ABOUT THE SPEAKER
Eugenia Cheng - Mathematician, pianist
Eugenia Cheng devotes her life to mathematics, the piano and helping people.

Why you should listen

Dr. Eugenia Cheng quit her tenured academic job for a portfolio career as a research mathematician, educator, author, columnist, public speaker, artist and pianist. Her aim is to rid the world of math phobia and develop, demonstrate and advocate for the role of mathematics in addressing issues of social justice.

Her first popular math book, How to Bake Pi, was published by Basic Books in 2015 to widespread acclaim including from the New York TimesNational GeographicScientific American, and she was interviewed around the world including on the BBCNPR and The Late Show with Stephen Colbert. Her second book, Beyond Infinity was published in 2017 and was shortlisted for the Royal Society Insight Investment ScienceBook Prize. Her most recent book, The Art of Logic in an Illogical World, was published in 2018 and was praised in the Guardian.

Cheng was an early pioneer of math on YouTube, and her most viewed video, about math and bagels, has been viewed more than 18 million times to date. She has also assisted with mathematics in elementary schools and high schools for 20 years. Cheng writes the "Everyday Math" column for the Wall Street Journal, is a concert pianist and founded the Liederstube, a not-for-profit organization in Chicago bringing classical music to a wider audience. In 2017 she completed her first mathematical art commission, for Hotel EMC2 in Chicago; her second was installed in 2018 in the Living Architecture exhibit at 6018 North.

Cheng is Scientist In Residence at the School of the Art Institute of Chicago and won tenure in Pure Mathematics at the University of Sheffield, UK. She is now Honorary Fellow at the University of Sheffield and Honorary Visiting Fellow at City University, London. She has previously taught at the universities of Cambridge, Chicago and Nice and holds a PhD in pure mathematics from the University of Cambridge. Her research is in the field of Category Theory, and to date she has published 16 research papers in international journals.
You can learn more about her in this in-depth biographic interview on the BBC's Life Scientific.

More profile about the speaker
Eugenia Cheng | Speaker | TED.com
TEDxLondon

Eugenia Cheng: An unexpected tool for understanding inequality: abstract math

尤金尼娅·陈: 用一种意想不到的工具理解不平等现象:抽象数学

Filmed:
478,298 views

在这个疯狂的世界,我们怎样才能做到理智?数学家尤金尼娅·陈告诉我们,应该着眼于一些意想不到的地方。她解释了如何通过将抽象的数学理论运用到日常生活中,能帮我们更深入理解愤怒的根源,以及特权的作用。更多的了解这个不可思议的工具如何帮助我们以同理心对待他人。
- Mathematician, pianist
Eugenia Cheng devotes her life to mathematics, the piano and helping people. Full bio

Double-click the English transcript below to play the video.

00:13
The world世界 is awash充斥着
with divisive分裂 arguments参数,
0
1247
5613
这个世界充斥着引发分歧的观点,
冲突,
00:18
conflict冲突,
1
6884
1873
00:20
fake news新闻,
2
8781
1813
虚假新闻,
00:22
victimhood受害者,
3
10618
1586
受害者情绪,
00:25
exploitation开发, prejudice偏见,
bigotry偏执, blame, shouting叫喊
4
13146
5701
剥削, 偏见,偏执,责怪,喊叫
00:30
and minuscule微不足道 attention注意 spans跨度.
5
18871
2923
和极短的注意力时间。
00:34
It can sometimes有时 seem似乎
that we are doomed注定 to take sides双方,
6
22859
5189
有时候似乎我们注定要选边站队,
00:40
be stuck卡住 in echo回声 chambers
7
28072
2262
固执己见,
再也无法与人达成共识。
00:42
and never agree同意 again.
8
30358
2317
00:45
It can sometimes有时 seem似乎
like a race种族 to the bottom底部,
9
33342
3001
有时候似乎我们在比惨,
00:48
where everyone大家 is calling调用 out
somebody else's别人的 privilege特权
10
36367
4018
每个人都在说别人有特权,
00:52
and vying百舸争流 to show显示 that they
are the most hard-done-by硬地比 person
11
40409
5114
然后争先恐后地怨天尤人,
00:57
in the conversation会话.
12
45547
1538
都说自己最惨。
01:01
How can we make sense
13
49033
1830
在这个疯狂的世界,
01:02
in a world世界 that doesn't?
14
50887
2404
我们怎样才能做到理智?
01:07
I have a tool工具 for understanding理解
this confusing扑朔迷离 world世界 of ours我们的,
15
55604
4757
我有一样工具,
可以帮助理解这个费解的世界,
01:12
a tool工具 that you might威力 not expect期望:
16
60385
2908
一样你们可能意想不到的工具:
01:16
abstract抽象 mathematics数学.
17
64194
1654
抽象数学。
01:19
I am a pure mathematician数学家.
18
67268
2383
我是个纯粹的数学家。
01:22
Traditionally传统, pure maths数学
is like the theory理论 of maths数学,
19
70063
4013
传统意义上,纯数学更多是
研究数学理论,
01:26
where applied应用的 maths数学 is applied应用的
to real真实 problems问题 like building建造 bridges桥梁
20
74100
5169
而应用数学是解决实际问题,
比如建造大桥,
01:31
and flying飞行 planes飞机
21
79293
1515
开飞机,
01:32
and controlling控制 traffic交通 flow.
22
80832
2343
控制交通流量。
01:35
But I'm going to talk about a way
that pure maths数学 applies适用 directly
23
83894
4926
但我打算讲一种
将纯数学作为一种思维方式
01:40
to our daily日常 lives生活
24
88844
1509
直接运用到
01:42
as a way of thinking思维.
25
90377
1845
我们日常生活的情况。
01:44
I don't solve解决 quadratic二次 equations方程
to help me with my daily日常 life,
26
92931
4188
我解二次方程并不是为了
方便我的日常生活,
01:49
but I do use mathematical数学的 thinking思维
to help me understand理解 arguments参数
27
97143
5142
但我确实运用数学思维来理解争论,
与别人产生共鸣。
01:54
and to empathize同情 with other people.
28
102309
2509
01:57
And so pure maths数学 helps帮助 me
with the entire整个 human人的 world世界.
29
105501
5608
所以纯数学可以帮助我
理解整个人类世界。
02:04
But before I talk about
the entire整个 human人的 world世界,
30
112434
3111
但在谈整个人类世界之前,
02:07
I need to talk about something
that you might威力 think of
31
115569
3060
我必须和你们谈一些看起来可能
02:10
as irrelevant不相干 schools学校 maths数学:
32
118653
2686
无关的学校里教的数学:
02:13
factors因素 of numbers数字.
33
121974
2079
数字的因数。
我们先想一下30的因数。
02:16
We're going to start开始
by thinking思维 about the factors因素 of 30.
34
124077
3556
02:19
Now, if this makes品牌 you shudder不寒而栗
with bad memories回忆 of school学校 maths数学 lessons教训,
35
127657
4716
如果这令你回想起数学课的糟糕回忆,
02:24
I sympathize同情, because I found发现
school学校 maths数学 lessons教训 boring无聊, too.
36
132397
4598
我深表同情,因为我也觉得数学课无聊。
02:29
But I'm pretty漂亮 sure we are going
to take this in a direction方向
37
137480
3883
但我很确定,接下来发生的事情
02:33
that is very different不同
from what happened发生 at school学校.
38
141387
3441
跟学校里学到的会非常不一样。
02:37
So what are the factors因素 of 30?
39
145718
1726
那么30的因数有哪些?
02:39
Well, they're the numbers数字 that go into 30.
40
147468
3225
它们是30能整除的数字。
你们或许还记得,我们来算一下。
02:42
Maybe you can remember记得 them.
We'll work them out.
41
150717
2401
有1、2、3、
02:45
It's one, two, three,
42
153142
3814
02:48
five, six,
43
156980
2092
5、6、
02:51
10, 15 and 30.
44
159096
2860
10、15和30。
02:53
It's not very interesting有趣.
45
161980
1477
这没什么意思。
02:55
It's a bunch of numbers数字
in a straight直行 line线.
46
163957
2399
就是一串数字。
02:58
We can make it more interesting有趣
47
166826
1523
我们能让它变得有趣一些,
03:00
by thinking思维 about which哪一个 of these numbers数字
are also factors因素 of each other
48
168373
3690
想一下,这些数字中,
有哪些互为因数,
03:04
and drawing画画 a picture图片,
a bit like a family家庭 tree,
49
172087
2528
然后画一张像家谱图的图,
03:06
to show显示 those relationships关系.
50
174639
1706
来展示这些关系。
03:08
So 30 is going to be at the top最佳
like a kind of great-grandparent曾祖.
51
176369
4070
30在最上方,像是曾祖父母。
03:12
Six, 10 and 15 go into 30.
52
180463
2597
6、10、15连上30。
03:15
Five goes into 10 and 15.
53
183689
2800
5连上10和15。
03:18
Two goes into six and 10.
54
186945
2687
2连上6和10。
03:21
Three goes into six and 15.
55
189656
3287
3连上6和15。
03:24
And one goes into two, three and five.
56
192967
4184
1连上2、3和5。
03:29
So now we see that 10
is not divisible整除 by three,
57
197175
3735
我们看到10不能被3整除,
03:32
but that this is the corners角落 of a cube立方体,
58
200934
3180
但这里是一个立方体的8个角,
03:36
which哪一个 is, I think, a bit more interesting有趣
59
204138
2081
我觉得这样的关系
相比于一串数字要有趣得多。
03:38
than a bunch of numbers数字
in a straight直行 line线.
60
206243
2124
03:41
We can see something more here.
There's a hierarchy等级制度 going on.
61
209756
2910
我们能发现更多东西。
它是分层级的。
03:44
At the bottom底部 level水平 is the number one,
62
212690
1871
最底层是数字1,
03:46
then there's the numbers数字
two, three and five,
63
214585
2244
然后是 2、3、5,
这些数字能被1和它们自己整除。
03:48
and nothing goes into those
except one and themselves他们自己.
64
216853
2810
03:51
You might威力 remember记得
this means手段 they're prime主要.
65
219687
2430
你或许记得,这表示他们是质数。
03:54
At the next下一个 level水平 up,
we have six, 10 and 15,
66
222141
3033
再往上一层,是6、10和15,
它们都是两个质数的乘积。
03:57
and each of those is a product产品
of two prime主要 factors因素.
67
225198
3508
04:00
So six is two times three,
68
228730
1942
6 = 2 × 3
04:02
10 is two times five,
69
230696
1671
10 = 2 × 5,
15 = 3 × 5。
04:04
15 is three times five.
70
232391
1961
04:06
And then at the top最佳, we have 30,
71
234376
1965
最顶层的30,
04:08
which哪一个 is a product产品
of three prime主要 numbers数字 --
72
236365
2495
是三个质数的乘积,
04:10
two times three times five.
73
238884
2053
2 x 3 x 5。
04:12
So I could redraw重绘 this diagram
using运用 those numbers数字 instead代替.
74
240961
4619
所以我可以重新画这个图,
用数字来替代。
04:18
We see that we've我们已经 got
two, three and five at the top最佳,
75
246335
3068
我们看到2、3、5在最顶层,
成对的数字在第二层,
04:21
we have pairs of numbers数字
at the next下一个 level水平,
76
249427
3072
04:24
and we have single elements分子
at the next下一个 level水平
77
252523
2387
单个的数字在下一层
04:26
and then the empty set at the bottom底部.
78
254934
1918
最底层是空集。
04:29
And each of those arrows箭头 shows节目
losing失去 one of your numbers数字 in the set.
79
257271
5379
每个箭头表示在集合中少一个数字。
04:34
Now maybe it can be clear明确
80
262674
2617
现在或许清楚了,
04:37
that it doesn't really matter
what those numbers数字 are.
81
265315
2858
这些数字是多少并不重要。
04:40
In fact事实, it doesn't matter what they are.
82
268197
1959
实际上,它们是什么都不重要。
04:42
So we could replace更换 them with
something like A, B and C instead代替,
83
270180
4396
所以我们可以用A, B, C替代它们,
04:46
and we get the same相同 picture图片.
84
274600
1735
也会得到同样的图。
04:49
So now this has become成为 very abstract抽象.
85
277025
2117
这样就变得抽象了。
04:51
The numbers数字 have turned转身 into letters.
86
279626
1984
数字变成了字母。
04:54
But there is a point to this abstraction抽象化,
87
282091
3478
但这个抽象化是有意义的,
04:57
which哪一个 is that it now suddenly突然
becomes very widely广泛 applicable适用,
88
285593
4585
因为这张图能被广泛应用了,
05:02
because A, B and C could be anything.
89
290202
3674
因为A,B,C可以是任何东西。
05:06
For example, they could be
three types类型 of privilege特权:
90
294291
4318
比如,它们可以是3种特权:
05:10
rich丰富, white白色 and male.
91
298633
2693
有钱的,白人,男性。
05:14
So then at the next下一个 level水平,
we have rich丰富 white白色 people.
92
302386
3190
所以下一层,我们得到“有钱的”“白人”。
05:18
Here we have rich丰富 male people.
93
306368
2481
这里是“有钱的”“男性”。
05:20
Here we have white白色 male people.
94
308873
2049
这里是“白人”“男性”。
05:22
Then we have rich丰富, white白色 and male.
95
310946
3615
然后是“有钱的”、“白人”、“男性”。
05:27
And finally最后, people with none没有
of those types类型 of privilege特权.
96
315209
3132
最后,是没有任何特权的人。
05:30
And I'm going to put back in
the rest休息 of the adjectives形容词 for emphasis重点.
97
318365
3269
我把剩下的形容词补上,用来强调。
05:33
So here we have rich丰富, white白色
non-male非男 people,
98
321658
3030
所以这里是“有钱的”、“白人”、“非男性”,
05:36
to remind提醒 us that there are
nonbinary非二进制 people we need to include包括.
99
324712
3049
别忘了还有人既不是男性也不是女性,
05:39
Here we have rich丰富, nonwhite非白人 male people.
100
327785
2653
这里是“有钱的”、“非白人”、“男性”,
这里是“非有钱的”、“白人”、“男性”,
05:42
Here we have non-rich非富, white白色 male people,
101
330462
3296
05:45
rich丰富, nonwhite非白人, non-male非男,
102
333782
2702
“有钱的”、“非白人”、“非男性”,
05:48
non-rich非富, white白色, non-male非男
103
336508
2551
“非有钱的”、“白人”、“非男性”,
05:51
and non-rich非富, nonwhite非白人, male.
104
339083
2335
以及“非有钱的”、“非白人”、“男性”,
05:53
And at the bottom底部,
with the least最小 privilege特权,
105
341442
2197
以及在最底层,特权最少的
05:55
non-rich非富, nonwhite非白人, non-male非男 people.
106
343663
4043
“非有钱的”、“非白人”、“非男性”。
05:59
We have gone走了 from a diagram
of factors因素 of 30
107
347730
3812
我们从一个30的因数图表
06:03
to a diagram of interaction相互作用
of different不同 types类型 of privilege特权.
108
351566
3930
到了一个不同特权的交叉图表。
06:08
And there are many许多 things
we can learn学习 from this diagram, I think.
109
356068
3622
我们能从这张图表中学到很多。
06:11
The first is that each arrow箭头 represents代表
a direct直接 loss失利 of one type类型 of privilege特权.
110
359714
6811
首先,每个箭头表示失去一种特权。
06:19
Sometimes有时 people mistakenly think
that white白色 privilege特权 means手段
111
367331
4483
有时候人们错误地以为,
白人特权意味着
06:23
all white白色 people are better off
than all nonwhite非白人 people.
112
371838
4548
所有的白人都比非白人过得更好。
06:28
Some people point at superrich超级富豪
black黑色 sports体育 stars明星 and say,
113
376410
3712
有些人指着超级有钱的
黑人运动明星说,
06:32
"See? They're really rich丰富.
White白色 privilege特权 doesn't exist存在."
114
380146
3456
“看到没?他们超有钱,
白人特权不存在。”
06:36
But that's not what the theory理论
of white白色 privilege特权 says.
115
384116
3029
但是这不是白人特权的内涵。
白人特权是指,如果其他特征
跟那个超有钱的运动明星一样,
06:39
It says that if that superrich超级富豪 sports体育 star
had all the same相同 characteristics特点
116
387169
5238
06:44
but they were also white白色,
117
392431
1476
同时还是白人,
06:45
we would expect期望 them
to be better off in society社会.
118
393931
3432
我们会认为他们在社会上混得更好。
06:51
There is something else其他
we can understand理解 from this diagram
119
399302
2785
我们从这张图表中还能学到更多
如果我们沿着一个箭头看。
06:54
if we look along沿 a row.
120
402111
1986
06:56
If we look along沿 the second-to-top从第二到顶 row,
where people have two types类型 of privilege特权,
121
404121
4281
沿最顶层到第二层的箭头看,
拥有两种特权的人,
07:00
we might威力 be able能够 to see
that they're not all particularly尤其 equal等于.
122
408426
3956
他们并不是特别平等。
07:04
For example, rich丰富 white白色 women妇女
are probably大概 much better off in society社会
123
412406
6079
比如,有钱的白人女性
或许比贫穷的白人男性
07:10
than poor较差的 white白色 men男人,
124
418509
2195
混得更好,
07:12
and rich丰富 black黑色 men男人 are probably大概
somewhere某处 in between之间.
125
420728
3006
而有钱的黑人男性或许介于两者之间。
07:15
So it's really more skewed偏斜 like this,
126
423758
2777
所以其实这张图应该更加倾斜,
07:18
and the same相同 on the bottom底部 level水平.
127
426559
1933
最下面一层也是一样。
07:20
But we can actually其实 take it further进一步
128
428990
2091
我们可以更仔细地
07:23
and look at the interactions互动
between之间 those two middle中间 levels水平.
129
431105
3571
看中间两层的相互关系。
07:27
Because rich丰富, nonwhite非白人 non-men非男性
might威力 well be better off in society社会
130
435076
5936
因为有钱的、非白人、非男性
可能比贫穷的白人男性
07:33
than poor较差的 white白色 men男人.
131
441036
2093
过得更好。
07:35
Think about some extreme极端
examples例子, like Michelle米歇尔 Obama奥巴马,
132
443153
3908
举几个极端的例子,比如米歇尔·奥巴马
07:39
Oprah奥普拉 Winfrey温弗瑞.
133
447085
1418
奥普拉·温弗瑞。
07:40
They're definitely无疑 better off
than poor较差的, white白色, unemployed失业的 homeless无家可归 men男人.
134
448527
5013
她们绝对比贫穷的、失业的、
无家可归的白人男性过得好。
07:46
So actually其实, the diagram
is more skewed偏斜 like this.
135
454164
2780
所以这张图更像是这样倾斜。
07:49
And that tension张力 exists存在
136
457519
2703
图表中各个层级的人
07:52
between之间 the layers
of privilege特权 in the diagram
137
460246
3239
在生活中体验到的特权,
07:55
and the absolute绝对 privilege特权
that people experience经验 in society社会.
138
463509
3665
与在图表中所处的位置存在差异。
07:59
And this has helped帮助 me to understand理解
why some poor较差的 white白色 men男人
139
467198
3674
这帮助我理解了,
为什么有些贫穷的白人男性
08:02
are so angry愤怒 in society社会 at the moment时刻.
140
470896
3409
在社会中如此愤怒。
08:06
Because they are considered考虑 to be high up
in this cuboid长方体 of privilege特权,
141
474329
4427
因为他们被认为处于特权阶级的上层,
08:10
but in terms条款 of absolute绝对 privilege特权,
they don't actually其实 feel the effect影响 of it.
142
478780
4783
而现实生活中,他们这种
享有特权的感受并不明显。
08:15
And I believe that understanding理解
the root of that anger愤怒
143
483587
3446
我认为理解愤怒的根源
08:19
is much more productive生产的
than just being存在 angry愤怒 at them in return返回.
144
487057
4287
比反过来对他们感到愤怒
更有实际帮助。
08:25
Seeing眼见 these abstract抽象 structures结构
can also help us switch开关 contexts上下文
145
493289
4550
这种抽象的结构
还能帮我们转换情境,
08:29
and see that different不同 people
are at the top最佳 in different不同 contexts上下文.
146
497863
3646
看看如果不同的人
位于顶端,会有什么不同。
08:33
In our original原版的 diagram,
147
501533
1780
在我们最初的图表里,
08:35
rich丰富 white白色 men男人 were at the top最佳,
148
503337
2003
有钱的白人男性在顶层,
08:37
but if we restricted限制
our attention注意 to non-men非男性,
149
505364
3702
但如果我们只看非男性,
08:41
we would see that they are here,
150
509090
1690
他们集中在这个区域,
现在“有钱的”、“白人”、
“非男性”在顶层了。
08:42
and now the rich丰富, white白色
non-men非男性 are at the top最佳.
151
510804
2731
08:45
So we could move移动 to
a whole整个 context上下文 of women妇女,
152
513559
2845
我们可以把整个情境转换到女性,
08:48
and our three types类型 of privilege特权
could now be rich丰富, white白色 and cisgendered顺性别.
153
516428
5144
那么我们的三种特权变成了
“有钱的”、“白人“、“本性别”。
08:53
Remember记得 that "cisgendered顺性别" means手段
that your gender性别 identity身分 does match比赛
154
521596
3705
“本性别”是指自我认同的性别
08:57
the gender性别 you were assigned分配 at birth分娩.
155
525325
1965
和生理性别一致。
09:00
So now we see that rich丰富, white白色 cisCis women妇女
occupy占据 the analogous类似 situation情况
156
528021
6012
现在“有钱的”、“白人”、“本性别女性”
与“有钱的”、“白人”、“男性”
09:06
that rich丰富 white白色 men男人 did
in broader更广泛 society社会.
157
534057
3174
在更宽泛的社会中拥有了类似的地位。
09:09
And this has helped帮助 me understand理解
why there is so much anger愤怒
158
537255
3428
这让我理解了,为什么会有那么多人
09:12
towards rich丰富 white白色 women妇女,
159
540707
1653
讨厌“有钱的”、“白人”、“女性”,
09:14
especially特别 in some parts部分
of the feminist女权主义者 movement运动 at the moment时刻,
160
542384
3522
尤其在最近的很多女权主义活动中,
09:17
because perhaps也许 they're prone易于
to seeing眼看 themselves他们自己 as underprivileged弱势
161
545930
3660
因为她们倾向于认为自己是弱势群体,
09:21
relative相对的 to white白色 men男人,
162
549614
1813
如果跟白人男性比的话,
09:23
and they forget忘记 how overprivileged过度特权
they are relative相对的 to nonwhite非白人 women妇女.
163
551451
5111
但她们忘记了,跟非白人女性相比,
自己享受了多少特权。
09:30
We can all use these abstract抽象 structures结构
to help us pivot between之间 situations情况
164
558554
5440
我们能利用这些抽象的结构
在情境之间转换
09:36
in which哪一个 we are more privileged特权
and less privileged特权.
165
564018
2592
我们有时占优势,有时占劣势。
09:38
We are all more privileged特权 than somebody
166
566634
2523
我们总会比一些人占优势,
09:41
and less privileged特权 than somebody else其他.
167
569181
2438
也总会比另一些人更吃亏。
09:44
For example, I know and I feel
that as an Asian亚洲 person,
168
572738
4784
比如,我知道并且感觉到
作为一个亚洲人,
09:49
I am less privileged特权 than white白色 people
169
577546
2730
比白人更弱势,
09:52
because of white白色 privilege特权.
170
580300
1475
因为白人特权的存在。
09:53
But I also understand理解
171
581799
1648
但是我也知道,
09:55
that I am probably大概 among其中
the most privileged特权 of nonwhite非白人 people,
172
583471
4129
我可能是非白人人群中最有特权的,
09:59
and this helps帮助 me pivot
between之间 those two contexts上下文.
173
587624
3119
这能让我在不同情境下转换。
10:03
And in terms条款 of wealth财富,
174
591595
1693
说到财富,
10:05
I don't think I'm super rich丰富.
175
593312
1843
我不觉得自己超级有钱。
10:07
I'm not as rich丰富 as the kind of people
who don't have to work.
176
595179
3045
我比不上那些甚至不需要工作的人。
10:10
But I am doing fine,
177
598248
1548
但我过得也很滋润,
10:11
and that's a much better
situation情况 to be in
178
599820
2155
比起在温饱线上挣扎的人,
10:13
than people who are really struggling奋斗的,
179
601999
1811
那些失业的,或者拿最低工资的人,
10:15
maybe are unemployed失业的
or working加工 at minimum最低限度 wage工资.
180
603834
3061
我已经过得很好了。
10:20
I perform演出 these pivots支点 in my head
181
608566
3426
我在脑中进行这些转换
10:24
to help me understand理解 experiences经验
from other people's人们 points of view视图,
182
612016
5239
来帮助我理解别人的处境,
10:30
which哪一个 brings带来 me to this
possibly或者 surprising奇怪 conclusion结论:
183
618412
3989
这让我得出了一个意外的结论:
10:35
that abstract抽象 mathematics数学
is highly高度 relevant相应 to our daily日常 lives生活
184
623242
6834
抽象数学和我们的日常生活息息相关
10:42
and can even help us to understand理解
and empathize同情 with other people.
185
630100
6720
甚至能帮我们理解他人并产生共情。
10:50
My wish希望 is that everybody每个人 would try
to understand理解 other people more
186
638584
5639
我希望每个人都能
尝试更多去理解他人,
10:56
and work with them together一起,
187
644247
1916
共同努力,
10:58
rather than competing竞争 with them
188
646187
2021
而不是相互竞争,
11:00
and trying to show显示 that they're wrong错误.
189
648232
2611
说对方错了。
11:04
And I believe that abstract抽象
mathematical数学的 thinking思维
190
652031
4567
我相信,抽象的数学思维
11:08
can help us achieve实现 that.
191
656622
2080
能帮助我们实现这些。
11:12
Thank you.
192
660265
1205
谢谢大家。
11:13
(Applause掌声)
193
661494
4155
(掌声)
Translated by jiayi jiang
Reviewed by Alvin Lee

▲Back to top

ABOUT THE SPEAKER
Eugenia Cheng - Mathematician, pianist
Eugenia Cheng devotes her life to mathematics, the piano and helping people.

Why you should listen

Dr. Eugenia Cheng quit her tenured academic job for a portfolio career as a research mathematician, educator, author, columnist, public speaker, artist and pianist. Her aim is to rid the world of math phobia and develop, demonstrate and advocate for the role of mathematics in addressing issues of social justice.

Her first popular math book, How to Bake Pi, was published by Basic Books in 2015 to widespread acclaim including from the New York TimesNational GeographicScientific American, and she was interviewed around the world including on the BBCNPR and The Late Show with Stephen Colbert. Her second book, Beyond Infinity was published in 2017 and was shortlisted for the Royal Society Insight Investment ScienceBook Prize. Her most recent book, The Art of Logic in an Illogical World, was published in 2018 and was praised in the Guardian.

Cheng was an early pioneer of math on YouTube, and her most viewed video, about math and bagels, has been viewed more than 18 million times to date. She has also assisted with mathematics in elementary schools and high schools for 20 years. Cheng writes the "Everyday Math" column for the Wall Street Journal, is a concert pianist and founded the Liederstube, a not-for-profit organization in Chicago bringing classical music to a wider audience. In 2017 she completed her first mathematical art commission, for Hotel EMC2 in Chicago; her second was installed in 2018 in the Living Architecture exhibit at 6018 North.

Cheng is Scientist In Residence at the School of the Art Institute of Chicago and won tenure in Pure Mathematics at the University of Sheffield, UK. She is now Honorary Fellow at the University of Sheffield and Honorary Visiting Fellow at City University, London. She has previously taught at the universities of Cambridge, Chicago and Nice and holds a PhD in pure mathematics from the University of Cambridge. Her research is in the field of Category Theory, and to date she has published 16 research papers in international journals.
You can learn more about her in this in-depth biographic interview on the BBC's Life Scientific.

More profile about the speaker
Eugenia Cheng | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee