ABOUT THE SPEAKER
Max Little - Applied mathematician
Max Little is a mathematician whose research includes a breakthrough technique to monitor – and potentially screen for – Parkinson's disease through simple voice recordings.

Why you should listen

Max Little is an applied mathematician whose goal is to "see connections between subjects, not boundaries … to see how things are related, not how they are different." He has a background in applied mathematics, statistics, signal processing and computational engineering, and his work has been applied across disciplines like biomedicine, extreme rainfall analysis and forecasting, biophysical signal processing, and hydrogeomorphology and open channel flow measurement. Little is best known for his work on the Parkinson's Voice Initiative, in which he and his team developed a cheap and simple tool that uses precise voice analysis software to detect Parkinson's with 99 percent accuracy. Little is a TEDGlobal 2012 Fellow and a Wellcome Trust-MIT Postdoctoral Research Fellow.

More profile about the speaker
Max Little | Speaker | TED.com
TEDGlobal 2012

Max Little: A test for Parkinson's with a phone call

Max Little: Test za Parkinsonovu bolest putem telefonskog poziva

Filmed:
1,296,740 views

Parkinsonova bolest pogađa 6,3 milijuna ljudi diljem svijeta i uzrokuje slabost i tremor. No, ne postoji nikakav objektivan način za rano otkrivanje. Primijenjeni matematičar i TED Fellow Max Little testira jeftino i jednostavno pomagalo koje je u pokusima uspjelo otkriti Parkinsonovu bolest s točnošću od 99% – i to jednim pozivom od 30 sekundi.
- Applied mathematician
Max Little is a mathematician whose research includes a breakthrough technique to monitor – and potentially screen for – Parkinson's disease through simple voice recordings. Full bio

Double-click the English transcript below to play the video.

00:16
So, well, I do appliedprimijenjen mathmatematika,
0
667
2103
Bavim se primijenjenom matematikom,
00:18
and this is a peculiarosebujan problemproblem
1
2770
1524
a problem svojstven
00:20
for anyonebilo tko who does appliedprimijenjen mathmatematika, is that
2
4294
2173
svima koji se bave primijenjenom matematikom
00:22
we are like managementupravljanje consultantskonzultanti.
3
6467
1933
jest da smo poput savjetnika za poslovanje.
00:24
No one knowszna what the hellpakao we do.
4
8400
1946
Nitko ne zna što zapravo radimo.
00:26
So I am going to give you some -- attemptpokušaj todaydanas
5
10346
2274
Ja ću vam danas pokušati
00:28
to try and explainobjasniti to you what I do.
6
12620
2293
objasniti što radim.
00:30
So, dancingples is one of the mostnajviše humanljudski of activitiesdjelatnost.
7
14913
3321
Ples je jedna od najljudskijih aktivnosti.
00:34
We delightzadovoljstvo at balletbalet virtuososvirtuoza and tapslavina dancersplesači
8
18234
3682
Oduševljavaju nas baletni virtuozi i plesači stepa
00:37
you will see laterkasnije on.
9
21916
1148
koje ćete vidjeti kasnije.
00:38
Now, balletbalet requirestraži an extraordinaryizvanredan levelnivo of expertiseekspertiza
10
23064
2690
Balet zahtijeva izvanrednu razinu vještine
00:41
and a highvisok levelnivo of skillvještina,
11
25754
2914
i visoku razinu umijeća
00:44
and probablyvjerojatno a levelnivo of initialpočetni suitabilityprikladnost
12
28668
2531
i vjerojatno neku razinu početne prikladnosti
00:47
that maysvibanj well have a geneticgenetski componentsastavni dio to it.
13
31199
1847
koja bi mogla imati genetski element.
00:48
Now, sadlyNažalost, neurologicalneurološki disordersporemećaji suchtakav as Parkinson'sParkinsonove diseasebolest
14
33046
3393
Nažalost, neurološki poremećaji,
kao što je Parkinsonova bolest,
00:52
graduallypostepeno destroyuništiti this extraordinaryizvanredan abilitysposobnost,
15
36439
2087
postupno uništavaju ovu izvranrednu sposobnost.
00:54
as it is doing to my friendprijatelj JanJan StriplingMladić, who was
16
38526
2323
To čine i mom prijatelju Janu Striplingu, koji je
00:56
a virtuosovirtuoz balletbalet dancerplesač in his time.
17
40849
2967
u svoje vrijeme bio virtuozni baletan.
00:59
So great progressnapredak and treatmentliječenje has been madenapravljen over the yearsgodina.
18
43816
3054
Velik napredak i tretman
postignuti su tijekom godina.
01:02
HoweverMeđutim, there are 6.3 millionmilijuna people worldwideširom svijeta
19
46870
2944
Međutim, 6,3 milijuna ljudi diljem svijeta
01:05
who have the diseasebolest, and they have to liveživjeti with
20
49814
3448
ima ovu bolest i mora živjeti
01:09
incurableneizlječivo weaknessslabost, tremortremor, rigiditykrutost
21
53262
2568
s neizlječivom slabošću, tremorom, ukočenošću
01:11
and the other symptomssimptomi that go alonguz with the diseasebolest,
22
55830
1857
i ostalim simptomima te bolesti.
01:13
so what we need are objectivecilj toolsalat
23
57687
2383
Stoga trebamo objektivne instrumente
01:15
to detectotkriti the diseasebolest before it's too latekasno.
24
60070
3057
za otkrivanje bolesti dok nije prekasno.
01:19
We need to be ableu stanju to measuremjera progressionprogresija objectivelyobjektivno,
25
63127
2554
Moramo moći objektivno mjeriti razvoj bolesti,
01:21
and ultimatelyna kraju, the only way we're going to know
26
65681
3173
i konačno, jedini način na koji ćemo znati
01:24
when we actuallyzapravo have a curelijek is when we have
27
68854
2192
kad budemo imali lijek jest kad bude postojala
01:26
an objectivecilj measuremjera that can answerodgovor that for sure.
28
71046
3398
objektivna mjera koja će na to
moći sa sigurnošću odgovoriti.
01:30
But frustratinglyfrustrirajuće, with Parkinson'sParkinsonove diseasebolest
29
74444
2850
Frustrira to što kod Parkinsonove bolesti
01:33
and other movementpokret disordersporemećaji, there are no biomarkersbiomarkeri,
30
77294
2353
i ostalih poremećaja kretanja ne postoje biomarkeri,
01:35
so there's no simplejednostavan bloodkrv testtest that you can do,
31
79647
2229
stoga nema jednostavnog krvnog nalaza
koji biste mogli napraviti,
01:37
and the bestnajbolje that we have is like
32
81876
1802
i najbolje što imamo jest
01:39
this 20-minute-minuta neurologistneurolog testtest.
33
83678
2241
20-minutni neurološki test.
01:41
You have to go to the clinicKlinika to do it. It's very, very costlyskup,
34
85919
2458
Da biste ga napravili, morate
otići u bolnicu. Veoma je skup,
01:44
and that meanssredstva that, outsideizvan the clinicalklinički trialsispitivanja,
35
88377
2757
što znači da se osim u kliničkim ispitivanjima
01:47
it's just never doneučinio. It's never doneučinio.
36
91134
2728
nikad ne obavlja. Nikad se ne obavlja.
01:49
But what if patientspacijenti could do this testtest at home?
37
93862
3077
No, što kad bi pacijenti mogli
ovaj test obaviti kod kuće?
01:52
Now, that would actuallyzapravo saveuštedjeti on a difficulttežak tripputovanje to the clinicKlinika,
38
96939
2098
Time bi se poštedjeli teškog puta do bolnice.
01:54
and what if patientspacijenti could do that testtest themselvesse, right?
39
99037
4254
Što kad bi pacijenti mogli sami napraviti taj test?
01:59
No expensiveskup staffosoblje time requiredpotreban.
40
103291
1920
Bez skupog osoblja.
02:01
Takes about $300, by the way,
41
105211
1418
Inače, testiranje u neurološkoj klinici
02:02
in the neurologist'sNeurolog je clinicKlinika to do it.
42
106629
1993
stoji oko 300 dolara.
02:04
So what I want to proposepredložiti to you as an unconventionalnekonvencionalan way
43
108622
2681
Stoga vam želim predložiti jedan
nekonvencionalan način
02:07
in whichkoji we can try to achievepostići this,
44
111303
1514
na koji to možemo pokušati postići,
02:08
because, you see, in one senseosjećaj, at leastnajmanje,
45
112817
1808
zato što smo svi mi u jednu ruku, na kraju krajeva,
02:10
we are all virtuososvirtuoza like my friendprijatelj JanJan StriplingMladić.
46
114625
3256
virtuozi poput mog prijatelja Jana Striplinga.
02:13
So here we have a videovideo of the vibratingvibracijski vocalvokalne foldsnabora.
47
117881
3755
Ovo je snimka koja prikazuje glasnice koje vibriraju.
02:17
Now, this is healthyzdrav and this is somebodyneko makingizrađivanje speechgovor soundszvukovi,
48
121636
3229
Zdrave su i ovdje netko
proizvodi govorne zvukove.
02:20
and we can think of ourselvessebe as vocalvokalne balletbalet dancersplesači,
49
124865
3464
Možemo zamisliti sebe
kao vokalne plesače baleta
02:24
because we have to coordinatekoordinirati all of these vocalvokalne organsorgana
50
128329
2214
zato što moramo uskladiti
sve ove govorne organe
02:26
when we make soundszvukovi, and we all actuallyzapravo
51
130543
2295
kad prozvodimo zvukove.
02:28
have the genesgeni for it. FoxPFoxP2, for exampleprimjer.
52
132838
2296
Svi imamo gene za to. Na primjer, gen FoxP2.
02:31
And like balletbalet, it takes an extraordinaryizvanredan levelnivo of trainingtrening.
53
135134
2713
Kao i kod baleta, potrebna je
izvanredna razina uvježbanosti.
02:33
I mean, just think how long it takes a childdijete to learnnaučiti to speakgovoriti.
54
137847
2585
Samo se sjetite koliko treba
djetetu da nauči govoriti.
02:36
From the soundzvuk, we can actuallyzapravo trackstaza
55
140432
2382
Pomoću zvuka zapravo možemo pratiti
02:38
the vocalvokalne foldpreklopiti positionpoložaj as it vibratesvibrira,
56
142814
2281
položaj glasnica dok vibriraju,
02:40
and just as the limbsudova are affectedpogođeni in Parkinson'sParkinsonove,
57
145095
2543
Parkinson zahvaća glasnice,
02:43
so too are the vocalvokalne organsorgana.
58
147638
2781
baš kao i udove.
02:46
So on the bottomdno tracetrag, you can see an exampleprimjer of
59
150419
1880
Na donjem ispisu možete vidjeti primjer
02:48
irregularneregularan vocalvokalne foldpreklopiti tremortremor.
60
152299
1698
nepravilnog tremora glasnica.
02:49
We see all the sameisti symptomssimptomi.
61
153997
1168
Vidimo iste simptome.
02:51
We see vocalvokalne tremortremor, weaknessslabost and rigiditykrutost.
62
155165
2930
Vidimo glasovni tremor, slabost i ukočenost.
02:53
The speechgovor actuallyzapravo becomespostaje quietertiši and more breathyBreathy
63
158095
2104
Govor zapravo postaje tiši i zadihaniji
02:56
after a while, and that's one of the exampleprimjer symptomssimptomi of it.
64
160199
2233
nakon nekog vremena
i to je jedan primjer simptoma.
02:58
So these vocalvokalne effectsefekti can actuallyzapravo be quitedosta subtlefin,
65
162432
2847
Ovi govorni učinci mogu biti vrlo suptilni,
03:01
in some casesslučajevi, but with any digitaldigitalni microphonemikrofon,
66
165279
3216
u nekim slučajevima,
ali s bilo kojim digitalnim mikrofonom
03:04
and usingkoristeći precisionpreciznost voiceglas analysisanaliza softwaresoftver
67
168495
2545
te koristeći precizni program za glasovnu analizu
03:06
in combinationkombinacija with the latestnajnoviji in machinemašina learningučenje,
68
171040
2409
u kombinaciji s najnovijim
dostignućima u strojnom učenju,
03:09
whichkoji is very advancednapredan by now,
69
173449
1578
koje je veoma napredovalo,
03:10
we can now quantifyizmjeriti exactlytočno where somebodyneko lieslaži
70
175027
2886
sad možemo točno izmjeriti gdje se netko nalazi
03:13
on a continuumkontinuum betweenizmeđu healthzdravlje and diseasebolest
71
177913
2881
na pravcu između zdravlja i bolesti,
03:16
usingkoristeći voiceglas signalssignali alonesam.
72
180794
2596
i to koristeći samo glasovne signale.
03:19
So these voice-basedglas-temeljen teststestovi, how do they stackstog up againstprotiv
73
183390
2314
Kakvi su ovi testovi temeljeni na glasu
u usporedbi sa
03:21
expertstručnjak clinicalklinički teststestovi? We'llMi ćemo, they're bothoba non-invasiveNe-invazivne.
74
185704
2150
stručnim kliničkim testovima?
Pa, i jedni i drugi su neinvazivni.
03:23
The neurologist'sNeurolog je testtest is non-invasiveNe-invazivne. They bothoba use existingpostojanje infrastructureinfrastruktura.
75
187854
3982
Neurološki test je neinvazivan.
Oba koriste postojeću infrastrukturu.
03:27
You don't have to designdizajn a wholečitav newnovi setset of hospitalsbolnice to do it.
76
191836
3004
Ne morate graditi nove bolnice da biste to napravili.
03:30
And they're bothoba accuratetočan. Okay, but in additiondodatak,
77
194840
2302
I oba su točna. No, uz to,
03:33
voice-basedglas-temeljen teststestovi are non-expertNe-stručnjak.
78
197142
3327
testovi utemeljeni na glasu nestručni su.
03:36
That meanssredstva they can be self-administeredsami.
79
200469
1992
To znači da ih možete izvesti sami.
03:38
They're high-speedvelike brzine, take about 30 secondssekundi at mostnajviše.
80
202461
2580
Vrlo su brzi, potrebno je najviše 30-ak sekundi.
03:40
They're ultra-lowUltra-nisko costcijena, and we all know what happensdogađa se.
81
205041
2294
Veoma su jeftini i svi znamo što se događa.
03:43
When something becomespostaje ultra-lowUltra-nisko costcijena,
82
207335
2440
Kad nešto postane vrlo jeftino,
03:45
it becomespostaje massivelymasivno scalableskalabilan.
83
209775
2296
također postane masovno mjerljivo.
03:47
So here are some amazingnevjerojatan goalsciljevi that I think we can dealdogovor with now.
84
212071
3675
Ovo su neki čudesni ciljevi
s kojima se sad možemo nositi.
03:51
We can reducesmanjiti logisticallogističke difficultiespoteškoće with patientspacijenti.
85
215746
2426
Možemo smanjiti logističke teškoće s pacijentima.
03:54
No need to go to the clinicKlinika for a routinerutina checkuppregled.
86
218172
2312
Nema potrebe za odlaskom
u bolnicu na rutinski pregled.
03:56
We can do high-frequencyvisoke frekvencije monitoringnadgledanje to get objectivecilj datapodaci.
87
220484
2320
Možemo provoditi česte nadzore
kako bismo dobili objektivne podatke.
03:58
We can performizvesti low-costniska cijena massmasa recruitmentzapošljavanje for clinicalklinički trialsispitivanja,
88
222804
4105
Možemo jeftino i masovno pronalaziti
subjekte za kliničke pokuse
04:02
and we can make population-scaleStanovništvo-skale screeningprobir
89
226909
2115
i po prvi put je izvedivo napraviti procjenu
04:04
feasibleizvodljiv for the first time.
90
229024
1596
na razini cijelog stanovništva.
04:06
We have the opportunityprilika to startpočetak to searchtraži
91
230620
2202
Imamo mogućnost početi tražiti
04:08
for the earlyrano biomarkersbiomarkeri of the diseasebolest before it's too latekasno.
92
232822
3541
rane biomarkere bolesti prije nego bude prekasno.
04:12
So, takinguzimanje the first stepskoraci towardsza this todaydanas,
93
236363
2758
Kako bismo učinili prvi korak prema tome,
04:15
we're launchingporinuće the Parkinson'sParkinsonove VoiceGlas InitiativeInicijativa.
94
239121
2126
danas lansiramo Parkinsonovu glasovnu inicijativu.
04:17
With AculabAculab and PatientsLikeMePatientsLikeMe, we're aimings ciljem
95
241247
2232
Zajedno s tvrtkom Aculab
i stranicom PatientsLikeMe
04:19
to recordsnimiti a very largeveliki numberbroj of voicesglasovi worldwideširom svijeta
96
243479
1928
ciljamo na snimanje jako velikog broja
glasova diljem svijeta
04:21
to collectprikupiti enoughdovoljno datapodaci to startpočetak to tacklepribor these fourčetiri goalsciljevi.
97
245407
3140
kako bismo skupili dovoljno podataka
da se počnemo baviti s ova četiri cilja.
04:24
We have locallokalne numbersbrojevi accessibledostupan to threetri quartersčetvrtine
98
248547
1700
Dostupni su nam lokalni telefonski brojevi
04:26
of a billionmilijardi people on the planetplaneta.
99
250247
1610
kojima pristup ima 750 milijuna ljudi u svijetu.
04:27
AnyoneBilo tko healthyzdrav or with Parkinson'sParkinsonove can call in, cheaplyjeftino,
100
251857
3077
Svi zdravi, ili koji imaju Parkinsona,
mogu jeftino nazvati
04:30
and leavenapustiti recordingssnimke, a fewnekoliko centscenti eachsvaki,
101
254934
2139
i ostaviti zapise, koji stoje po nekoliko centa,
04:32
and I'm really happysretan to announceobjaviti that we'veimamo alreadyveć hithit
102
257073
2190
i vrlo sam sretan što mogu reći
da smo već dostigli
04:35
sixšest percentposto of our targetcilj just in eightosam hourssati.
103
259263
3543
6% od našeg cilja, za samo osam sati.
04:38
Thank you. (ApplausePljesak)
104
262806
3751
Hvala. (Pljesak)
04:42
(ApplausePljesak)
105
266557
6320
(Pljesak)
04:48
TomTom RiellyRielly: So MaxMax, by takinguzimanje all these samplesuzorci of,
106
272877
3575
Tom Rielly: Dakle, Maxe, uzimajući sve ove uzorke od,
04:52
let's say, 10,000 people,
107
276452
2776
recimo, 10 000 ljudi,
04:55
you'llvi ćete be ableu stanju to tell who'stko je healthyzdrav and who'stko je not?
108
279228
2854
moći ćete reći tko je zdrav, a tko nije?
04:57
What are you going to get out of those samplesuzorci?
109
282082
1685
Što ćete dobiti iz tih uzoraka?
04:59
MaxMax Little: Yeah. Yeah. So what will happendogoditi se is that,
110
283767
1830
Max Litlle: Da. Dakle, kako to ide.
05:01
duringza vrijeme the call you have to indicatenaznačiti whetherda li or not
111
285597
1657
Tijekom poziva morate reći
05:03
you have the diseasebolest or not, you see. TRTR: Right.
112
287254
1267
imate li bolest ili ne. TR: Dobro.
05:04
MLML: You see, some people maysvibanj not do it. They maysvibanj not get throughkroz it.
113
288521
2507
ML: Vidite, neki ljudi možda to ne učine.
Možda ne prođu kroz to.
05:06
But we'lldobro get a very largeveliki sampleuzorak of datapodaci that is collectedprikupljeni
114
291028
2717
Ali dobit ćemo jako velik uzorak podataka prikupljen
05:09
from all differentdrugačiji circumstancesokolnosti, and it's gettinguzimajući it
115
293745
3408
iz mnogo različitih okolnosti,
05:13
in differentdrugačiji circumstancesokolnosti that matterstvar because then
116
297153
1905
a upravo je to važno, zato što
05:14
we are looking at ironingpeglanja out the confoundingzbunjivanje factorsčimbenici,
117
299058
3384
želimo riješiti zbunjujuće faktore
05:18
and looking for the actualstvaran markersoznake of the diseasebolest.
118
302442
2161
i tražiti stvarne znakove bolesti.
05:20
TRTR: So you're 86 percentposto accuratetočan right now?
119
304603
2497
TR: Dakle, trenutna točnost iznosi 86%?
05:23
MLML: It's much better than that.
120
307100
1194
ML: Mnogo je bolje od toga.
05:24
ActuallyZapravo, my studentstudent ThanasisTanasis, I have to plugutikač him,
121
308294
1720
Zapravo, moj učenik Thanasis,
moram ga spomenuti
05:25
because he's doneučinio some fantasticfantastičan work,
122
310014
1870
zato što je napravio fantastičan posao
05:27
and now he has proveddokazao that it worksdjela over the mobilemobilni telephonetelefon networkmreža as well,
123
311884
3770
i dokazao da funkcionira i preko mobilnih mreža,
05:31
whichkoji enablesomogućuje this projectprojekt, and we're gettinguzimajući 99 percentposto accuracytočnost.
124
315654
3390
što omogućuje ovaj projekt. Dobili smo točnost od 99%.
05:34
TRTR: Ninety-nine99. Well, that's an improvementpoboljšanje.
125
319044
1576
TR: Devedeset devet. To se zove poboljšanje.
05:36
So what that meanssredstva is that people will be ableu stanju to —
126
320620
2201
Dakle, to znači da će ljudi moći –
05:38
MLML: (LaughsSmijeh)
127
322821
1852
ML: (Smijeh)
05:40
TRTR: People will be ableu stanju to call in from theirnjihov mobilemobilni phonestelefoni
128
324673
1906
TR: Ljudi će moći nazvati sa svojih mobitela
05:42
and do this testtest, and people with Parkinson'sParkinsonove could call in,
129
326579
3072
i napraviti ovaj test.
I ljudi sa Parkinsonom će moći nazvati,
05:45
recordsnimiti theirnjihov voiceglas, and then theirnjihov doctorliječnik can checkprovjeriti up
130
329651
2870
snimiti svoj glas i onda će
njihov liječnik moći provjeriti
05:48
on theirnjihov progressnapredak, see where they're doing in this coursenaravno of the diseasebolest.
131
332521
2681
njihov napredak, vidjeti gdje su u tijeku bolesti.
05:51
MLML: AbsolutelyApsolutno.
132
335202
970
ML: Apsolutno.
05:52
TRTR: ThanksHvala so much. MaxMax Little, everybodysvi.
133
336172
1743
TR: Hvala puno. Maxe Little, ljudi.
05:53
MLML: ThanksHvala, TomTom. (ApplausePljesak)
134
337915
5157
ML: Hvala, Tome. (Pljesak)
Translated by Senzos Osijek
Reviewed by Suzana Barić

▲Back to top

ABOUT THE SPEAKER
Max Little - Applied mathematician
Max Little is a mathematician whose research includes a breakthrough technique to monitor – and potentially screen for – Parkinson's disease through simple voice recordings.

Why you should listen

Max Little is an applied mathematician whose goal is to "see connections between subjects, not boundaries … to see how things are related, not how they are different." He has a background in applied mathematics, statistics, signal processing and computational engineering, and his work has been applied across disciplines like biomedicine, extreme rainfall analysis and forecasting, biophysical signal processing, and hydrogeomorphology and open channel flow measurement. Little is best known for his work on the Parkinson's Voice Initiative, in which he and his team developed a cheap and simple tool that uses precise voice analysis software to detect Parkinson's with 99 percent accuracy. Little is a TEDGlobal 2012 Fellow and a Wellcome Trust-MIT Postdoctoral Research Fellow.

More profile about the speaker
Max Little | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee