ABOUT THE SPEAKER
Margaret Wertheim - Figurer
By masterminding a project to model a coral reef armed only with crochet hooks, Margaret Wertheim hopes to bring some of the most complicated mathematical models embodied in our universe into the minds (and hands) of the masses.

Why you should listen

Snowflakes, fractals, the patterns on a leaf -- there's beauty to be found at the intersection of nature and physics, beauty and math. Science writer Margaret Wertheim (along with her twin sister, Christine) founded the Institute for Figuring to advance the aesthetic appreciation of scientific concepts, from the natural physics of snowflakes and fractals to human constructs such as Islamic mosaics, string figures and weaving.

The IFF's latest project is perhaps its most beguilingly strange -- a coral reef constructed entirely by crochet hook, a project that takes advantage of the happy congruence between the mathematical phenomena modeled perfectly by the creatures of the reef,  and repetitive tasks such as crocheting -- which, as it turns out, is perfectly adapted to model hyperbolic space. It is easy to sink into the kaleidoscopic, dripping beauty of the yarn-modeled reef, but the aim of the reef project is twofold: to draw attention to distressed coral reefs around the world, dying in droves from changing ocean saline levels, overfishing, and a myriad of threats; and to display a flavor of math that was previously almost impossible to picture. By modeling these complex equations in physical space, this technique can help mathematicians see patterns and make breakthroughs.

Wertheim is now working on a book about maverick scientist James Carter.

More profile about the speaker
Margaret Wertheim | Speaker | TED.com
TED2009

Margaret Wertheim: The beautiful math of coral

瑪格麗特威茲海姆與珊瑚(以及鉤針編織)中的數學

Filmed:
1,470,540 views

由瑪格麗特威茲海姆領導的一項計畫,以數學家發明的鉤針編織法重新創造出珊瑚礁,讚頌珊瑚礁的驚奇之美,並深入探討其背後的雙曲幾何學。
- Figurer
By masterminding a project to model a coral reef armed only with crochet hooks, Margaret Wertheim hopes to bring some of the most complicated mathematical models embodied in our universe into the minds (and hands) of the masses. Full bio

Double-click the English transcript below to play the video.

00:18
I'm here today今天, as June六月 said,
0
0
2000
我今天來到這裡
00:20
to talk about a project項目
1
2000
2000
是要談一個計畫
00:22
that my twin雙胞胎 sister妹妹 and I have been doing for the past過去 three and half years年份.
2
4000
4000
我和我的雙胞胎姊妹已經執行了三年半
00:26
We're crocheting鉤針 a coral珊瑚 reef.
3
8000
3000
我們用鉤針織出珊瑚礁
00:29
And it's a project項目 that we've我們已經 actually其實
4
11000
3000
而這個計畫到目前為止
00:32
been now joined加盟 by hundreds數以百計 of people around the world世界,
5
14000
3000
已經有從世界各地數以百計的人
00:35
who are doing it with us. Indeed確實 thousands數千 of people
6
17000
3000
和我們一起執行,而有數千人
00:38
have actually其實 been involved參與 in this project項目,
7
20000
2000
有實際參與計畫
00:40
in many許多 of its different不同 aspects方面.
8
22000
2000
從各種不同的面向
00:42
It's a project項目 that now reaches到達 across橫過 three continents大陸,
9
24000
3000
現在更推行到三大洲去
00:45
and its roots go into the fields領域 of mathematics數學,
10
27000
4000
根基於數學
00:49
marine海洋 biology生物學, feminine女人 handicraft手工業
11
31000
3000
海洋生物學、婦女手工藝
00:52
and environmental環境的 activism行動.
12
34000
3000
以及環境運動
00:55
It's true真正.
13
37000
2000
沒錯
00:57
It's also a project項目
14
39000
2000
這也是一個
00:59
that in a very beautiful美麗 way,
15
41000
2000
用一種很美麗的方式完成的計畫
01:01
the development發展 of this
16
43000
2000
它的發展
01:03
has actually其實 paralleled平行 the evolution演化 of life on earth地球,
17
45000
4000
就和地球生物演化平行發生
01:07
which哪一個 is a particularly尤其 lovely可愛 thing to be saying
18
49000
2000
這件事情講起來很有趣
01:09
right here in February二月 2009 --
19
51000
2000
在這裡,2009年二月
01:11
which哪一個, as one of our previous以前 speakers音箱 told us,
20
53000
2000
前一個講者已經告訴我們
01:13
is the 200th anniversary週年
21
55000
2000
這是達爾文的
01:15
of the birth分娩 of Charles查爾斯 Darwin達爾文.
22
57000
2000
200歲誕辰
01:17
All of this I'm going to get to in the next下一個 18 minutes分鐘, I hope希望.
23
59000
4000
而在這接下來的18分鐘裡面,我希望可以把這些都帶過一遍
01:21
But let me first begin開始 by showing展示 you
24
63000
2000
但首先我想先讓大家看
01:23
some pictures圖片 of what this thing looks容貌 like.
25
65000
3000
一些照片,了解這些東西長什麼樣子
01:26
Just to give you an idea理念 of scale規模,
26
68000
2000
為了讓大家對大小有個概念
01:28
that installation安裝 there is about six feet across橫過,
27
70000
3000
這個裝置大概有六呎寬
01:31
and the tallest最高 models楷模 are about two or three feet high.
28
73000
4000
最高一個大概有兩到三呎高
01:35
This is some more images圖片 of it.
29
77000
2000
這裡有更多照片
01:37
That one on the right is about five feet high.
30
79000
2000
最右邊那個大約有五呎高
01:39
The work involves涉及 hundreds數以百計 of different不同 crochet鉤邊 models楷模.
31
81000
4000
一共需要上百種不同的鉤針織模型
01:43
And indeed確實 there are now thousands數千 and thousands數千 of models楷模 that people
32
85000
3000
而現在更有大半是由人們
01:46
have contributed貢獻 all over the world世界 as part部分 of this.
33
88000
3000
從世界各地提供的數千種模型組成的
01:49
The totality整體 of this project項目
34
91000
2000
這個計畫總共
01:51
involves涉及 tens of thousands數千 of hours小時
35
93000
2000
花費數萬小時
01:53
of human人的 labor勞動 --
36
95000
2000
人力
01:55
99 percent百分 of it doneDONE by women婦女.
37
97000
2000
而99%都是女性完成的
01:57
On the right hand side, that bit there is part部分 of an installation安裝
38
99000
3000
在右邊,是這個裝置的一部分
02:00
that is about 12 feet long.
39
102000
2000
約有12呎長
02:02
My sister妹妹 and I started開始 this project項目 in 2005
40
104000
3000
我的姊妹和我在2005年開始這項計畫
02:05
because in that year, at least最小 in the science科學 press,
41
107000
2000
因為在這一年,至少是在科學出版裡
02:07
there was a lot of talk about global全球 warming變暖,
42
109000
3000
有很多對全球暖化
02:10
and the effect影響 that global全球 warming變暖 was having on coral珊瑚 reefs珊瑚礁.
43
112000
3000
以及其對珊瑚礁影響的討論
02:13
Corals珊瑚蟲 are very delicate精巧 organisms生物,
44
115000
2000
珊瑚是很脆弱的生物
02:15
and they are devastated滿目瘡痍 by any rise上升 in sea temperatures溫度.
45
117000
3000
海溫的些微上升就會造成很大傷害
02:18
It causes原因 these vast廣大 bleaching events事件
46
120000
2000
也就是所謂的白化現象
02:20
that are the first signs跡象 of corals珊瑚蟲 of being存在 sick生病.
47
122000
3000
這是珊瑚生病的第一項警訊
02:23
And if the bleaching doesn't go away --
48
125000
2000
如果白化一直持續
02:25
if the temperatures溫度 don't go down -- reefs珊瑚礁 start開始 to die.
49
127000
3000
溫度沒有下降,珊瑚礁就會開始死亡
02:28
A great deal合同 of this has been happening事件 in the Great Barrier屏障 Reef,
50
130000
3000
這樣的故事在很多地方都有發生,像大堡礁
02:31
particularly尤其 in coral珊瑚 reefs珊瑚礁 all over the world世界.
51
133000
2000
還有世界各地的珊瑚礁
02:33
This is our invocation調用 in crochet鉤邊 of a bleached漂白 reef.
52
135000
4000
這是我們用鉤針織出的白化珊瑚,為珊瑚祈禱
02:37
We have a new organization組織 together一起 called The Institute研究所 for Figuring塑造,
53
139000
3000
我們成立了一個「圖示學院」
02:40
which哪一個 is a little organization組織 we started開始
54
142000
2000
宗旨是
02:42
to promote促進, to do projects項目 about the
55
144000
2000
推廣與承接計畫
02:44
aesthetic審美 and poetic詩意 dimensions尺寸 of science科學 and mathematics數學.
56
146000
3000
展示科學與數學上的美學與詩意
02:47
And I went and put a little announcement公告 up on our site現場,
57
149000
3000
當我公佈了聲明於網頁上
02:50
asking for people to join加入 us in this enterprise企業.
58
152000
2000
歡迎加入這創舉
02:52
To our surprise, one of the first people who called
59
154000
3000
相當意外的是一開始打來詢問的
02:55
was the Andy安迪 Warhol沃霍爾 Museum博物館.
60
157000
2000
是安地沃荷美術館
02:57
And they said they were having an exhibition展覽
61
159000
2000
說將有一展出
02:59
about artists'藝術家 response響應 to global全球 warming變暖,
62
161000
2000
是藝術家對全球暖化的反應
03:01
and they'd他們會 like our coral珊瑚 reef to be part部分 of it.
63
163000
2000
他們希望我們的珊瑚礁也能參與
03:03
I laughed笑了 and said, "Well we've我們已經 only just started開始 it,
64
165000
2000
我笑著回答「我們才剛剛開始
03:05
you can have a little bit of it."
65
167000
2000
所以只能提供一些些」
03:07
So in 2007 we had an exhibition展覽,
66
169000
3000
2007年我們展出
03:10
a small exhibition展覽 of this crochet鉤邊 reef.
67
172000
2000
只是小小的一片珊瑚礁
03:12
And then some people in Chicago芝加哥 came來了 along沿 and they said,
68
174000
2000
其中有些從芝加哥來的人說
03:14
"In late晚了 2007, the theme主題 of the Chicago芝加哥 Humanities人文 Festival is
69
176000
5000
「2007年底, 芝加哥人文藝術的主題是
03:19
global全球 warming變暖. And we've我們已經 got this 3,000 square-foot平方英尺 gallery畫廊
70
181000
3000
全球暖化,而我們有3000平方英呎的展場
03:22
and we want you to fill it with your reef."
71
184000
3000
希望能全面佈置你們的珊瑚礁」
03:25
And I, naively天真 by this stage階段, said, "Oh, yes, sure."
72
187000
3000
我天真的就回說「好的!沒問題」
03:28
Now I say "naively天真" because actually其實
73
190000
2000
我說自己「天真」
03:30
my profession職業 is as a science科學 writer作家.
74
192000
2000
是因為我的職業是科學作家
03:32
What I do is I write books圖書 about the cultural文化 history歷史 of physics物理.
75
194000
3000
是寫作有關物理科學的文化歷史
03:35
I've written書面 books圖書 about the history歷史 of space空間,
76
197000
2000
我曾寫過太空歷史
03:37
the history歷史 of physics物理 and religion宗教,
77
199000
2000
物理與宗教的歷史
03:39
and I write articles用品 for people like the New York紐約 Times and the L.A. Times.
78
201000
3000
也為紐約時報與洛杉磯時報撰寫文章
03:42
So I had no idea理念 what it meant意味著 to fill a 3,000 square-foot平方英尺 gallery畫廊.
79
204000
4000
所以我根本搞不清楚填滿3000平方英呎的大小
03:46
So I said yes to this proposition主張.
80
208000
2000
所以我只管答應這邀請
03:48
And I went home, and I told my sister妹妹 Christine克里斯汀.
81
210000
2000
回家告訴我的姊妹Christine
03:50
And she nearly幾乎 had a fit適合
82
212000
2000
她嚇到了
03:52
because Christine克里斯汀 is a professor教授 at one of
83
214000
2000
因為Christine任教於
03:54
L.A.'s major重大的 art藝術 colleges高校, CalArts加州藝術學院,
84
216000
3000
CalArts是洛杉磯的重要藝術學院
03:57
and she knew知道 exactly究竟 what it meant意味著 to fill a 3,000 square-foot平方英尺 gallery畫廊.
85
219000
3000
她清楚明白什麼是3000平方英呎的展出
04:00
She thought I'd gone走了 off my head.
86
222000
3000
她說我瘋了
04:03
But she went into crochet鉤邊 overdrive疲勞過度.
87
225000
2000
但她還是加速鉤針趕進度
04:05
And to cut a long story故事 short, eight months個月 later後來
88
227000
2000
長話短說,8個月後
04:07
we did fill the Chicago芝加哥 Cultural文化 Center's中心
89
229000
3000
我們還是填滿了芝加哥文化中心
04:10
3,000 square廣場 foot腳丫子 gallery畫廊.
90
232000
2000
3000平方英呎的展出
04:12
By this stage階段 the project項目 had taken採取 on
91
234000
2000
到這一步整個計畫
04:14
a viral病毒 dimension尺寸 of its own擁有,
92
236000
2000
自然地進入到一重要國度
04:16
which哪一個 got completely全然 beyond us.
93
238000
2000
且不是我們能操控
04:18
The people in Chicago芝加哥 decided決定
94
240000
2000
芝加哥人決定
04:20
that as well as exhibiting參展 our reefs珊瑚礁, what they wanted to do
95
242000
3000
除了展出我們的珊瑚
04:23
was have the local本地 people there make a reef.
96
245000
2000
也希望當地百姓也能參與製作
04:25
So we went and taught the techniques技術. We did workshops研討會 and lectures講座.
97
247000
3000
所以我們前往指導技巧、接著工作坊與課程
04:28
And the people in Chicago芝加哥 made製作 a reef of their own擁有.
98
250000
3000
芝加哥民眾也做出他們自己的珊瑚礁
04:31
And it was exhibited展出 alongside並肩 ours我們的.
99
253000
2000
同時在我們的作品旁展出
04:33
There were hundreds數以百計 of people involved參與 in that.
100
255000
2000
數以百計的民眾參與
04:35
We got invited邀請 to do the whole整個 thing
101
257000
3000
我們又被邀請作同樣展出與傳授的過程
04:38
in New York紐約, and in London倫敦,
102
260000
2000
於紐約 倫敦
04:40
and in Los洛杉磯 Angeles洛杉磯.
103
262000
2000
和洛杉磯
04:42
In each of these cities城市, the local本地 citizens公民,
104
264000
2000
在每個地點 當地的市民
04:44
hundreds數以百計 and hundreds數以百計 of them, have made製作 a reef.
105
266000
2000
幾百人 一起做珊瑚
04:46
And more and more people get involved參與 in this,
106
268000
3000
也吸引了更多人參與
04:49
most of whom we've我們已經 never met會見.
107
271000
2000
都是些我們從未見過的人
04:51
So the whole整個 thing has sort分類 of morphed演變
108
273000
2000
所以整件事已自然的轉型
04:53
into this organic有機, ever-evolving不斷發展 creature生物,
109
275000
2000
更有生機 更多人參與
04:55
that's actually其實 gone走了 way beyond Christine克里斯汀 and I.
110
277000
4000
遠超過Christine和我的貢獻
04:59
Now some of you are sitting坐在 here thinking思維,
111
281000
3000
現在你們可能坐著想
05:02
"What planet行星 are these people on?
112
284000
2000
「這些人是從哪個星球來的?
05:04
Why on earth地球 are you crocheting鉤針 a reef?
113
286000
3000
為什麼要鉤織珊瑚
05:07
WoolennessWoolenness and wetness aren't exactly究竟
114
289000
2000
棉線與含水
05:09
two concepts概念 that go together一起.
115
291000
2000
是無法相容的
05:11
Why not chisel a coral珊瑚 reef out of marble大理石?
116
293000
2000
為什麼不用大理石雕刻珊瑚呢?
05:13
Cast it in bronze青銅."
117
295000
2000
或是銅鑄?」
05:15
But it turns out there is a very good reason原因
118
297000
2000
實際上 是有非常充分的理由
05:17
why we are crocheting鉤針 it
119
299000
2000
用編織來表現珊瑚
05:19
because many許多 organisms生物 in coral珊瑚 reefs珊瑚礁
120
301000
2000
因為每種的珊瑚
05:21
have a very particular特定 kind of structure結構體.
121
303000
2000
多有著特別的結構
05:23
The frilly褶邊 crenulated小圓齒狀 forms形式 that you see
122
305000
2000
這種奏摺重疊的形式
05:25
in corals珊瑚蟲, and kelps海帶, and sponges海綿 and nudibranchs海蛞蝓,
123
307000
3000
出現在珊瑚 海帶 海綿 以及 海蛞蝓
05:28
is a form形成 of geometry幾何 known已知 as hyperbolic誇張的 geometry幾何.
124
310000
3000
是一種幾何上稱為雙曲線的形式
05:31
And the only way that mathematicians數學家 know
125
313000
3000
也是數學家認為唯一
05:34
how to model模型 this structure結構體
126
316000
2000
能展現此幾何的方式
05:36
is with crochet鉤邊. It happens發生 to be a fact事實.
127
318000
2000
就是針織 這是個事實
05:38
It's almost幾乎 impossible不可能 to model模型 this structure結構體 any other way,
128
320000
3000
好像沒有其他方式能建構這樣幾何
05:41
and it's almost幾乎 impossible不可能 to do it on computers電腦.
129
323000
3000
也好像不可能在電腦上呈現
05:44
So what is this hyperbolic誇張的 geometry幾何
130
326000
2000
所以到底什麼是 雙曲線幾何
05:46
that corals珊瑚蟲 and sea slugs蛞蝓 embody體現?
131
328000
3000
在珊瑚與海蛞蝓身上?
05:49
The next下一個 few少數 minutes分鐘 is, we're all going to get raised上調 up
132
331000
3000
接下來的幾分鐘 我們都能進化到
05:52
to the level水平 of a sea slug金屬塊.
133
334000
2000
海蛞蝓的等級
05:54
(Laughter笑聲)
134
336000
1000
(笑聲)
05:55
This sort分類 of geometry幾何 revolutionized革命性 mathematics數學
135
337000
3000
在19世紀時 這種幾何的
05:58
when it was first discovered發現 in the 19th century世紀.
136
340000
3000
出現 在數學上是革命性的
06:01
But not until直到 1997 did mathematicians數學家 actually其實 understand理解
137
343000
3000
一直是到1997年 數學家才真正明白
06:04
how they could model模型 it.
138
346000
2000
要如何具體模擬它
06:06
In 1997 a mathematician數學家
139
348000
2000
1997年 一個康乃爾數學家
06:08
at Cornell康奈爾, Daina代娜 TaiminaTaimina,
140
350000
2000
Daina Taimina
06:10
made製作 the discovery發現 that this structure結構體
141
352000
2000
才發現這樣的結構
06:12
could actually其實 be doneDONE in knitting針織 and crochet鉤邊.
142
354000
2000
能由針織與鉤編展現
06:14
The first one she did was knitting針織.
143
356000
2000
她先用針織
06:16
But you get too many許多 stitches on the needle. So she quickly很快 realized實現
144
358000
2000
但太多針了 所以立刻明白
06:18
crochet鉤邊 was the better thing.
145
360000
2000
鉤編是更容易的
06:20
But what she was doing was actually其實 making製造 a model模型
146
362000
3000
但她實際所為 就是完成
06:23
of a mathematical數學的 structure結構體, that many許多 mathematicians數學家
147
365000
2000
許多數學家都難以完成的
06:25
had thought it was actually其實 impossible不可能 to model模型.
148
367000
3000
實體模型建構
06:28
And indeed確實 they thought that anything like this structure結構體
149
370000
2000
多數都以為是無法
06:30
was impossible不可能 per seSE.
150
372000
2000
達成的
06:32
Some of the best最好 mathematicians數學家 spent花費 hundreds數以百計 of years年份
151
374000
2000
過去數百年 頂尖的數學家
06:34
trying to prove證明 that this structure結構體 was impossible不可能.
152
376000
3000
也試著證明不可能
06:37
So what is this impossible不可能 hyperbolic誇張的 structure結構體?
153
379000
3000
所以到底什麼是雙曲線結構?
06:40
Before hyperbolic誇張的 geometry幾何, mathematicians數學家 knew知道
154
382000
2000
在雙曲線幾何之前 數學家慣用
06:42
about two kinds of space空間:
155
384000
2000
兩種空間
06:44
Euclidean歐幾里德 space空間, and spherical球形 space空間.
156
386000
3000
歐幾里得式空間與球面空間
06:47
And they have different不同 properties性能.
157
389000
2000
各有著不同的性質
06:49
Mathematicians數學家 like to characterize表徵 things by being存在 formalist形式主義.
158
391000
3000
數學家喜歡用形式主義來分類
06:52
You all have a sense of what a flat平面 space空間 is, Euclidean歐幾里德 space空間 is.
159
394000
4000
你們都熟悉平整的空間 就是歐幾里得空間
06:56
But mathematicians數學家 formalize形式化 this in a particular特定 way.
160
398000
3000
但數學家以不同的方式標記
06:59
And what they do is, they do it through通過 the concept概念
161
401000
2000
他們的作法是利用
07:01
of parallel平行 lines.
162
403000
2000
平行線條的概念
07:03
So here we have a line and a point outside the line.
163
405000
3000
所以 假設一條直線 與直線外的一個點
07:06
And Euclid歐幾里得 said, "How can I define確定 parallel平行 lines?
164
408000
3000
歐幾里得就問:「如何定義平行線?」
07:09
I ask the question, how many許多 lines can I draw through通過
165
411000
3000
我問一下 我能畫出幾條平行線
07:12
the point but never meet遇到 the original原版的 line?"
166
414000
2000
能經過那點 又不與原來的直線相交
07:14
And you all know the answer回答. Does someone有人 want to shout it out?
167
416000
3000
你們都知道這個答案 有人願意喊出來嗎?
07:17
One. Great. Okay.
168
419000
2000
一個 對! OK
07:19
That's our definition定義 of a parallel平行 line.
169
421000
2000
那就是我們定義的平行線
07:21
It's a definition定義 really of Euclidean歐幾里德 space空間.
170
423000
3000
那就是歐幾里得空間
07:24
But there is another另一個 possibility可能性 that you all know of:
171
426000
2000
但也有另一種可能
07:26
spherical球形 space空間.
172
428000
2000
球面空間
07:28
Think of the surface表面 of a sphere領域 --
173
430000
2000
想想一個球面的表面
07:30
just like a beach海灘 ball, the surface表面 of the Earth地球.
174
432000
2000
就像是海灘球 就像是地球表面
07:32
I have a straight直行 line on my spherical球形 surface表面.
175
434000
3000
我有一個在球表面上的直線
07:35
And I have a point outside the line. How many許多 straight直行 lines
176
437000
2000
和一個線外的點 那有多少直線
07:37
can I draw through通過 the point
177
439000
2000
通過那點 又不會
07:39
but never meet遇到 the original原版的 line?
178
441000
2000
與原始直線相交?
07:41
What do we mean to talk about
179
443000
2000
到底什麼叫作
07:43
a straight直行 line on a curved彎曲 surface表面?
180
445000
3000
曲面上的直線呢?
07:46
Now mathematicians數學家 have answered回答 that question.
181
448000
3000
數學家已經定義
07:49
They've他們已經 understood了解 there is a generalized一般性 concept概念
182
451000
2000
共通概念的曲面上之
07:51
of straightness, it's called a geodesic.
183
453000
2000
直線性 就叫作 測地線
07:53
And on the surface表面 of a sphere領域,
184
455000
2000
若是在球面上
07:55
a straight直行 line is the biggest最大 possible可能 circle you can draw.
185
457000
3000
直線就是最大能畫出的圓
07:58
So it's like the equator赤道 or the lines of longitude經度.
186
460000
4000
所以 就像是赤道 或是南北方向的緯線
08:02
So we ask the question again,
187
464000
2000
所以 再問一次問題
08:04
"How many許多 straight直行 lines can I draw through通過 the point,
188
466000
2000
「我能畫出多少直線 經過那點
08:06
but never meet遇到 the original原版的 line?"
189
468000
2000
又不與原直線相交?」
08:08
Does someone有人 want to guess猜測?
190
470000
3000
有人要猜嗎?
08:11
Zero. Very good.
191
473000
2000
零 非常好
08:13
Now mathematicians數學家 thought that was the only alternative替代.
192
475000
2000
數學家以為只有這另一個答案
08:15
It's a bit suspicious可疑 isn't it? There is two answers答案 to the question so far,
193
477000
3000
有些可疑不是嗎? 能有兩個答案:
08:18
Zero and one.
194
480000
2000
零或一
08:20
Two answers答案? There may可能 possibly或者 be a third第三 alternative替代.
195
482000
2000
兩個解答 也有可能有第三個答案
08:22
To a mathematician數學家 if there are two answers答案,
196
484000
2000
對於數學家來說 若有兩個答案
08:24
and the first two are zero and one,
197
486000
2000
首先的回答 就是 零 與 一
08:26
there is another另一個 number that immediately立即 suggests提示 itself本身
198
488000
2000
同時 也自然而然 會以為
08:28
as the third第三 alternative替代.
199
490000
2000
有第三種可能
08:30
Does anyone任何人 want to guess猜測 what it is?
200
492000
3000
有人要猜嗎?
08:33
Infinity無窮. You all got it right. Exactly究竟.
201
495000
3000
無限多 的確 你們都答對
08:36
There is, there's a third第三 alternative替代.
202
498000
2000
有第三個解答
08:38
This is what it looks容貌 like.
203
500000
2000
這就是圖形表示
08:40
There's a straight直行 line, and there is an infinite無窮 number of lines
204
502000
3000
有一條直線 以及無線多條直線
08:43
that go through通過 the point and never meet遇到 the original原版的 line.
205
505000
2000
通過那一點 又不會與原始線相交會
08:45
This is the drawing畫畫.
206
507000
2000
是這樣畫的
08:47
This nearly幾乎 drove開車 mathematicians數學家 bonkers瘋狂的
207
509000
2000
這幾乎逼數學家發瘋
08:49
because, like you, they're sitting坐在 there feeling感覺 bamboozled迷惑.
208
511000
3000
因為 像你們一般 他們覺得被搞糊塗了
08:52
Thinking思維, how can that be? You're cheating作弊. The lines are curved彎曲.
209
514000
3000
想一想 怎麼可能? 你是在作弊 這些直線是彎曲的
08:55
But that's only because I'm projecting突出 it onto a
210
517000
2000
只因為我將這些直線 投射在
08:57
flat平面 surface表面.
211
519000
2000
平坦表面
08:59
Mathematicians數學家 for several一些 hundred years年份
212
521000
2000
數學家歷經幾百年
09:01
had to really struggle鬥爭 with this.
213
523000
2000
的掙扎困惑
09:03
How could they see this?
214
525000
2000
怎麼能明白呢?
09:05
What did it mean to actually其實 have a physical物理 model模型
215
527000
3000
怎樣能有一實際的具體模型
09:08
that looked看著 like this?
216
530000
2000
能展現這樣的理論呢?
09:10
It's a bit like this: imagine想像 that we'd星期三 only ever encountered遇到 Euclidean歐幾里德 space空間.
217
532000
3000
像這樣 想像我們只理解與經歷 歐式幾何空間
09:13
Then our mathematicians數學家 come along沿
218
535000
2000
然後 我們的數學家過來說
09:15
and said, "There's this thing called a sphere領域,
219
537000
2000
"有一種球面空間
09:17
and the lines come together一起 at the north and south pole."
220
539000
2000
線條伸展南北極後 會重合
09:19
But you don't know what a sphere領域 looks容貌 like.
221
541000
2000
但你不明白球面的長相
09:21
And someone有人 that comes along沿 and says, "Look here's這裡的 a ball."
222
543000
3000
另一個人走來說 「看! 這就是個球」
09:24
And you go, "Ah! I can see it. I can feel it.
223
546000
2000
你就會「啊! 我懂了 我能感受了
09:26
I can touch觸摸 it. I can play with it."
224
548000
3000
我能觸摸 也能翻弄」
09:29
And that's exactly究竟 what happened發生
225
551000
2000
這就是1997年
09:31
when Daina代娜 TaiminaTaimina
226
553000
2000
當 Daina Taimina
09:33
in 1997, showed顯示 that you could crochet鉤邊 models楷模
227
555000
4000
以鉤織品展示了
09:37
in hyperbolic誇張的 space空間.
228
559000
2000
雙曲面空間
09:39
Here is this diagram in crochetnesscrochetness.
229
561000
3000
這是以鉤織品來展現
09:42
I've stitched縫合 Euclid's歐幾里得 parallel平行 postulate假定 on to the surface表面.
230
564000
4000
我已將歐式的平行線設在這個表面
09:46
And the lines look curved彎曲.
231
568000
2000
線條看起來是彎曲的
09:48
But look, I can prove證明 to you that they're straight直行
232
570000
3000
我能證明這是一條線
09:51
because I can take any one of these lines,
233
573000
2000
因為我能以任一條線
09:53
and I can fold along沿 it.
234
575000
3000
沿著它折
09:56
And it's a straight直行 line.
235
578000
2000
是一條直線
09:58
So here, in wool羊毛,
236
580000
3000
所以呢 經由一
10:01
through通過 a domestic國內 feminine女人 art藝術,
237
583000
2000
家庭婦女的藝術棉織品
10:03
is the proof證明 that the most famous著名 postulate假定
238
585000
2000
證明數學界最有名的假設
10:05
in mathematics數學 is wrong錯誤.
239
587000
3000
(無法建出雙曲面模型) 是錯的
10:08
(Applause掌聲)
240
590000
6000
(掌聲)
10:14
And you can stitch all sorts排序 of mathematical數學的
241
596000
2000
你能鉤織各式的數學定理
10:16
theorems定理 onto these surfaces.
242
598000
3000
在這些表面上顯現
10:19
The discovery發現 of hyperbolic誇張的 space空間 ushered迎來 in the field領域 of mathematics數學
243
601000
3000
而雙曲面引領了其他數學
10:22
that is called non-Euclidean非歐幾里得 geometry幾何.
244
604000
2000
稱為 非歐式幾何
10:24
And this is actually其實 the field領域 of mathematics數學
245
606000
2000
這類數學也是
10:26
that underliesunderlies general一般 relativity相對論
246
608000
2000
廣義相對論的基礎
10:28
and is actually其實 ultimately最終 going to show顯示 us
247
610000
2000
終極地為我們
10:30
about the shape形狀 of the universe宇宙.
248
612000
2000
引導出宇宙的形狀
10:32
So there is this direct直接 line
249
614000
2000
所以有一直接關聯線
10:34
between之間 feminine女人 handicraft手工業,
250
616000
2000
連結女性手工藝
10:36
Euclid歐幾里得 and general一般 relativity相對論.
251
618000
3000
歐基里得 與 廣義相對論
10:39
Now, I said that mathematicians數學家 thought that this was impossible不可能.
252
621000
3000
我剛說數學家原本認為是不可能
10:42
Here's這裡的 two creatures生物 who've誰一直 never heard聽說 of Euclid's歐幾里得 parallel平行 postulate假定 --
253
624000
4000
這裡有兩種生物從來沒有聽過 歐基里得 的平行假設
10:46
didn't know it was impossible不可能 to violate違反,
254
628000
2000
也就不知道不能違反
10:48
and they're simply只是 getting得到 on with it.
255
630000
2000
它們卻與 非歐幾何 相處融洽
10:50
They've他們已經 been doing it for hundreds數以百計 of millions百萬 of years年份.
256
632000
4000
他們已存在 數億年之久
10:54
I once一旦 asked the mathematicians數學家 why it was
257
636000
2000
我曾問過數學家怎麼會這樣
10:56
that mathematicians數學家 thought this structure結構體 was impossible不可能
258
638000
3000
數學專家沒能具體建構的模型
10:59
when sea slugs蛞蝓 have been doing it since以來 the Silurian志留紀 age年齡.
259
641000
3000
而海蛞蝓 卻已經從志留纪就擁有著
11:02
Their answer回答 was interesting有趣.
260
644000
2000
他們的回答是有趣的
11:04
They said, "Well I guess猜測 there aren't that many許多 mathematicians數學家
261
646000
2000
他們說「可能沒有足夠的數學家
11:06
sitting坐在 around looking at sea slugs蛞蝓."
262
648000
2000
四處坐著看到海蛞蝓」
11:08
And that's true真正. But it also goes deeper更深 than that.
263
650000
3000
或許是 但這件事也能更深入
11:11
It also says a whole整個 lot of things
264
653000
2000
也說明 整體數學家
11:13
about what mathematicians數學家 thought mathematics數學 was,
265
655000
3000
以為的數學是什麼
11:16
what they thought it could and couldn't不能 do,
266
658000
2000
以為數學能做到與做不到
11:18
what they thought it could and couldn't不能 represent代表.
267
660000
2000
以為數學能呈現到與不能呈現
11:20
Even mathematicians數學家, who in some sense
268
662000
2000
就連數學家 在某些角度
11:22
are the freest自由 of all thinkers思想家,
269
664000
2000
是最自由的思考者
11:24
literally按照字面 couldn't不能 see
270
666000
2000
沒能看到
11:26
not only the sea slugs蛞蝓 around them,
271
668000
2000
身旁的海蛞蝓
11:28
but the lettuce生菜 on their plate盤子 --
272
670000
2000
也沒留意到 餐盤中的 萵苣
11:30
because lettuces生菜, and all those curly捲曲 vegetables蔬菜,
273
672000
2000
因為 像萵苣這些彎曲的蔬菜
11:32
they also are embodiments實施例 of hyperbolic誇張的 geometry幾何.
274
674000
4000
都是雙曲面幾何的體現
11:36
And so in some sense they literally按照字面,
275
678000
3000
某種程度數學家
11:39
they had such這樣 a symbolic象徵 view視圖 of mathematics數學,
276
681000
2000
他們有著對數學的符號式的觀點
11:41
they couldn't不能 actually其實 see what was going on
277
683000
3000
卻不能察覺
11:44
on the lettuce生菜 in front面前 of them.
278
686000
3000
在眼前的萵苣
11:47
It turns out that the natural自然 world世界 is full充分 of hyperbolic誇張的 wonders奇蹟.
279
689000
4000
事實上 自然界中 充滿著太多符號式 驚奇
11:51
And so, too, we've我們已經 discovered發現
280
693000
2000
基於此 我們也發現
11:53
that there is an infinite無窮 taxonomy分類
281
695000
2000
有無限多分類
11:55
of crochet鉤邊 hyperbolic誇張的 creatures生物.
282
697000
2000
來鉤織雙曲面的生物
11:57
We started開始 out, Chrissy克麗絲 and I and our contributors貢獻者,
283
699000
3000
我們姊妹加上其他參與者 開始
12:00
doing the simple簡單 mathematically數學 perfect完善 models楷模.
284
702000
2000
作出簡單數學上的完美模型
12:02
But we found發現 that when we deviated偏離 from the specific具體
285
704000
4000
我們發現當我們偏離特定
12:06
setnesssetness of the mathematical數學的 code
286
708000
3000
數學符號設定
12:09
that underliesunderlies it -- the simple簡單 algorithm算法
287
711000
2000
就是原本簡單的規律:
12:11
crochet鉤邊 three, increase增加 one --
288
713000
2000
鉤織三針 加一針
12:13
when we deviated偏離 from that and made製作 embellishments裝飾 to the code,
289
715000
3000
當我們偏離 做了些規律上的額外裝飾變化
12:16
the models楷模 immediately立即 started開始 to look more natural自然.
290
718000
4000
模型立即呈現更佳的自然
12:20
And all of our contributors貢獻者, who are an amazing驚人
291
722000
2000
所有來自世界各地的參與者
12:22
collection採集 of people around the world世界,
292
724000
2000
無不覺得驚奇
12:24
do their own擁有 embellishments裝飾.
293
726000
2000
也開始了他們的裝飾變化
12:26
As it were, we have this ever-evolving不斷發展,
294
728000
2000
就這樣 我們開始了
12:28
crochet鉤邊 taxonomic分類 tree of life.
295
730000
2000
鉤織品物種族譜的生命演化
12:30
Just as the morphology形態學
296
732000
2000
就像是地球生物
12:32
and the complexity複雜 of life on earth地球 is never ending結尾,
297
734000
2000
生生不息的變化與複雜化
12:34
little embellishments裝飾 and complexificationscomplexifications
298
736000
3000
基因些微的變化與複雜
12:37
in the DNA脫氧核糖核酸 code
299
739000
2000
才演化出
12:39
lead to new things like giraffes長頸鹿, or orchids蘭花 --
300
741000
3000
長頸鹿 或是 蘭花
12:42
so too, do little embellishments裝飾 in the crochet鉤邊 code
301
744000
3000
同樣地 鉤織中小小裝飾變化
12:45
lead to new and wondrous奇妙 creatures生物
302
747000
3000
產出了全新的品種
12:48
in the evolutionary發展的 tree of crochet鉤邊 life.
303
750000
3000
鉤織品物種族譜的生命演化
12:51
So this project項目 really has
304
753000
2000
所以這個計畫
12:53
taken採取 on this inner organic有機 life of its own擁有.
305
755000
3000
真的開始其內在的有機生命
12:56
There is the totality整體 of all the people who have come to it.
306
758000
3000
統整了所有參與者的
12:59
And their individual個人 visions願景,
307
761000
2000
各自願景
13:01
and their engagement訂婚 with this mathematical數學的 mode模式.
308
763000
3000
加上各自以數學形式的參與
13:04
We have these technologies技術. We use them.
309
766000
2000
我們已有各式科技 能被使用
13:06
But why? What's at stake賭注 here? What does it matter?
310
768000
3000
那為什麼要用手工呢? 有什麼重要的?
13:09
For Chrissy克麗絲 and I, one of the things that's important重要 here
311
771000
3000
對我們姊妹而言 最重要的一點是
13:12
is that these things suggest建議
312
774000
2000
這樣的實作顯示出
13:14
the importance重要性 and value of embodied體現 knowledge知識.
313
776000
3000
將內隱知識的具體展現 之重要性與價值
13:17
We live生活 in a society社會
314
779000
2000
我們生活在這樣的社會
13:19
that completely全然 tends趨向 to valorize穩定物價
315
781000
2000
總是傾向於使用
13:21
symbolic象徵 forms形式 of representation表示 --
316
783000
2000
象徵符號的表達
13:23
algebraic代數 representations交涉,
317
785000
2000
如代數
13:25
equations方程, codes代碼.
318
787000
2000
函數式 程式 等
13:27
We live生活 in a society社會 that's obsessed痴迷
319
789000
2000
我們著魔於
13:29
with presenting呈現 information信息 in this way,
320
791000
2000
將資訊如此表達
13:31
teaching教學 information信息 in this way.
321
793000
3000
也傳授資訊用這樣的方式
13:34
But through通過 this sort分類 of modality形態,
322
796000
3000
但是利用鉤織的形式
13:37
crochet鉤邊, other plastic塑料 forms形式 of play --
323
799000
4000
或是其他種遊戲
13:41
people can be engaged訂婚 with the most abstract抽象,
324
803000
3000
人們能更體會最抽象的
13:44
high-powered高功率, theoretical理論 ideas思路,
325
806000
2000
最高層的 理論的概念
13:46
the kinds of ideas思路 that normally一般 you have to go
326
808000
2000
而這些概念 通常都是要
13:48
to university大學 departments部門 to study研究 in higher更高 mathematics數學,
327
810000
3000
就學於高等教育才會聽到
13:51
which哪一個 is where I first learned學到了 about hyperbolic誇張的 space空間.
328
813000
3000
那也是我過去第一次 學到雙曲面空間 的地方
13:54
But you can do it through通過 playing播放 with material材料 objects對象.
329
816000
4000
但是 你可以經由操弄實體物質了
13:58
One of the ways方法 that we've我們已經 come to think about this
330
820000
2000
在我們的數字研究中心
14:00
is that what we're trying to do with the Institute研究所 for Figuring塑造
331
822000
3000
我們也想出一套邏輯去實踐
14:03
and projects項目 like this, we're trying to have
332
825000
2000
就是設計出
14:05
kindergarten幼兒園 for grown-ups大人.
333
827000
2000
成人式的幼稚園
14:07
And kindergarten幼兒園 was actually其實 a very formalized形式化
334
829000
2000
幼稚園事實上是一個非常制式的
14:09
system系統 of education教育,
335
831000
2000
教育系統
14:11
established既定 by a man named命名 Friedrich弗里德里希 Froebel福祿貝爾,
336
833000
2000
當初創始的是 Friedrich Froebel
14:13
who was a crystallographer晶體學 in the 19th century世紀.
337
835000
2000
而他原本是19世紀的結晶學家
14:15
He believed相信 that the crystal水晶 was the model模型
338
837000
2000
他認為 結晶結構
14:17
for all kinds of representation表示.
339
839000
2000
是所有事務的規律表現
14:19
He developed發達 a radical激進 alternative替代 system系統
340
841000
3000
他也就發展出嶄新不同既往
14:22
of engaging the smallest最少 children孩子
341
844000
2000
的幼兒教育系統
14:24
with the most abstract抽象 ideas思路
342
846000
2000
經由身體操作的遊戲
14:26
through通過 physical物理 forms形式 of play.
343
848000
2000
試著傳遞抽象意念
14:28
And he is worthy值得 of an entire整個 talk on his own擁有 right.
344
850000
2000
他這個題材故事 本身就值得另闢一場演講
14:30
The value of education教育
345
852000
2000
Froebel 引領的
14:32
is something that Froebel福祿貝爾 championed倡導,
346
854000
3000
教育價值的傳遞
14:35
through通過 plastic塑料 modes模式 of play.
347
857000
2000
是經由 物質模式的遊戲
14:37
We live生活 in a society社會 now
348
859000
2000
現今的社會
14:39
where we have lots of think tanks坦克,
349
861000
2000
我們有一大堆的 智庫
14:41
where great minds頭腦 go to think about the world世界.
350
863000
3000
有著一群聰明腦袋 為世界想像
14:44
They write these great symbolic象徵 treatises論文
351
866000
2000
撰述許多偉大的抽象論文
14:46
called books圖書, and papers文件,
352
868000
2000
像 書籍 論文
14:48
and op-ed專欄 articles用品.
353
870000
2000
專欄 等等
14:50
We want to propose提出, Chrissy克麗絲 and I,
354
872000
2000
我們姊妹倆 想提議
14:52
through通過 The Institute研究所 for Figuring塑造, another另一個 alternative替代 way of doing things,
355
874000
3000
經由 數字研究中心 的提倡 另一種不同的作法
14:55
which哪一個 is the play tank坦克.
356
877000
3000
就是 「玩庫」
14:58
And the play tank坦克, like the think tank坦克,
357
880000
2000
玩庫 就像是智庫一般
15:00
is a place地點 where people can go
358
882000
2000
是個人們可聚集
15:02
and engage從事 with great ideas思路.
359
884000
2000
激發出偉大想法
15:04
But what we want to propose提出,
360
886000
2000
但我們要強調的是
15:06
is that the highest最高 levels水平 of abstraction抽象化,
361
888000
2000
最抽象的學問
15:08
things like mathematics數學, computing計算, logic邏輯, etc等等. --
362
890000
3000
像 數學 電腦 邏輯 等等
15:11
all of this can be engaged訂婚 with,
363
893000
2000
不只能
15:13
not just through通過 purely純粹 cerebral顱內 algebraic代數
364
895000
2000
靠純粹的智力演算
15:15
symbolic象徵 methods方法,
365
897000
2000
抽象符號
15:17
but by literally按照字面, physically物理 playing播放 with ideas思路.
366
899000
4000
也能用玩的方式 產出想法
15:21
Thank you very much.
367
903000
2000
謝謝
15:23
(Applause掌聲)
368
905000
5000
(掌聲)
Translated by K. C. Peng
Reviewed by Joan Liu

▲Back to top

ABOUT THE SPEAKER
Margaret Wertheim - Figurer
By masterminding a project to model a coral reef armed only with crochet hooks, Margaret Wertheim hopes to bring some of the most complicated mathematical models embodied in our universe into the minds (and hands) of the masses.

Why you should listen

Snowflakes, fractals, the patterns on a leaf -- there's beauty to be found at the intersection of nature and physics, beauty and math. Science writer Margaret Wertheim (along with her twin sister, Christine) founded the Institute for Figuring to advance the aesthetic appreciation of scientific concepts, from the natural physics of snowflakes and fractals to human constructs such as Islamic mosaics, string figures and weaving.

The IFF's latest project is perhaps its most beguilingly strange -- a coral reef constructed entirely by crochet hook, a project that takes advantage of the happy congruence between the mathematical phenomena modeled perfectly by the creatures of the reef,  and repetitive tasks such as crocheting -- which, as it turns out, is perfectly adapted to model hyperbolic space. It is easy to sink into the kaleidoscopic, dripping beauty of the yarn-modeled reef, but the aim of the reef project is twofold: to draw attention to distressed coral reefs around the world, dying in droves from changing ocean saline levels, overfishing, and a myriad of threats; and to display a flavor of math that was previously almost impossible to picture. By modeling these complex equations in physical space, this technique can help mathematicians see patterns and make breakthroughs.

Wertheim is now working on a book about maverick scientist James Carter.

More profile about the speaker
Margaret Wertheim | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee