Eugenia Cheng: An unexpected tool for understanding inequality: abstract math
اِگونیا چِنگ: ابزاری غیرمنتظره برای درک نابرابریها: ریاضیات انتزاعی
Eugenia Cheng devotes her life to mathematics, the piano and helping people. Full bio
Double-click the English transcript below to play the video.
with divisive arguments,
bigotry, blame, shouting
that we are doomed to take sides,
محکومیم به جهت گیری،
like a race to the bottom,
رو به پایینی به نظر برسد،
somebody else's privilege
are the most hard-done-by person
کار توسط خودشان انجام میشود
this confusing world of ours,
is like the theory of maths,
نظریه ریاضیات به نظر میرسد،
to real problems like building bridges
مسائل واقعی مثل ساختن پل ها
that pure maths applies directly
کنم که ریاضیات محض مستقیما
to help me with my daily life,
زندگی روزمره خودم حل نمیکنم،
to help me understand arguments
with the entire human world.
مورد کل جهان بشری کمک میکند.
the entire human world,
جهان بشری صحبت کنم،
that you might think of
که احتمالا از نظر شما
by thinking about the factors of 30.
عدد ۳۰ شروع میکنیم.
with bad memories of school maths lessons,
خاطرات بد ریاضیات مدرسه به خود بلرزید،
school maths lessons boring, too.
مدرسه برای من هم خسته کننده بود.
to take this in a direction
را به مسیری خواهیم برد
from what happened at school.
می افتاد، بسیار متفاوت است.
که ۳۰ به آنها قابل قسمت است.
We'll work them out.
آنها را پیدا میکنیم
in a straight line.
در یک خط مستقیم است.
are also factors of each other
خودشان مقسوم علیه های یکدیگر هستند؟
a bit like a family tree,
شجره نامه رسم کنیم،
like a kind of great-grandparent.
شبیه به یک پدر یا مادربزرگ.
is not divisible by three,
راسهای یک مکعب هستند،
in a straight line.
There's a hierarchy going on.
سلسه مراتبی در جریان است
two, three and five,
except one and themselves.
مقسوم علیه دیگری ندارند.
this means they're prime.
یعنی این اعداد اول هستند.
we have six, 10 and 15,
۶، ۱۰ و ۱۵ را داریم،
of two prime factors.
of three prime numbers --
using those numbers instead.
از این اعداد جایگزین بازآفرینی کنم.
two, three and five at the top,
در راس بالا قرار دارند،
at the next level,
at the next level
losing one of your numbers in the set.
از اعداد در مجموعه را نشان میدهد.
what those numbers are.
که این اعداد چند هستند.
something like A, B and C instead,
حروف a وb و c استفاده کنیم،
becomes very widely applicable,
کاملا کاربردی شده است،
three types of privilege:
we have rich white people.
ثروتمند سفیدپوست داریم.
و مذکرها را داریم.
of those types of privilege.
از امتیازهای فوق را ندارند.
the rest of the adjectives for emphasis.
از سایر صفت ها استفاده کنم.
non-male people,
nonbinary people we need to include.
تک جنسیتی دیگرهم توجه شود.
که سفیدپوست نیستند.
داریم که ثروتمند نیستند.
with the least privilege,
نه سفیدپوست و نه مذکر هستند.
of factors of 30
of different types of privilege.
امتیازات مختلف رسیدیم.
we can learn from this diagram, I think.
که میتوانیم از این نمودار بیاموزیم.
a direct loss of one type of privilege.
دست دادن مستقیم یکی از مزایای شخصی است.
that white privilege means
که مزیت سفید پوستی به این معناست که
than all nonwhite people.
تمام افراد رنگین پوست بهترهستند.
black sports stars and say,
سیاه پوست اشاره میکنند و میگویند،
White privilege doesn't exist."
تبعیضی در مورد سفیدپوستی وجود ندارد."
of white privilege says.
تبعیض سفیدپوستی میگوید.
had all the same characteristics
فوق ثروتمند همه این خصوصیات را داشتند
to be better off in society.
که در جامعه بهتر از این باشند.
we can understand from this diagram
ازاین نمودارمیتوانیم بفهمیم
where people have two types of privilege,
جایی که انسانها دو مزیت دارند،
that they're not all particularly equal.
الزاما همگی برابر نیستند.
are probably much better off in society
ثروتمند در جامعه بسیار بهتر از
somewhere in between.
بین این دو گروه قرار دارند.
between those two middle levels.
might well be better off in society
و مذکر نیستند در جامعه بسیار بهتر از
examples, like Michelle Obama,
than poor, white, unemployed homeless men.
بی خانمان، بیکار و سفیدپوست هستند.
is more skewed like this.
of privilege in the diagram
that people experience in society.
تجربه می کنند، وجود دارد.
why some poor white men
چرا بعضی از مردهای سفیدپوست فقیر
in this cuboid of privilege,
مکعبی در سطح بالاتری قرار بگیرند،
they don't actually feel the effect of it.
واقعا تاثیر آن را درک نمیکنند.
the root of that anger
than just being angry at them in return.
از دست آنها در این برهه است .
can also help us switch contexts
به ما در تغییر شرایط و نگرش نسبت به
are at the top in different contexts.
نمودار قرار میگیرند، کمک کند.
our attention to non-men,
غیرمذکر نیز معطوف کنیم،
non-men are at the top.
ثروتمند بالای نمودار هستند
a whole context of women,
در مورد زنان ادامه دهیم،
could now be rich, white and cisgendered.
سفیدپوستی و جنسیت صحیح باشد.
that your gender identity does match
به این معناست که هویت جنسیتی شما مشابه
occupy the analogous situation
و ثروتمند وضعیت مشابه
in broader society.
را در جامعه اشغال می کنند.
why there is so much anger
چرا اینقدر خشم در برابر
of the feminist movement at the moment,
جنبش فمنیستی کنونی وجود دارد،
to seeing themselves as underprivileged
خودشان را هم سطح با مردان
they are relative to nonwhite women.
زنان رنگین پوست از مزایا بهره مند هستند.
to help us pivot between situations
برای فهمیدن حد تعادل بین شرایطی که در آن
and less privileged.
بهره میبریم، استفاده کنیم.
that as an Asian person,
که بعنوان یک شخص آسیایی،
نسبت به بقیه سفیدپوستان
the most privileged of nonwhite people,
از بیشترین مزایا برخوردارند هم قرار دارم
between those two contexts.
این دو موضوع تعادل برقرار کنم.
who don't have to work.
کار کردن نیستند، ثروتمند نیستم.
situation to be in
or working at minimum wage.
را در ذهنم اجرا میکنم
from other people's points of view,
افراد دیگر بهتر درک کنم،
possibly surprising conclusion:
is highly relevant to our daily lives
روزمره ما ارتباط تنگاتنگی دارد
and empathize with other people.
با افراد دیگر به ما کمک کند.
to understand other people more
درک بیشتر افراد دیگر تلاش کند
mathematical thinking
سبک ریاضیات انتزاعی
ABOUT THE SPEAKER
Eugenia Cheng - Mathematician, pianistEugenia Cheng devotes her life to mathematics, the piano and helping people.
Why you should listen
Dr. Eugenia Cheng quit her tenured academic job for a portfolio career as a research mathematician, educator, author, columnist, public speaker, artist and pianist. Her aim is to rid the world of math phobia and develop, demonstrate and advocate for the role of mathematics in addressing issues of social justice.
Her first popular math book, How to Bake Pi, was published by Basic Books in 2015 to widespread acclaim including from the New York Times, National Geographic, Scientific American, and she was interviewed around the world including on the BBC, NPR and The Late Show with Stephen Colbert. Her second book, Beyond Infinity was published in 2017 and was shortlisted for the Royal Society Insight Investment ScienceBook Prize. Her most recent book, The Art of Logic in an Illogical World, was published in 2018 and was praised in the Guardian.
Cheng was an early pioneer of math on YouTube, and her most viewed video, about math and bagels, has been viewed more than 18 million times to date. She has also assisted with mathematics in elementary schools and high schools for 20 years. Cheng writes the "Everyday Math" column for the Wall Street Journal, is a concert pianist and founded the Liederstube, a not-for-profit organization in Chicago bringing classical music to a wider audience. In 2017 she completed her first mathematical art commission, for Hotel EMC2 in Chicago; her second was installed in 2018 in the Living Architecture exhibit at 6018 North.
Cheng is Scientist In Residence at the School of the Art Institute of Chicago and won tenure in Pure Mathematics at the University of Sheffield, UK. She is now Honorary Fellow at the University of Sheffield and Honorary Visiting Fellow at City University, London. She has previously taught at the universities of Cambridge, Chicago and Nice and holds a PhD in pure mathematics from the University of Cambridge. Her research is in the field of Category Theory, and to date she has published 16 research papers in international journals.
You can learn more about her in this in-depth biographic interview on the BBC's Life Scientific.
Eugenia Cheng | Speaker | TED.com