
94100
2953
Lahko slikaš oko
in diagnosticiraš očesno bolezen,
01:49
calledpozval diabeticdiabetik retinopathyretinopatije?
32
97077
1694
imenovano diabetična retinopatija?
01:51
Again, the winningzmagovalec algorithmsalgoritmi
were ablesposoben to matchtekmo the diagnosesdiagnoze
33
99164
4040
Spet so se diagnoze najboljših
algoritmov ujemale
01:55
givendan by humančlovek ophthalmologistsOftalmologov.
34
103228
1825
z diagnozami oftalmologov.
01:57
Now, givendan the right datapodatkov,
machinesstroji are going to outperformboljše od humansljudje
35
105561
3212
S pravimi podatki bi lahko
bili stroji boljši od ljudi
pri takih nalogah.
02:00
at tasksnaloge like this.
36
108797
1165
02:01
A teacheručitelj mightmorda readpreberite 10,000 essayseseji
over a 40-yearleto careerkariero.
37
109986
3992
Učitelj, v svoji 40-letni karieri
prebere morda 10.000 esejev.
02:06
An ophthalmologistoftalmolog mightmorda see 50,000 eyesoči.
38
114407
2360
Oftalmolog vidi 50.000 oči.
02:08
A machinestroj can readpreberite millionsmilijoni of essayseseji
or see millionsmilijoni of eyesoči
39
116791
3913
Stroj lahko prebere na milijone
esejev ali vidi milijone oči
02:12
withinznotraj minutesminut.
40
120728
1276
v nekaj minutah.
02:14
We have no chancepriložnost of competingtekmujejo
againstproti machinesstroji
41
122456
2858
Ne moremo tekmovati s stroji
02:17
on frequentpogosto, high-volumevisok volumen tasksnaloge.
42
125338
2321
na pogostih, obsežnih nalogah.
02:20
But there are things we can do
that machinesstroji can't do.
43
128665
3724
A mi lahko počnemo stvari,
ki jih stroji ne morejo.
Področje, na katerem so stroji
le malo napredovali,
02:24
Where machinesstroji have madeizdelane
very little progressnapredek
44
132791
2200
je obvladovanje novih situacij.
02:27
is in tacklingreševanje novelroman situationssituacije.
45
135015
1854
02:28
They can't handleročaj things
they haven'tne seenvidel manyveliko timeskrat before.
46
136893
3899
Ne obvladajo stvari,
ki jih niso videli že večkrat.
02:33
The fundamentaltemeljno limitationsomejitve
of machinestroj learningučenje
47
141321
2584
Osnovna omejitev strojnega učenja
02:35
is that it needspotrebe to learnučiti se
from largevelik volumesprostornine of pastpreteklost datapodatkov.
48
143929
3394
je, da se mora učiti iz velike
količine preteklih podatkov.
02:39
Now, humansljudje don't.
49
147347
1754
Tega ljudem ni treba.
02:41
We have the abilitysposobnost to connectpovezati
seeminglynavidez disparateločeno threadsniti
50
149125
3030
Imamo sposobnost, da povežemo
na videz različne konce,
02:44
to solverešiti problemstežave we'vesmo never seenvidel before.
51
152179
2238
da rešimo nove probleme.
02:46
PercyPercy SpencerSpencer was a physicistfizik
workingdelo on radarradar duringmed WorldSvet WarVojne IIII,
52
154808
4411
Percy Spencer je bil fizik, ki je delal
na radarju med drugo svetovno vojno,
02:51
when he noticedopazili the magnetronmagnetronsko
was meltingtaljenje his chocolatečokolada barbar.
53
159243
3013
ko je opazil, da magnetron
topi njegovo čokoladico.
02:54
He was ablesposoben to connectpovezati his understandingrazumevanje
of electromagneticelektromagnetno radiationsevanja
54
162970
3295
Zmožen je bil povezati svoje znanje
o elektromagnetni radiaciji
02:58
with his knowledgeznanje of cookingkuhanje
55
166289
1484
s svojim znanjem o kuhanju,
02:59
in orderred to inventIzumiti -- any guessesugibanja? --
the microwavemikrovalovna pečica ovenpečica.
56
167797
3258
da je izumil - uganete kaj?
- mikrovalovno pečico.
03:03
Now, this is a particularlyzlasti remarkableizjemno
exampleprimer of creativityustvarjalnost.
57
171444
3073
No, to je res neverjeten
primer ustvarjalnosti.
03:06
But this sortRazvrsti of cross-pollinationnavzkrižno opraševanje
happensse zgodi for eachvsak of us in smallmajhna waysnačinov
58
174541
3664
A tako navzkrižno opraševanje
se dogaja vsakemu od nas po malem
03:10
thousandstisoče of timeskrat perna day.
59
178229
1828
tisočkrat na dan.
03:12
MachinesStroji cannotne morem competetekmujejo with us
60
180501
1661
Stroji z nami ne morejo tekmovati,
03:14
when it comesprihaja to tacklingreševanje
novelroman situationssituacije,
61
182186
2251
ko pride do ubadanja z novimi situacijami
03:16
and this putsstavi a fundamentaltemeljno limitomejitev
on the humančlovek tasksnaloge
62
184461
3117
in to da temeljno omejitev
na človeške naloge,
03:19
that machinesstroji will automateavtomatizacijo.
63
187602
1717
ki jih bodo stroji avtomatizirali.
03:22
So what does this mean
for the futureprihodnost of work?
64
190041
2405
Kaj torej to pomeni za prihodnost dela?
03:24
The futureprihodnost statedržava of any singlesamski jobdelo lieslaži
in the answerodgovor to a singlesamski questionvprašanje:
65
192804
4532
Prihodnost katerekoli službe leži
v odgovoru na eno vprašanje:
03:29
To what extentobseg is that jobdelo reduciblezmanjšati
to frequentpogosto, high-volumevisok volumen tasksnaloge,
66
197360
4981
do katere mere lahko to službo zreduciramo
na pogoste, obsežne naloge
03:34
and to what extentobseg does it involvevključujejo
tacklingreševanje novelroman situationssituacije?
67
202365
3253
in do katere mere vsebuje
obvladovanje novih situacij?
03:37
On frequentpogosto, high-volumevisok volumen tasksnaloge,
machinesstroji are gettingpridobivanje smarterpametnejši and smarterpametnejši.
68
205975
4035
Na pogostih, obsežnih nalogah
stroji postajajo vse pametnejši.
03:42
TodayDanes they graderazred essayseseji.
They diagnosediagnosticirati certainnekateri diseasesbolezni.
69
210034
2714
Danes ocenjujejo eseje.
Diagnosticirajo določene bolezni.
03:44
Over comingprihajajo yearslet,
they're going to conductravnanja our auditsrevizije,
70
212772
3157
Čez leta bodo delali revizije
03:47
and they're going to readpreberite boilerplatezapečeno
from legalpravno contractspogodbe.
71
215953
2967
in brali šablonska besedila na pogodbah.
Računovodje in odvetnike še potrebujemo.
03:50
AccountantsRačunovodje and lawyersodvetniki are still neededpotrebno.
72
218944
1997
Potrebni bodo za kompleksno
davčno strukturiranje,
03:52
They're going to be neededpotrebno
for complexkompleksno taxdavka structuringstrukturiranje,
73
220965
2682
za prelomne sodne postopke.
03:55
for pathbreakingpathbreaking litigationsodni postopek.
74
223671
1357
A stroji bodo zožili njihove vrste
in težje bo dobiti te službe.
03:57
But machinesstroji will shrinkskrči theirnjihovi ranksuvršča
75
225052
1717
03:58
and make these jobsslužbe hardertežje to come by.
76
226793
1872
04:00
Now, as mentionedomenjeno,
77
228689
1151
Kot sem omenil, stroji
pri novih situacijah ne napredujejo.
04:01
machinesstroji are not makingizdelavo progressnapredek
on novelroman situationssituacije.
78
229864
2949
04:04
The copykopirati behindzadaj a marketingtrženje campaignkampanja
needspotrebe to grabzgrabi consumers'potrošnikov attentionpozornost.
79
232837
3457
Reklamno besedilo za marketinško
kampanjo mora pritegniti potrošnika.
Izstopati mora iz množice.
04:08
It has to standstojalo out from the crowdmnožica.
80
236318
1715
Poslovna strategija je iskanje tržnih niš,
04:10
BusinessPoslovni strategystrategijo meanssredstva
findingugotovitev gapsvrzeli in the markettrg,
81
238057
2444
stvari, ki jih nihče drug ne dela.
04:12
things that nobodynihče elsedrugače is doing.
82
240525
1756
04:14
It will be humansljudje that are creatingustvarjanje
the copykopirati behindzadaj our marketingtrženje campaignskampanje,
83
242305
4118
Ljudje bodo ustvarjali reklamna besedila
v marketinških kampanjah
04:18
and it will be humansljudje that are developingrazvoj
our businessposlovanje strategystrategijo.
84
246447
3517
in ljudje bodo razvijali
naše poslovne strategije.
04:21
So YahliYahli, whateverkarkoli you decideodloči to do,
85
249988
2817
Yahli, karkoli se odločiš početi,
04:24
let everyvsak day bringprinesi you a newnovo challengeizziv.
86
252829
2361
naj ti vsak dan prinese nov izziv.
04:27
If it does, then you will stayostani
aheadnaprej of the machinesstroji.
87
255587
2809
Če ti bo, boš imela prednost pred stroji.
04:31
Thank you.
88
259126
1176
Hvala.
04:32
(ApplauseAplavz)
89
260326
3104
(Aplavz)
Translated by Nika Kotnik
Reviewed by Tilen Pigac

▲Back to top

ABOUT THE SPEAKER
Anthony Goldbloom - Machine learning expert
Anthony Goldbloom crowdsources solutions to difficult problems using machine learning.

Why you should listen

Anthony Goldbloom is the co-founder and CEO of Kaggle. Kaggle hosts machine learning competitions, where data scientists download data and upload solutions to difficult problems. Kaggle has a community of over 600,000 data scientists and has worked with companies ranging Facebook to GE on problems ranging from predicting friendships to flight arrival times.

Before Kaggle, Anthony worked as an econometrician at the Reserve Bank of Australia, and before that the Australian Treasury. In 2011 and 2012, Forbes named Anthony one of the 30 under 30 in technology; in 2013 the MIT Tech Review named him one of top 35 innovators under the age of 35, and the University of Melbourne awarded him an Alumni of Distinction Award. He holds a first call honors degree in Econometrics from the University of Melbourne.  

More profile about the speaker
Anthony Goldbloom | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee