ABOUT THE SPEAKER
Alison Gopnik - Child development psychologist
Alison Gopnik takes us into the fascinating minds of babies and children, and shows us how much we understand before we even realize we do.

Why you should listen

What’s it really like to see through the eyes of a child? Are babies and young children just empty, irrational vessels to be formed into little adults, until they become the perfect images of ourselves? On the contrary, argues Alison Gopnik, professor of psychology and philosophy at the University of California at Berkeley.

The author of The Philosophical BabyThe Scientist in the Crib and other influential books on cognitive development, Gopnik presents evidence that babies and children are conscious of far more than we give them credit for, as they engage every sense and spend every waking moment discovering, filing away, analyzing and acting on information about how the world works. Gopnik’s work draws on psychological, neuroscientific, and philosophical developments in child development research to understand how the human mind learns, how and why we love, our ability to innovate, as well as giving us a deeper appreciation for the role of parenthood.

She says: "What's it like to be a baby? Being in love in Paris for the first time after you've had 3 double espressos."

More profile about the speaker
Alison Gopnik | Speaker | TED.com
TEDGlobal 2011

Alison Gopnik: What do babies think?

Alison Gopnik: Cfare mendojne bebet?

Filmed:
4,341,974 views

"Bebet dhe femijet e vegjel jane si sektori i Kerkimeve dhe Zhvillimit te species njerezore," thote psikologia Alison Gopnik. Kerkimet e saj zbulojne mbledhjen e sofistikuar te inteligjences dhe vendim - marrjet qe bebet bejne me te vertete kur luajne.
- Child development psychologist
Alison Gopnik takes us into the fascinating minds of babies and children, and shows us how much we understand before we even realize we do. Full bio

Double-click the English transcript below to play the video.

00:15
What is going on
0
0
2000
Cfare po ndodh
00:17
in this baby's mind?
1
2000
2000
ne mendjen e kesaj bebeje?
00:19
If you'd asked people this 30 years ago,
2
4000
2000
Nese do t'i kishit pyetur njerezit per kete 30 vjet me pare,
00:21
most people, including psychologists,
3
6000
2000
shumica e njerezve, duke perfshire psikologet,
00:23
would have said that this baby was irrational,
4
8000
3000
do te kishin thene qe ky femije ishte iracional,
00:26
illogical, egocentric --
5
11000
2000
i palogjikshem, egocentrik --
00:28
that he couldn't take the perspective of another person
6
13000
2000
se ai nuk mund te merrte perspektivat e nje personi tjeter
00:30
or understand cause and effect.
7
15000
2000
ose te kuptonte shkakun dhe efektin.
00:32
In the last 20 years,
8
17000
2000
Ne 20 vitet e fundit,
00:34
developmental science has completely overturned that picture.
9
19000
3000
zhvillimi i shkences e ka permbysur perfundimisht ate imazh.
00:37
So in some ways,
10
22000
2000
Pra, ne nje fare menyre,
00:39
we think that this baby's thinking
11
24000
2000
ne mendojme qe mendimet e ketij femije
00:41
is like the thinking of the most brilliant scientists.
12
26000
4000
jane si mendimet e shkenctareve me te shkelqyer.
00:45
Let me give you just one example of this.
13
30000
2000
Me lejoni t'ju jap vetem nje shembull te kesaj.
00:47
One thing that this baby could be thinking about,
14
32000
3000
Nje gje qe ky femije mund te jete duke menduar,
00:50
that could be going on in his mind,
15
35000
2000
qe mund te jete duke i shkuar ne mendje,
00:52
is trying to figure out
16
37000
2000
eshte qe po mundohet te zbuloje
00:54
what's going on in the mind of that other baby.
17
39000
3000
cfare po ndodh ne mendjen e femijes tjeter.
00:57
After all, one of the things that's hardest for all of us to do
18
42000
3000
Mbi te gjitha, nje nga gjerat me te veshtire per te bere, per te gjithe ne
01:00
is to figure out what other people are thinking and feeling.
19
45000
3000
eshte te zbulojme se cfare po mendojne dhe ndjejne njerezit e tjere.
01:03
And maybe the hardest thing of all
20
48000
2000
Dhe ndoshta me e veshtira e te gjithave
01:05
is to figure out that what other people think and feel
21
50000
3000
eshte te zbulosh se ajo qe njerezit e tjere mendojne & ndjejne
01:08
isn't actually exactly like what we think and feel.
22
53000
2000
nuk eshte e njejte me ate qe ne mendojme dhe ndjejme.
01:10
Anyone who's followed politics can testify
23
55000
2000
Kushdo qe ka ndjekur politiken mund te deshmoje
01:12
to how hard that is for some people to get.
24
57000
3000
se sa e veshtire eshte per disa njerez per ta kuptuar.
01:15
We wanted to know
25
60000
2000
Ne donim te dinim
01:17
if babies and young children
26
62000
2000
nese bebet dhe femijet e vegjel
01:19
could understand this really profound thing about other people.
27
64000
3000
mund te kuptojne kete gje vertet te thelle rreth njerezve te tjere.
01:22
Now the question is: How could we ask them?
28
67000
2000
Tani pyetja eshte: Si mund ti pyesim ne ato?
01:24
Babies, after all, can't talk,
29
69000
2000
Bebet, pas te gjithave, nuk mund te flasin,
01:26
and if you ask a three year-old
30
71000
2000
dhe nese ju pyesni nje 3 vjecar
01:28
to tell you what he thinks,
31
73000
2000
per t'ju thene se cfare mendon,
01:30
what you'll get is a beautiful stream of consciousness monologue
32
75000
3000
ajo cka ju do te merrni eshte nje lume i bukur monologu rreth vetedijes
01:33
about ponies and birthdays and things like that.
33
78000
3000
rreth kuajve te vegjel e ditelindjeve dhe gjerave te ngjashme me keto.
01:36
So how do we actually ask them the question?
34
81000
3000
Pra, si u bejme atyre pyetjen ne te vertete?
01:39
Well it turns out that the secret was broccoli.
35
84000
3000
E pra, del se sekreti ishte brokoli.
01:42
What we did -- Betty Rapacholi, who was one of my students, and I --
36
87000
4000
Ajo qe beme -- une dhe Betty Rapacholi, nje prej studenteve te mia, --
01:46
was actually to give the babies two bowls of food:
37
91000
3000
ishte pikerisht ti jepje bebeve dy tasa me ushqime:
01:49
one bowl of raw broccoli
38
94000
2000
nje tas me brokoli te gjalle
01:51
and one bowl of delicious goldfish crackers.
39
96000
3000
dhe nje tas me biskota te shijshme ne forme peshku.
01:54
Now all of the babies, even in Berkley,
40
99000
3000
Tani te gjithe femijet, edhe ne Berkley,
01:57
like the crackers and don't like the raw broccoli.
41
102000
3000
pelqyen biskotat dhe nuk pelqyen brokolin e gjalle.
02:00
(Laughter)
42
105000
2000
(Te qeshura)
02:02
But then what Betty did
43
107000
2000
Por, ajo qe beri Betty
02:04
was to take a little taste of food from each bowl.
44
109000
3000
ishte qe provonte pak nga ushqimet ne secilin tas.
02:07
And she would act as if she liked it or she didn't.
45
112000
2000
Dhe ajo do te reagonte sikur do ti pelqente ose jo.
02:09
So half the time, she acted
46
114000
2000
Keshtu qe gjysmen e kohes, ajo reagoi
02:11
as if she liked the crackers and didn't like the broccoli --
47
116000
2000
sikur do te pelqente biskotat dhe nuk do te pelqente brokolin --
02:13
just like a baby and any other sane person.
48
118000
3000
njelloj si bebet dhe cdo person tjeter normal.
02:16
But half the time,
49
121000
2000
Por gjysmen e kohes,
02:18
what she would do is take a little bit of the broccoli
50
123000
2000
ajo cka do te bente ishte te merrte pak nga brokoli
02:20
and go, "Mmmmm, broccoli.
51
125000
3000
dhe te reagonte, "Mmmmmm, brokoli.
02:23
I tasted the broccoli. Mmmmm."
52
128000
3000
Une e provova brokolin, Mmmmm."
02:26
And then she would take a little bit of the crackers,
53
131000
2000
Dhe me pas ajo do te merrte pak nga biskotat,
02:28
and she'd go, "Eww, yuck, crackers.
54
133000
4000
dhe do te reagonte, "Iiiii, e keqe, biskota.
02:32
I tasted the crackers. Eww, yuck."
55
137000
3000
Une i provova biskotat, Iiiiii, e keqe."
02:35
So she'd act as if what she wanted
56
140000
2000
Pra, ajo do te reagonte sikur ajo qe donte
02:37
was just the opposite of what the babies wanted.
57
142000
3000
ishte e kunderta e asaj qe donin bebet.
02:40
We did this with 15 and 18 month-old babies.
58
145000
2000
Ne e realizuam kete me bebet 15 - 18 muajsh.
02:42
And then she would simply put her hand out and say,
59
147000
3000
Dhe me pas ajo do te zgjaste doren dhe do te thoshte,
02:45
"Can you give me some?"
60
150000
2000
"A do te me japesh ca mua?"
02:47
So the question is: What would the baby give her,
61
152000
2000
Pra, pyetja eshte: Cfare do t'i jepte bebja asaj,
02:49
what they liked or what she liked?
62
154000
2000
ate qe ato pelqenin apo ate qe ajo pelqente?
02:51
And the remarkable thing was that 18 month-old babies,
63
156000
3000
Dhe gjeja me e mrekullueshme ishte qe bebet 18 muajshe,
02:54
just barely walking and talking,
64
159000
2000
qe akoma nuk ecnin dhe flisnin,
02:56
would give her the crackers if she liked the crackers,
65
161000
3000
do ti jepnin asaj biskotat nese ajo kishte qejf biskotat,
02:59
but they would give her the broccoli if she liked the broccoli.
66
164000
3000
dhe do ti jepnin asaj brokoli nese ajo kishte qejf brokolit.
03:02
On the other hand,
67
167000
2000
Nga ana tjeter,
03:04
15 month-olds would stare at her for a long time
68
169000
2000
bebet 15 muajshe do t'a veshtronin per nje kohe te gjate ate
03:06
if she acted as if she liked the broccoli,
69
171000
2000
nese ajo reagonte qe pelqente brokolit
03:08
like they couldn't figure this out.
70
173000
3000
sikur nuk mund ta kuptonin.
03:11
But then after they stared for a long time,
71
176000
2000
Por, pasi e kishin veshtruar per nje kohe te gjate,
03:13
they would just give her the crackers,
72
178000
2000
ato do ti jepnin asaj vetem biskotat,
03:15
what they thought everybody must like.
73
180000
2000
ajo qe ato mendonin qe cdokush do i pelqente.
03:17
So there are two really remarkable things about this.
74
182000
3000
Keshtu qe jane dy gjera vertet te mrekullueshme rreth kesaj.
03:20
The first one is that these little 18 month-old babies
75
185000
3000
E para eshte qe keto bebe 18 muajshe
03:23
have already discovered
76
188000
2000
e kane zbuluar tashme
03:25
this really profound fact about human nature,
77
190000
2000
kete fakt vertet te thelle rreth natyres njerezore,
03:27
that we don't always want the same thing.
78
192000
2000
qe ne nuk duam gjithnje te njejtat gjera.
03:29
And what's more, they felt that they should actually do things
79
194000
2000
Dhe per me teper, ato ndiheshin qe ato ne te vertete duhet te benin gjera
03:31
to help other people get what they wanted.
80
196000
3000
per te ndihmuar qe njerezit e tjere te merrnin qe donin.
03:34
Even more remarkably though,
81
199000
2000
Edhe per me teper,
03:36
the fact that 15 month-olds didn't do this
82
201000
3000
fakti qe 15 muajshet nuk e bene kete
03:39
suggests that these 18 month-olds had learned
83
204000
3000
sugjeron qe keto bebe 18 muajshe kane mesuar
03:42
this deep, profound fact about human nature
84
207000
3000
kete fakt te veshtire, te thelle te natyres njerezore
03:45
in the three months from when they were 15 months old.
85
210000
3000
per 3 muaj qe kur ato ishin 15 muajsh.
03:48
So children both know more and learn more
86
213000
2000
Keshtu qe femijet dine me shume dhe mesojne me shume
03:50
than we ever would have thought.
87
215000
2000
nga ajo cka ne kemi menduar.
03:52
And this is just one of hundreds and hundreds of studies over the last 20 years
88
217000
4000
Dhe kjo eshte vetem nje e qindra - qindra studimeve gjate 20 viteve te fundit
03:56
that's actually demonstrated it.
89
221000
2000
qe eshte treguar me fakt.
03:58
The question you might ask though is:
90
223000
2000
Pyetja qe mund te beni eshte:
04:00
Why do children learn so much?
91
225000
3000
Pse femijet mesojne kaq shume?
04:03
And how is it possible for them to learn so much
92
228000
2000
Dhe si eshte e mundur per ato te mesojne kaq shume
04:05
in such a short time?
93
230000
2000
ne nje kohe kaq te shkurter?
04:07
I mean, after all, if you look at babies superficially,
94
232000
2000
Dua te them, pas te gjithave, nese i shihni bebet siperfaqesisht
04:09
they seem pretty useless.
95
234000
2000
ato duken mjaft te padobishem.
04:11
And actually in many ways, they're worse than useless,
96
236000
3000
Dhe ne te vertete ne shume menyra, ato jane me se te padobishem
04:14
because we have to put so much time and energy
97
239000
2000
sepse na duhet te japim shume kohe dhe energji
04:16
into just keeping them alive.
98
241000
2000
vetem per ti mbajtur ato gjalle.
04:18
But if we turn to evolution
99
243000
2000
Por nese kthehemi tek evolucioni
04:20
for an answer to this puzzle
100
245000
2000
per nje pergjigje te ketij misteri
04:22
of why we spend so much time
101
247000
2000
qe pse shpenzojme kaq shume kohe
04:24
taking care of useless babies,
102
249000
3000
duke u kujdesur per bebe te padobishme,
04:27
it turns out that there's actually an answer.
103
252000
3000
na rezulton qe ne te vertete ka nje pergjigje.
04:30
If we look across many, many different species of animals,
104
255000
3000
Nese shohim neper shume, shume specie te ndryshme kafshesh.
04:33
not just us primates,
105
258000
2000
jo vetem tek ne primatet,
04:35
but also including other mammals, birds,
106
260000
2000
por gjithashtu duke perfshire gjitaret e tjere, zogjte,
04:37
even marsupials
107
262000
2000
madje edhe marsupialet
04:39
like kangaroos and wombats,
108
264000
2000
si kanguret dhe urithet,
04:41
it turns out that there's a relationship
109
266000
2000
rezulton qe ka nje lidhje
04:43
between how long a childhood a species has
110
268000
4000
midis kohezgjatjes se femijerise qe ka nje specie
04:47
and how big their brains are compared to their bodies
111
272000
4000
dhe sa shume mendjet e tyre krahasohen me trupat
04:51
and how smart and flexible they are.
112
276000
2000
dhe sa te zgjuar dhe fleksibel ato jane.
04:53
And sort of the posterbirds for this idea are the birds up there.
113
278000
3000
Dhe nje lloj tabloje per kete ide jane zogjte ne qiell.
04:56
On one side
114
281000
2000
Ne nje ane
04:58
is a New Caledonian crow.
115
283000
2000
eshte nje sorre ne Kaledonine e Re.
05:00
And crows and other corvidae, ravens, rooks and so forth,
116
285000
3000
Dhe sorrat dhe korvidianet e tjere, korbat, dhe keshtu me rradhe,
05:03
are incredibly smart birds.
117
288000
2000
jane zogj teper te zgjuar.
05:05
They're as smart as chimpanzees in some respects.
118
290000
3000
Ato jane ne disa aspekte aq te zgjuar sa shimpazete.
05:08
And this is a bird on the cover of science
119
293000
2000
Dhe ky eshte nje zog ne kopertinen e shkences
05:10
who's learned how to use a tool to get food.
120
295000
3000
qe ka mesuar sesi te perdore mjetin per te marre ushqimin.
05:13
On the other hand,
121
298000
2000
Nga ana tjeter,
05:15
we have our friend the domestic chicken.
122
300000
2000
ne kemi miken tone, pulen shtepiake.
05:17
And chickens and ducks and geese and turkeys
123
302000
3000
Dhe pulat, dhe rosat, dhe patat dhe gjeli i detit
05:20
are basically as dumb as dumps.
124
305000
2000
jane ne thelb shume budallenj.
05:22
So they're very, very good at pecking for grain,
125
307000
3000
Ata jane shume, shume te mire per te cukitur grurin,
05:25
and they're not much good at doing anything else.
126
310000
3000
por nuk jane te zote te bejne asgje tjeter.
05:28
Well it turns out that the babies,
127
313000
2000
E pra kjo rezulton qe bebet,
05:30
the New Caledonian crow babies, are fledglings.
128
315000
2000
bebet e sorrave te Caledonise se Re, jane zogj te vegjel.
05:32
They depend on their moms
129
317000
2000
Ato varen nga mamate e tyre
05:34
to drop worms in their little open mouths
130
319000
3000
per t'u hedhur krimba ne gojezat e tyre te hapura
05:37
for as long as two years,
131
322000
2000
per aq gjate sa dy vjet,
05:39
which is a really long time in the life of a bird.
132
324000
2000
qe eshte nje kohe shume e gjate ne jeten e nje zogu.
05:41
Whereas the chickens are actually mature
133
326000
2000
Kurse pulat ne te vertete maturohen
05:43
within a couple of months.
134
328000
2000
brenda disa muajsh.
05:45
So childhood is the reason
135
330000
3000
Keshtu qe femijeria eshte arsyeja
05:48
why the crows end up on the cover of Science
136
333000
2000
pse sorrat perfundojne ne kopertinen e Shkences
05:50
and the chickens end up in the soup pot.
137
335000
2000
dhe pulat perfundojne ne tenxheren e supes.
05:52
There's something about that long childhood
138
337000
3000
Ka dicka per kete femijeri te gjate
05:55
that seems to be connected
139
340000
2000
qe duket qe te jete e lidhur
05:57
to knowledge and learning.
140
342000
2000
me njohuri dhe te mesuar.
05:59
Well what kind of explanation could we have for this?
141
344000
3000
Epo, cfare lloj shpjegimi mund te kemi ne per kete?
06:02
Well some animals, like the chicken,
142
347000
3000
Disa kafshe, si pulat,
06:05
seem to be beautifully suited
143
350000
2000
duket sikur jane mire te pershtatura
06:07
to doing just one thing very well.
144
352000
2000
per te bere shume mire vetem nje gje.
06:09
So they seem to be beautifully suited
145
354000
3000
Keshtu qe ato duken sikur jane mire te pershtatura
06:12
to pecking grain in one environment.
146
357000
2000
per te cukitur grure ne nje mjedis.
06:14
Other creatures, like the crows,
147
359000
2000
Krijesat e tjera, si sorrat,
06:16
aren't very good at doing anything in particular,
148
361000
2000
nuk jane shume te mire per te bere asgje ne vecanti,
06:18
but they're extremely good
149
363000
2000
por ato jane me te vertete te zote
06:20
at learning about laws of different environments.
150
365000
2000
per te mesuar rreth ligjeve te mjediseve te ndryshme.
06:22
And of course, we human beings
151
367000
2000
Dhe sigurisht, ne qeniet njerezore
06:24
are way out on the end of the distribution like the crows.
152
369000
3000
jemi ne fund te kurbes se shperndarjes si sorrat.
06:27
We have bigger brains relative to our bodies
153
372000
2000
Ne kemi trurin me te madh krahasuar me trupin tone
06:29
by far than any other animal.
154
374000
2000
me te madh nga cdo kafshe tjeter.
06:31
We're smarter, we're more flexible,
155
376000
2000
Ne jemi me te zgjuar, ne jemi me fleksibel,
06:33
we can learn more,
156
378000
2000
ne mund te mesojme me shume,
06:35
we survive in more different environments,
157
380000
2000
ne mbijetojme ne shume ambjente te ndryshme,
06:37
we migrated to cover the world and even go to outer space.
158
382000
3000
ne migruam ne gjithe boten dhe madje shkuam ne hapesire.
06:40
And our babies and children are dependent on us
159
385000
3000
Dhe bebet dhe femijet tane jane te varur nga ne
06:43
for much longer than the babies of any other species.
160
388000
3000
per nje kohe me te gjate sesa bebet e llojeve te tjera.
06:46
My son is 23.
161
391000
2000
Djali im eshte 23 vjec.
06:48
(Laughter)
162
393000
2000
(Te qeshura)
06:50
And at least until they're 23,
163
395000
2000
Dhe te pakten derisa ata jane 23,
06:52
we're still popping those worms
164
397000
2000
jemi akoma duke i ushqyer ata me krimba
06:54
into those little open mouths.
165
399000
3000
ne gojezat e tyre te hapura.
06:57
All right, why would we see this correlation?
166
402000
3000
Atehere, pse duhet ta shohim kete korrelacion?
07:00
Well an idea is that that strategy, that learning strategy,
167
405000
4000
E pra, nje ide eshte qe kjo strategji, kjo strategji e te mesuarit,
07:04
is an extremely powerful, great strategy for getting on in the world,
168
409000
3000
eshte me te vertete e fuqishme, strategji e madhe per te avancuar ne bote,
07:07
but it has one big disadvantage.
169
412000
2000
por ka nje disavantazh te madh.
07:09
And that one big disadvantage
170
414000
2000
Dhe ky disavantazh i madh
07:11
is that, until you actually do all that learning,
171
416000
3000
eshte qe, derisa te besh te gjithe ate te mesuar,
07:14
you're going to be helpless.
172
419000
2000
ti je i pazoti.
07:16
So you don't want to have the mastodon charging at you
173
421000
3000
Pra ju nuk doni te keni keto mastodonte t'ju akuzojne ju
07:19
and be saying to yourself,
174
424000
2000
dhe te jeni duke i thene vetes,
07:21
"A slingshot or maybe a spear might work. Which would actually be better?"
175
426000
4000
"Nje llastik ose ndoshta nje shtize mund te punoje. Cila do te ishte me mire?"
07:25
You want to know all that
176
430000
2000
Ti do ta dish te gjithe kete
07:27
before the mastodons actually show up.
177
432000
2000
perpara se mastodontet te shfaqen.
07:29
And the way the evolutions seems to have solved that problem
178
434000
3000
Dhe menyra sesi evolucioni duket te kete zgjidhur kete problem
07:32
is with a kind of division of labor.
179
437000
2000
eshte me nje lloj ndarjeje te punes.
07:34
So the idea is that we have this early period when we're completely protected.
180
439000
3000
Pra ideja eshte qe ne kete periudhe te heret kur jemi plotesisht te mbrojtur,
07:37
We don't have to do anything. All we have to do is learn.
181
442000
3000
nuk na duhet te bejme asgje. Gjithcka qe na duhet te bejme eshte te mesojme.
07:40
And then as adults,
182
445000
2000
Dhe me pas si te rritur,
07:42
we can take all those things that we learned when we were babies and children
183
447000
3000
ne mund te marrim te gjitha keto gjera qe kemi mesuar kur kemi qene bebe dhe femije
07:45
and actually put them to work to do things out there in the world.
184
450000
3000
dhe ti vendosim ato ne pune per te bere gjera ne boten jashte.
07:48
So one way of thinking about it
185
453000
2000
Pra, nje menyre per te menduar rreth kesaj
07:50
is that babies and young children
186
455000
2000
eshte qe bebet dhe femijet e vegjel
07:52
are like the research and development division of the human species.
187
457000
3000
jane si sektori i kerkimeve dhe zhvillimit te species njerezore.
07:55
So they're the protected blue sky guys
188
460000
3000
Pra, ata jane shkencetare te mbrojtur
07:58
who just have to go out and learn and have good ideas,
189
463000
2000
qe duhet vetem te dalin e te mesojne dhe te kene ide te mira,
08:00
and we're production and marketing.
190
465000
2000
dhe ne jemi prodhimi dhe marketingu.
08:02
We have to take all those ideas
191
467000
2000
Duhet t'i marrim te gjitha keto ide
08:04
that we learned when we were children
192
469000
2000
qe mesuam kur ishim femije
08:06
and actually put them to use.
193
471000
2000
edhe ti vendosim ne pune aktualisht.
08:08
Another way of thinking about it
194
473000
2000
Nje menyre tjeter per te menduar rreth kesaj
08:10
is instead of thinking of babies and children
195
475000
2000
eshte qe ne vend qe t'i shohim bebet dhe femijet
08:12
as being like defective grownups,
196
477000
2000
si te rritur te manget
08:14
we should think about them
197
479000
2000
ne duhet te mendojme rreth tyre
08:16
as being a different developmental stage of the same species --
198
481000
2000
si individe ne nje faze te ndryshme te zhvillimit te te njejtit specie --
08:18
kind of like caterpillars and butterflies --
199
483000
3000
sic jane vemjet dhe fluturat --
08:21
except that they're actually the brilliant butterflies
200
486000
2000
pervec se ato jane vertete flutura te shkelqyera
08:23
who are flitting around the garden and exploring,
201
488000
3000
qe fluturojne rreth kopshtit dhe eksplorojne,
08:26
and we're the caterpillars
202
491000
2000
dhe ne jemi vemjet
08:28
who are inching along our narrow, grownup, adult path.
203
493000
3000
qe perparojne gradualisht gjate shtegut te ngushte te te rriturve.
08:31
If this is true, if these babies are designed to learn --
204
496000
3000
Nese kjo eshte e vertete, nese keto bebe jane dizenjuar per te mesuar --
08:34
and this evolutionary story would say children are for learning,
205
499000
3000
dhe historia e evolucionit do te thote qe femijet jane atje per te mesuar,
08:37
that's what they're for --
206
502000
2000
kjo eshte arsyeja qe ekzistojne --
08:39
we might expect
207
504000
2000
ne mund te presim
08:41
that they would have really powerful learning mechanisms.
208
506000
2000
qe ato te zoterojne mekanizma shume te fuqishem te te mesuarit.
08:43
And in fact, the baby's brain
209
508000
3000
Dhe ne te vertete, truri i bebeve
08:46
seems to be the most powerful learning computer
210
511000
2000
duket te jete kompjuteri me i fuqishem i te mesuarit
08:48
on the planet.
211
513000
2000
ne planet.
08:50
But real computers are actually getting to be a lot better.
212
515000
3000
Por kompjuterat e vertete jane duke u bere gjithnje e me te mire.
08:53
And there's been a revolution
213
518000
2000
Dhe kohet e fundit ka ndodhur nje revolucion
08:55
in our understanding of machine learning recently.
214
520000
2000
ne te kuptuarit e makines se te mesuarit.
08:57
And it all depends on the ideas of this guy,
215
522000
3000
Dhe cdo gje varet ne idete e ketij djali,
09:00
the Reverend Thomas Bayes,
216
525000
2000
Reverend Thomas Bayes,
09:02
who was a statistician and mathematician in the 18th century.
217
527000
3000
qe ishte nje statisticien dhe matematikan ne shekujt 18.
09:05
And essentially what Bayes did
218
530000
3000
Dhe ne thelb cfare Bayes beri
09:08
was to provide a mathematical way
219
533000
2000
ishte per te provuar nje rruge matematike
09:10
using probability theory
220
535000
2000
duke perdorur teori te probabilitetit
09:12
to characterize, describe,
221
537000
2000
per te karakterizuar, pershkruar,
09:14
the way that scientists find out about the world.
222
539000
2000
menyrat qe shkenctaret zbulonin rreth botes.
09:16
So what scientists do
223
541000
2000
Pra, cfare shkenctaret bejne
09:18
is they have a hypothesis that they think might be likely to start with.
224
543000
3000
eshte qe ato kane nje hipoteze per te cilen mendojne se mund te jete e mundur per te filluar.
09:21
They go out and test it against the evidence.
225
546000
2000
Ato shkojne jashte dhe e testojne ate kunder provave.
09:23
The evidence makes them change that hypothesis.
226
548000
2000
Evidencat i bejne ato te ndryshojne kete hipoteze.
09:25
Then they test that new hypothesis
227
550000
2000
Me pas ato testojne ate hipoteze te re
09:27
and so on and so forth.
228
552000
2000
dhe keshtu me rradhe.
09:29
And what Bayes showed was a mathematical way that you could do that.
229
554000
3000
Dhe cfare Bayes tregoi ishte menyra matematika se si mund te behej.
09:32
And that mathematics is at the core
230
557000
2000
Dhe kjo matematike eshte ne thelb
09:34
of the best machine learning programs that we have now.
231
559000
2000
te programeve me te mire te makines se te mesuarit qe ne kemi tani.
09:36
And some 10 years ago,
232
561000
2000
Dhe rreth 10 vjet me pare,
09:38
I suggested that babies might be doing the same thing.
233
563000
4000
une sugjerova qe bebet mund te bejne te njejten gje.
09:42
So if you want to know what's going on
234
567000
2000
Keshtu qe nese doni te dini cfare po ndodh
09:44
underneath those beautiful brown eyes,
235
569000
2000
poshte ketyre syve te bukur kafe,
09:46
I think it actually looks something like this.
236
571000
2000
une mendoj qe ne fakt duket dicka si kjo.
09:48
This is Reverend Bayes's notebook.
237
573000
2000
Ky eshte libri i shenimeve te Reverend Bayes.
09:50
So I think those babies are actually making complicated calculations
238
575000
3000
Pra, mendoj qe keto femije jane duke bere llogaritje te komplikuara
09:53
with conditional probabilities that they're revising
239
578000
3000
me probabilitete kushtezuese qe jane duke rishikuar
09:56
to figure out how the world works.
240
581000
2000
per te zbuluar sesi funksionon bota.
09:58
All right, now that might seem like an even taller order to actually demonstrate.
241
583000
4000
Ne rregull, tani kjo mund te duket si nje menyre akoma me e persosur per ta demonstruar.
10:02
Because after all, if you ask even grownups about statistics,
242
587000
2000
Sepse ne fund te fundit, edhe nese pyet te rriturit rreth statistikave,
10:04
they look extremely stupid.
243
589000
2000
ato duken shume te trashe.
10:06
How could it be that children are doing statistics?
244
591000
3000
Si mund te jete e mundur qe femijet jane duke bere statistike?
10:09
So to test this we used a machine that we have
245
594000
2000
Keshtu qe per te testuar kete ne perdorem nje makine qe kishim
10:11
called the Blicket Detector.
246
596000
2000
te quajtur Detektori Blicket..
10:13
This is a box that lights up and plays music
247
598000
2000
Kjo eshte nje kuti qe ndricon dhe luan muzike
10:15
when you put some things on it and not others.
248
600000
3000
kur vendos disa objekte mbi te dhe jo te tjerat.
10:18
And using this very simple machine,
249
603000
2000
Dhe per te perdorur kete makine shume te thjeshte,
10:20
my lab and others have done dozens of studies
250
605000
2000
laboratori im por edhe te tjerat kane bere me dhjetra studime
10:22
showing just how good babies are
251
607000
2000
per te treguar sesa te zote jane femijet
10:24
at learning about the world.
252
609000
2000
per te mesuarit rreth botes.
10:26
Let me mention just one
253
611000
2000
Me lejoni t'ju permend vetem njeren
10:28
that we did with Tumar Kushner, my student.
254
613000
2000
qe beme me studentin tim, Tumar Kushner.
10:30
If I showed you this detector,
255
615000
2000
Nese une ju tregoj kete detektor,
10:32
you would be likely to think to begin with
256
617000
2000
do te filloni te mendoni me faktin
10:34
that the way to make the detector go
257
619000
2000
qe menyra per te bere detektorin te funksionoje
10:36
would be to put a block on top of the detector.
258
621000
3000
do te jete te vendosesh nje bllok te detektorit.
10:39
But actually, this detector
259
624000
2000
Por ne te vertete, ky detektor
10:41
works in a bit of a strange way.
260
626000
2000
punon ne nje menyre pak te cuditshme.
10:43
Because if you wave a block over the top of the detector,
261
628000
3000
Pasi nese leviz nje bllok permbi detektorin,
10:46
something you wouldn't ever think of to begin with,
262
631000
3000
do te ndodhe dicka qe as nuk mund ta keni imagjinuar,
10:49
the detector will actually activate two out of three times.
263
634000
3000
pasi detektori vertete do te aktivizohet dy nga te tri heret.
10:52
Whereas, if you do the likely thing, put the block on the detector,
264
637000
3000
Ndersa, nese beni te njejten gje, duke vendosur bllokun mbi detektorin
10:55
it will only activate two out of six times.
265
640000
4000
do te aktivizohet vetem dy nga gjashte heret.
10:59
So the unlikely hypothesis
266
644000
2000
Pra, hipoteza e pamundur
11:01
actually has stronger evidence.
267
646000
2000
ne te vertete ka evidenca te forta.
11:03
It looks as if the waving
268
648000
2000
Duket sikur levizja
11:05
is a more effective strategy than the other strategy.
269
650000
2000
eshte nje strategji me efektive sesa strategjia tjeter.
11:07
So we did just this; we gave four year-olds this pattern of evidence,
270
652000
3000
Pra, ne beme tamam kete; i dhame nje kater vjecari kete model prove,
11:10
and we just asked them to make it go.
271
655000
2000
dhe vetem i kerkuam per ta bere te funksionoje.
11:12
And sure enough, the four year-olds used the evidence
272
657000
3000
Dhe pa dyshim, kater vjecari e perdori kete fakt
11:15
to wave the object on top of the detector.
273
660000
3000
per te levizur objektin permbi detektorin.
11:18
Now there are two things that are really interesting about this.
274
663000
3000
Tani jane dy gjera qe jane vertet interesante rreth kesaj.
11:21
The first one is, again, remember, these are four year-olds.
275
666000
3000
E para eshte, perseri, mos harroni qe keto jane kater vjecare.
11:24
They're just learning how to count.
276
669000
2000
Ato sa po mesojne sesi te numerojne.
11:26
But unconsciously,
277
671000
2000
Por ne menyre te pandergjegjshme
11:28
they're doing these quite complicated calculations
278
673000
2000
ato jane duke bere keto llogaritje te komplikuara
11:30
that will give them a conditional probability measure.
279
675000
3000
qe do tu jape atyre nje mase te probabilitetit te kushtezuar .
11:33
And the other interesting thing
280
678000
2000
Dhe gjeja tjeter interesante
11:35
is that they're using that evidence
281
680000
2000
eshte qe e perdorin kete fakt
11:37
to get to an idea, get to a hypothesis about the world,
282
682000
3000
per te krijuar nje ide, per te ndertuar nje hipoteze per boten,
11:40
that seems very unlikely to begin with.
283
685000
3000
qe duket shume e pashprese per ta filluar.
11:43
And in studies we've just been doing in my lab, similar studies,
284
688000
3000
Dhe ne studimet qe kemi bere ne laboratorin tim, studime te ngjashme
11:46
we've show that four year-olds are actually better
285
691000
2000
ne kemi zbuluar qe kater vjecaret jane vertete me te zote
11:48
at finding out an unlikely hypothesis
286
693000
3000
per te zbuluar nje hipoteze te pashprese
11:51
than adults are when we give them exactly the same task.
287
696000
3000
sesa te rriturit kur ne i japim atyre saktesisht te njejten detyre.
11:54
So in these circumstances,
288
699000
2000
Keshtu qe ne keto rrethana,
11:56
the children are using statistics to find out about the world,
289
701000
3000
femijet perdorin statistikat per te zbuluar boten,
11:59
but after all, scientists also do experiments,
290
704000
3000
por ne fund te fundit, shkenctaret gjithashtu bejne eksperimente,
12:02
and we wanted to see if children are doing experiments.
291
707000
3000
dhe ne donim te shihnim nese femijet jane duke bere eksperimente.
12:05
When children do experiments we call it "getting into everything"
292
710000
3000
Kur femijet bejne eksperimente ne e quajme ate "duke u marre me cdo gje"
12:08
or else "playing."
293
713000
2000
ose tjeter "duke luajtur".
12:10
And there's been a bunch of interesting studies recently
294
715000
3000
Dhe kane qene nje sere studimesh interesante te bera se fundmi
12:13
that have shown this playing around
295
718000
3000
qe kane treguar qe kjo loje
12:16
is really a kind of experimental research program.
296
721000
2000
eshte me te vertete nje program eskperimental kerkimi.
12:18
Here's one from Cristine Legare's lab.
297
723000
3000
Ja ku eshte nje nga laboratori i Cristine Legare.
12:21
What Cristine did was use our Blicket Detectors.
298
726000
3000
Ajo qe beri Cristine, ishte te perdorte Detektorin tone Blicket.
12:24
And what she did was show children
299
729000
2000
Dhe ajo qe beri ishte ti tregonte femijeve
12:26
that yellow ones made it go and red ones didn't,
300
731000
2000
qe e verdha e bente ate te punonte dhe e kuqja jo,
12:28
and then she showed them an anomaly.
301
733000
3000
dhe me pas i tregoi atyre nje paradoks.
12:31
And what you'll see
302
736000
2000
Dhe ajo cka ju do te shihni
12:33
is that this little boy will go through five hypotheses
303
738000
3000
eshte qe ky djale i vogel do shkoje permes pese hipotezave
12:36
in the space of two minutes.
304
741000
3000
ne hapesiren e dy minutave.
12:39
(Video) Boy: How about this?
305
744000
3000
(Video) Djali: Po rreth kesaj?
12:43
Same as the other side.
306
748000
3000
Njesoj si ne anen tjeter.
12:46
Alison Gopnik: Okay, so his first hypothesis has just been falsified.
307
751000
4000
Alison Gopnik: Ne rregull, pra hipoteza e tij e pare sapo eshte falsifikuar.
12:55
(Laughter)
308
760000
2000
(Qeshje)
12:57
Boy: This one lighted up, and this one nothing.
309
762000
3000
Djali: Kjo ndricoi, dhe tek kjo tjetra asgje.
13:00
AG: Okay, he's got his experimental notebook out.
310
765000
3000
AG: Mire, ai nxjerr bllokun e shenimeve te tij eksperimentale.
13:06
Boy: What's making this light up.
311
771000
4000
Djali: Cfare e ben kete drite te ndizet?
13:11
(Laughter)
312
776000
9000
(Qeshje)
13:20
I don't know.
313
785000
2000
Une nuk e di.
13:22
AG: Every scientist will recognize that expression of despair.
314
787000
4000
AG: Cdo shkencetar do e njihte kete shprehje deshperimi.
13:26
(Laughter)
315
791000
3000
(Qeshje)
13:29
Boy: Oh, it's because this needs to be like this,
316
794000
6000
Djali: Oh, kjo ndodh sepse kjo duhet te jete ne kete menyre,
13:35
and this needs to be like this.
317
800000
2000
dhe kjo tjetra ne kete menyre.
13:37
AG: Okay, hypothesis two.
318
802000
3000
AG: Ne rregull, hipoteza numer dy.
13:40
Boy: That's why.
319
805000
2000
Djali: Ja perse.
13:42
Oh.
320
807000
2000
Oh.
13:44
(Laughter)
321
809000
5000
(Qeshje)
13:49
AG: Now this is his next idea.
322
814000
2000
AG: Tani kjo eshte ideja tjeter e tij.
13:51
He told the experimenter to do this,
323
816000
2000
Ai i tha eksperimentuesit per te bere kete,
13:53
to try putting it out onto the other location.
324
818000
4000
per te provuar per ti vendosur ato ne vendodhje te tjera.
13:57
Not working either.
325
822000
2000
Akoma s'eshte duke funksionuar.
14:02
Boy: Oh, because the light goes only to here,
326
827000
4000
Djali: Oh, kjo ndodh sepse drita shkon vetem ketej,
14:06
not here.
327
831000
3000
jo ketu.
14:09
Oh, the bottom of this box
328
834000
3000
Oh, fundi i kesaj kutie
14:12
has electricity in here,
329
837000
2000
ka elektricitet,
14:14
but this doesn't have electricity.
330
839000
2000
dhe kjo tjetra nuk ka elektricitet.
14:16
AG: Okay, that's a fourth hypothesis.
331
841000
2000
AG. Ne rregull, kjo eshte hipoteza e katert.
14:18
Boy: It's lighting up.
332
843000
2000
Djali: U ndez.
14:20
So when you put four.
333
845000
5000
Pra, kur vendos kater.
14:26
So you put four on this one to make it light up
334
851000
3000
Pra, duhet te vendosesh kater mbi kete per ta bere te ndricoje
14:29
and two on this one to make it light up.
335
854000
2000
dhe dy tek kjo tjetra.
14:31
AG: Okay,there's his fifth hypothesis.
336
856000
2000
AG: Mire, pra kjo ishte hipoteza e tij e peste.
14:33
Now that is a particularly --
337
858000
3000
Tashme ky --
14:36
that is a particularly adorable and articulate little boy,
338
861000
3000
eshte nje djale i vogel vecanerisht i adhurueshem dhe i qarte,
14:39
but what Cristine discovered is this is actually quite typical.
339
864000
3000
por ajo cka Cristine zbuloi eshte qe ky fakt eshte mjaft tipik.
14:42
If you look at the way children play, when you ask them to explain something,
340
867000
3000
Nese shihni rreth menyres sesi luajne femijet, kur i kerkonin atyre per t'ju shpjeguar dicka,
14:45
what they really do is do a series of experiments.
341
870000
3000
ajo cka ne te vertete ato bejne eshte qe realizojne nje sere eksperimentesh.
14:48
This is actually pretty typical of four year-olds.
342
873000
3000
Kjo eshte pikerisht shume tipike per nje kater vjecar.
14:51
Well, what's it like to be this kind of creature?
343
876000
3000
Por, si eshte te jesh kjo lloj qenieje?
14:54
What's it like to be one of these brilliant butterflies
344
879000
3000
Si eshte te jesh njera prej ketyre fluturave te shkelqyera
14:57
who can test five hypotheses in two minutes?
345
882000
3000
qe mund te testojne pese hipozeza ne dy minuta?
15:00
Well, if you go back to those psychologists and philosophers,
346
885000
3000
E pra, nese kthehemi tek psikologet dhe filozofet,
15:03
a lot of them have said
347
888000
2000
shume prej tyre kane thene
15:05
that babies and young children were barely conscious
348
890000
2000
qe bebet dhe femijet e vegjel ishin pak te vetedijshem
15:07
if they were conscious at all.
349
892000
2000
nese ishin te vetedijshem ne cdo gje.
15:09
And I think just the opposite is true.
350
894000
2000
Dhe une mendoj qe vetem e kunderta eshte e vertete.
15:11
I think babies and children are actually more conscious than we are as adults.
351
896000
3000
Une mendoj qe bebet dhe femijet jane ne te vertete me te vetedijshem sesa jemi ne si te rritur.
15:14
Now here's what we know about how adult consciousness works.
352
899000
3000
Kjo eshte ajo qe ne dime sesi vetedija e nje te rrituri funksionon.
15:17
And adults' attention and consciousness
353
902000
2000
Dhe vemendja e vetedija e nje te rrituri
15:19
look kind of like a spotlight.
354
904000
2000
duket si nje perqendrim i vemendjes.
15:21
So what happens for adults
355
906000
2000
Pra, ajo cka ndodh me te rriturit
15:23
is we decide that something's relevant or important,
356
908000
2000
eshte qe ne vendosim qe dicka eshte perkatese ose e rendesishme,
15:25
we should pay attention to it.
357
910000
2000
duhet ti kushtojme vemendje asaj.
15:27
Our consciousness of that thing that we're attending to
358
912000
2000
Vetedja jone rreth asaj gjeje qe po ndjekim
15:29
becomes extremely bright and vivid,
359
914000
3000
behet plotesisht me drite dhe jete,
15:32
and everything else sort of goes dark.
360
917000
2000
dhe cdo gje tjeter bie ne erresire.
15:34
And we even know something about the way the brain does this.
361
919000
3000
Dhe ne dime dicka rreth menyres sesi truri jone e ben kete.
15:37
So what happens when we pay attention
362
922000
2000
Pra, cfare ndodh kur ne kushtojme vemendje
15:39
is that the prefrontal cortex, the sort of executive part of our brains,
363
924000
3000
eshte qe korteksi jone paraballor, nje lloj pjese ekzekutive e trurit tone,
15:42
sends a signal
364
927000
2000
na dergon nje sinjal
15:44
that makes a little part of our brain much more flexible,
365
929000
2000
qe ben nje pjese te vogel te trurit tone shume me fleksibel,
15:46
more plastic, better at learning,
366
931000
2000
me plastik, me te mire ne te mesuar,
15:48
and shuts down activity
367
933000
2000
dhe mbyll aktivitetet
15:50
in all the rest of our brains.
368
935000
2000
ne te gjithe pjesen tjeter te trurit tone.
15:52
So we have a very focused, purpose-driven kind of attention.
369
937000
4000
Pra, ne kemi nje vemendje shume te fokusuar, nje lloj qellimi te drejtuar.
15:56
If we look at babies and young children,
370
941000
2000
Nese shohim bebet dhe femijet e vegjel,
15:58
we see something very different.
371
943000
2000
ne shohim dicka shume te ndryshme.
16:00
I think babies and young children
372
945000
2000
Une mendoj qe bebet dhe femijet e vegjel
16:02
seem to have more of a lantern of consciousness
373
947000
2000
duket se kane me shume nje fanar te ndergjegjes
16:04
than a spotlight of consciousness.
374
949000
2000
sesa nje fokusim te ndergjegjes.
16:06
So babies and young children are very bad
375
951000
3000
Pra, bebet dhe femijet e vegjel jane shume te pazote
16:09
at narrowing down to just one thing.
376
954000
3000
per tu fokusuar vetem ne nje gje.
16:12
But they're very good at taking in lots of information
377
957000
3000
Por ato jane shume te zote per te marre nje sere informacionesh
16:15
from lots of different sources at once.
378
960000
2000
prej nje sere burimesh ne te njejten kohe.
16:17
And if you actually look in their brains,
379
962000
2000
Dhe nese ju shihni ne trurin e tyre,
16:19
you see that they're flooded with these neurotransmitters
380
964000
3000
ju shihni qe ato jane te permbytur me keto neurotransmetues
16:22
that are really good at inducing learning and plasticity,
381
967000
2000
qe jane shume te mire per te nxitur te mesuarin dhe plasticitetin,
16:24
and the inhibitory parts haven't come on yet.
382
969000
3000
dhe pjeset frenuese nuk jane aktivizuar akoma.
16:27
So when we say that babies and young children
383
972000
2000
Keshtu qe kur ne themi qe bebet dhe femijet e vegjel
16:29
are bad at paying attention,
384
974000
2000
jane te dobet ndaj te kushtuarit vemendje,
16:31
what we really mean is that they're bad at not paying attention.
385
976000
4000
ajo cka ne nenkuptojme eshte qe ato jane te dobet per te mos kushtuar vemendje.
16:35
So they're bad at getting rid
386
980000
2000
Pra ato jane te dobet per t'u shpetuar
16:37
of all the interesting things that could tell them something
387
982000
2000
te gjithe gjerave interesante qe mund t'u thone atyre dicka
16:39
and just looking at the thing that's important.
388
984000
2000
dhe te koncentrohen vetem te gjerat qe jane te rendesishme.
16:41
That's the kind of attention, the kind of consciousness,
389
986000
3000
Ky eshte lloji i vemendjes, lloji i vetedijes
16:44
that we might expect
390
989000
2000
qe ne mund te presim
16:46
from those butterflies who are designed to learn.
391
991000
2000
nga keto flutura qe jane te dizenjuara per te mesuar.
16:48
Well if we want to think about a way
392
993000
2000
E pra, nese duam te mendojme rreth menyres
16:50
of getting a taste of that kind of baby consciousness as adults,
393
995000
4000
se si te provojme shijen e asaj lloj vetedije feminore si te rritur,
16:54
I think the best thing is think about cases
394
999000
2000
menyra me e mire eshte te mendoj rreth ceshtjeve
16:56
where we're put in a new situation that we've never been in before --
395
1001000
3000
kur ne jemi te vendosur ne nje situate te re qe nuk kemi qene perpara -
16:59
when we fall in love with someone new,
396
1004000
2000
kur ne dashurohemi me nje person te ri,
17:01
or when we're in a new city for the first time.
397
1006000
3000
ose kur ne jemi ne nje qytet te ri per here te pare.
17:04
And what happens then is not that our consciousness contracts,
398
1009000
2000
Dhe cfare ndodh me pas nuk eshte qe vetedija jone tkurret,
17:06
it expands,
399
1011000
2000
ajo zhvillohet,
17:08
so that those three days in Paris
400
1013000
2000
keshtu qe ato tre dite ne Paris
17:10
seem to be more full of consciousness and experience
401
1015000
2000
duken qe jane te mbushura me vetedije dhe eksperience
17:12
than all the months of being
402
1017000
2000
sesa te gjitha muajt qe ishim duke
17:14
a walking, talking, faculty meeting-attending zombie back home.
403
1019000
4000
ecur, folur, ndjekur mbledhjet e fakultetit si mumje dhe kthehu ne shtepi.
17:18
And by the way, that coffee,
404
1023000
2000
Dhe, meqe ra fjala, ajo kafe,
17:20
that wonderful coffee you've been drinking downstairs,
405
1025000
2000
ajo kafe e mrekullueshme qe ke qene duke pire aty poshte,
17:22
actually mimics the effect
406
1027000
2000
ne te vertete minimizon efektin
17:24
of those baby neurotransmitters.
407
1029000
2000
te atyre neurotransmetuesve te bebes.
17:26
So what's it like to be a baby?
408
1031000
2000
Pra, si eshte te jesh bebe?
17:28
It's like being in love
409
1033000
2000
Eshte si te jesh ne dashuri
17:30
in Paris for the first time
410
1035000
2000
ne Paris per here te pare
17:32
after you've had three double-espressos.
411
1037000
2000
pasi ke marre tre dopio ekspreso.
17:34
(Laughter)
412
1039000
3000
(Qeshje)
17:37
That's a fantastic way to be,
413
1042000
2000
Kjo eshte nje menyre fantastike per te qene,
17:39
but it does tend to leave you waking up crying at three o'clock in the morning.
414
1044000
4000
por do te thote te zgjohesh me te qara ne tre te mengjesit.
17:43
(Laughter)
415
1048000
3000
(Qeshje)
17:46
Now it's good to be a grownup.
416
1051000
2000
Eshte bukur te jesh nje i rritur.
17:48
I don't want to say too much about how wonderful babies are.
417
1053000
2000
Une nuk dua te them shume sesa te mrekullueshme jane bebet .
17:50
It's good to be a grownup.
418
1055000
2000
Eshte bukur te jesh nje i rritur.
17:52
We can do things like tie our shoelaces and cross the street by ourselves.
419
1057000
3000
Ne mund te bejme gjera si te lidhim kepucet tona dhe te kalojme rrugen vete.
17:55
And it makes sense that we put a lot of effort
420
1060000
2000
Dhe ka kuptim qe ne bejme shume perpjekje
17:57
into making babies think like adults do.
421
1062000
4000
per ti bere bebet te mendojne ashtu si te rriturit.
18:01
But if what we want is to be like those butterflies,
422
1066000
3000
Por nese duam qe te jemi si keto flutura,
18:04
to have open-mindedness, open learning,
423
1069000
3000
qe te kemi nje mendje te hapur, studim te hapur,
18:07
imagination, creativity, innovation,
424
1072000
2000
imagjnate, kreativitet, inovacion,
18:09
maybe at least some of the time
425
1074000
2000
ndoshta te pakten per nje pjese te kohes
18:11
we should be getting the adults
426
1076000
2000
do te na duhet t'i bejme te rriturit
18:13
to start thinking more like children.
427
1078000
2000
te fillojne te mendojne me shume si femijet.
18:15
(Applause)
428
1080000
8000
(Duatrokitje)
Translated by Amantia Gjikondi
Reviewed by Helena Bedalli

▲Back to top

ABOUT THE SPEAKER
Alison Gopnik - Child development psychologist
Alison Gopnik takes us into the fascinating minds of babies and children, and shows us how much we understand before we even realize we do.

Why you should listen

What’s it really like to see through the eyes of a child? Are babies and young children just empty, irrational vessels to be formed into little adults, until they become the perfect images of ourselves? On the contrary, argues Alison Gopnik, professor of psychology and philosophy at the University of California at Berkeley.

The author of The Philosophical BabyThe Scientist in the Crib and other influential books on cognitive development, Gopnik presents evidence that babies and children are conscious of far more than we give them credit for, as they engage every sense and spend every waking moment discovering, filing away, analyzing and acting on information about how the world works. Gopnik’s work draws on psychological, neuroscientific, and philosophical developments in child development research to understand how the human mind learns, how and why we love, our ability to innovate, as well as giving us a deeper appreciation for the role of parenthood.

She says: "What's it like to be a baby? Being in love in Paris for the first time after you've had 3 double espressos."

More profile about the speaker
Alison Gopnik | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee