ABOUT THE SPEAKER
Alison Gopnik - Child development psychologist
Alison Gopnik takes us into the fascinating minds of babies and children, and shows us how much we understand before we even realize we do.

Why you should listen

What’s it really like to see through the eyes of a child? Are babies and young children just empty, irrational vessels to be formed into little adults, until they become the perfect images of ourselves? On the contrary, argues Alison Gopnik, professor of psychology and philosophy at the University of California at Berkeley.

The author of The Philosophical BabyThe Scientist in the Crib and other influential books on cognitive development, Gopnik presents evidence that babies and children are conscious of far more than we give them credit for, as they engage every sense and spend every waking moment discovering, filing away, analyzing and acting on information about how the world works. Gopnik’s work draws on psychological, neuroscientific, and philosophical developments in child development research to understand how the human mind learns, how and why we love, our ability to innovate, as well as giving us a deeper appreciation for the role of parenthood.

She says: "What's it like to be a baby? Being in love in Paris for the first time after you've had 3 double espressos."

More profile about the speaker
Alison Gopnik | Speaker | TED.com
TEDGlobal 2011

Alison Gopnik: What do babies think?

Alison Gopkin. Que pensan os bebés?

Filmed:
4,341,974 views

A psicóloga Alison Gopnik di: "Os bebés e os nenos pequenos son coma o departamento de I+D da especie humana". O seu estudo explora os sofisticados procesos de recolección de datos e toma de decisións que levan a cabo os bebés cando xogan.
- Child development psychologist
Alison Gopnik takes us into the fascinating minds of babies and children, and shows us how much we understand before we even realize we do. Full bio

Double-click the English transcript below to play the video.

00:15
What is going on
0
0
2000
Que está a suceder
00:17
in this baby's mind?
1
2000
2000
na mente desde bebé?
00:19
If you'd asked people this 30 years ago,
2
4000
2000
Se preguntásemos isto hai 30 anos,
00:21
most people, including psychologists,
3
6000
2000
a maioría da xente, psicólogos incluidos,
00:23
would have said that this baby was irrational,
4
8000
3000
diría que este bebé é irracional,
00:26
illogical, egocentric --
5
11000
2000
ilóxigo, egocéntrico...
00:28
that he couldn't take the perspective of another person
6
13000
2000
que non tería en conta a perspectiva doutra persoa
00:30
or understand cause and effect.
7
15000
2000
ou non entendería un proceso de causa-efecto.
00:32
In the last 20 years,
8
17000
2000
Nos últimos 20 anos,
00:34
developmental science has completely overturned that picture.
9
19000
3000
a ciencia do desenvolvemento anulou completamente esta teoría.
00:37
So in some ways,
10
22000
2000
En certo modo,
00:39
we think that this baby's thinking
11
24000
2000
cremos que o pensamento deste bebé
00:41
is like the thinking of the most brilliant scientists.
12
26000
4000
é coma o pensamento dos científicos máis destacados.
00:45
Let me give you just one example of this.
13
30000
2000
Dareilles un exemplo disto.
00:47
One thing that this baby could be thinking about,
14
32000
3000
Unha cousa que podería estar a pensar este bebé,
00:50
that could be going on in his mind,
15
35000
2000
que podería estar a pasar pola súa mente,
00:52
is trying to figure out
16
37000
2000
é tratar de descifrar
00:54
what's going on in the mind of that other baby.
17
39000
3000
o que está a ocorrer na mente doutro bebé.
00:57
After all, one of the things that's hardest for all of us to do
18
42000
3000
Á fin e ó cabo, unha das cousas máis difíciles para todos nós
01:00
is to figure out what other people are thinking and feeling.
19
45000
3000
é tratar de descifrar o que outras persoas pensan e senten.
01:03
And maybe the hardest thing of all
20
48000
2000
E quizais o máis difícil
01:05
is to figure out that what other people think and feel
21
50000
3000
sexa entender que o que outros pensan e senten
01:08
isn't actually exactly like what we think and feel.
22
53000
2000
non é o mesmo que o que nós pensamos e sentimos.
01:10
Anyone who's followed politics can testify
23
55000
2000
Calquera que estea ó tanto da política pode dicir
01:12
to how hard that is for some people to get.
24
57000
3000
o difícil que lles resulta isto a algunhas persoas.
01:15
We wanted to know
25
60000
2000
Nós queriamos saber
01:17
if babies and young children
26
62000
2000
se os bebés e os nenos pequenos
01:19
could understand this really profound thing about other people.
27
64000
3000
podían entender esta idea tan complexa sobre outras persoas.
01:22
Now the question is: How could we ask them?
28
67000
2000
A cuestión é: como podemos preguntarlles?
01:24
Babies, after all, can't talk,
29
69000
2000
Os bebés non falan,
01:26
and if you ask a three year-old
30
71000
2000
e se lle pedimos a un neno de 3 anos
01:28
to tell you what he thinks,
31
73000
2000
que nos conte o que pensa,
01:30
what you'll get is a beautiful stream of consciousness monologue
32
75000
3000
só conseguiremos un monólogo de pensamentos sobre
01:33
about ponies and birthdays and things like that.
33
78000
3000
ponis, cumpreanos e cousas polo estilo.
01:36
So how do we actually ask them the question?
34
81000
3000
Como podemos entón preguntarlles?
01:39
Well it turns out that the secret was broccoli.
35
84000
3000
Resulta que o secreto foi o brócoli.
01:42
What we did -- Betty Rapacholi, who was one of my students, and I --
36
87000
4000
Betty Rapacholi, unha das miñas estudantes, e mais eu,
01:46
was actually to give the babies two bowls of food:
37
91000
3000
démoslles ós bebés dous pratos con comida:
01:49
one bowl of raw broccoli
38
94000
2000
un con brócoli cru
01:51
and one bowl of delicious goldfish crackers.
39
96000
3000
e outro con deliciosas galletiñas saladas.
01:54
Now all of the babies, even in Berkley,
40
99000
3000
A todos os bebés, incluso en Berkeley,
01:57
like the crackers and don't like the raw broccoli.
41
102000
3000
lles gustan as galletiñas e non lles gusta o brócoli.
02:00
(Laughter)
42
105000
2000
(Risos)
02:02
But then what Betty did
43
107000
2000
Despois, o que facía Betty
02:04
was to take a little taste of food from each bowl.
44
109000
3000
era probar comida dos dous pratos.
02:07
And she would act as if she liked it or she didn't.
45
112000
2000
E facía que lle gustaba ou non o que probaba.
02:09
So half the time, she acted
46
114000
2000
A metade das veces,
02:11
as if she liked the crackers and didn't like the broccoli --
47
116000
2000
facía que lle gustaban as galletiñas e non o brócoli...
02:13
just like a baby and any other sane person.
48
118000
3000
como calquera bebé ou persoa normal.
02:16
But half the time,
49
121000
2000
Pero a outra metade,
02:18
what she would do is take a little bit of the broccoli
50
123000
2000
collía un pouco de brócoli
02:20
and go, "Mmmmm, broccoli.
51
125000
3000
e dicía "Mmmm, brócoli.
02:23
I tasted the broccoli. Mmmmm."
52
128000
3000
Probei o brócoli. Mmmm."
02:26
And then she would take a little bit of the crackers,
53
131000
2000
E logo collía unhas galletiñas,
02:28
and she'd go, "Eww, yuck, crackers.
54
133000
4000
e dicía "Aj, puaj, galletiñas.
02:32
I tasted the crackers. Eww, yuck."
55
137000
3000
Probei as galletiñas. Aj, puaj."
02:35
So she'd act as if what she wanted
56
140000
2000
É dicir, facía coma se lle gustara
02:37
was just the opposite of what the babies wanted.
57
142000
3000
o contrario do que lles gustaba ós bebés.
02:40
We did this with 15 and 18 month-old babies.
58
145000
2000
Fixemos isto con bebés de 15 e 18 meses.
02:42
And then she would simply put her hand out and say,
59
147000
3000
Logo Betty extendía a man e dicía,
02:45
"Can you give me some?"
60
150000
2000
"Dásme un pouquiño?"
02:47
So the question is: What would the baby give her,
61
152000
2000
A cuestión era: daríanlle os bebés
02:49
what they liked or what she liked?
62
154000
2000
o que lles gustaba a eles ou a ela?
02:51
And the remarkable thing was that 18 month-old babies,
63
156000
3000
O sorprendente foi que os bebés de 18 meses,
02:54
just barely walking and talking,
64
159000
2000
que acaban de empezar a andar e falar,
02:56
would give her the crackers if she liked the crackers,
65
161000
3000
dábanlle as galletiñas se lle gustaran as galletiñas
02:59
but they would give her the broccoli if she liked the broccoli.
66
164000
3000
e o brócoli se lle gustara o brócoli.
03:02
On the other hand,
67
167000
2000
Por outro lado,
03:04
15 month-olds would stare at her for a long time
68
169000
2000
os bebés de 15 meses quedábanse fitando para ela
03:06
if she acted as if she liked the broccoli,
69
171000
2000
se parecía que lle gustara o brócoli,
03:08
like they couldn't figure this out.
70
173000
3000
coma se non puidesen entendelo.
03:11
But then after they stared for a long time,
71
176000
2000
E despois de mirala durante un rato longo,
03:13
they would just give her the crackers,
72
178000
2000
dábanlle galletiñas,
03:15
what they thought everybody must like.
73
180000
2000
o que pensaban que gustaría a todo o mundo.
03:17
So there are two really remarkable things about this.
74
182000
3000
Polo tanto, hai dous datos reveladores nisto.
03:20
The first one is that these little 18 month-old babies
75
185000
3000
Por un lado está que os bebés de 18 meses
03:23
have already discovered
76
188000
2000
xa teñen descuberto
03:25
this really profound fact about human nature,
77
190000
2000
este dato importante da natureza humana:
03:27
that we don't always want the same thing.
78
192000
2000
que non todos queremos o mesmo.
03:29
And what's more, they felt that they should actually do things
79
194000
2000
É mais, entenden que deben actuar para axudar
03:31
to help other people get what they wanted.
80
196000
3000
a outras persoas a conseguir o que queiran.
03:34
Even more remarkably though,
81
199000
2000
E máis interesante sen embargo,
03:36
the fact that 15 month-olds didn't do this
82
201000
3000
é que os bebés de 15 meses non fan isto;
03:39
suggests that these 18 month-olds had learned
83
204000
3000
o que suxire que os nenos de 18 meses aprenderon
03:42
this deep, profound fact about human nature
84
207000
3000
este dato profundo do ser humán
03:45
in the three months from when they were 15 months old.
85
210000
3000
nos 3 meses que os separan dos bebés de 15 meses.
03:48
So children both know more and learn more
86
213000
2000
Polo tanto, os bebés saben máis e aprenden máis
03:50
than we ever would have thought.
87
215000
2000
do que pensabamos ata agora.
03:52
And this is just one of hundreds and hundreds of studies over the last 20 years
88
217000
4000
E este é só un dos centos de estudos que se fixeron nos últimos 20 anos
03:56
that's actually demonstrated it.
89
221000
2000
demostrando este feito.
03:58
The question you might ask though is:
90
223000
2000
O que se poden preguntar agora é:
04:00
Why do children learn so much?
91
225000
3000
Por que os nenos aprenden tanto?
04:03
And how is it possible for them to learn so much
92
228000
2000
E como é posible que aprendan tanto
04:05
in such a short time?
93
230000
2000
en tan pouco tempo?
04:07
I mean, after all, if you look at babies superficially,
94
232000
2000
É dicir, a primeira vista, os bebés
04:09
they seem pretty useless.
95
234000
2000
parecen bastante inútiles.
04:11
And actually in many ways, they're worse than useless,
96
236000
3000
E en moitas ocasións, son peor que inútiles,
04:14
because we have to put so much time and energy
97
239000
2000
porque temos que empregar moito tempo e enerxía
04:16
into just keeping them alive.
98
241000
2000
simplemente en mantelos vivos.
04:18
But if we turn to evolution
99
243000
2000
Se recurrimos á evolución
04:20
for an answer to this puzzle
100
245000
2000
para buscar resposta a este misterio
04:22
of why we spend so much time
101
247000
2000
de por que perdemos tanto tempo
04:24
taking care of useless babies,
102
249000
3000
coidando a bebés inútiles,
04:27
it turns out that there's actually an answer.
103
252000
3000
resulta que si hai unha resposta
04:30
If we look across many, many different species of animals,
104
255000
3000
Se observamos varias especies distintas,
04:33
not just us primates,
105
258000
2000
non só outros primates coma nós,
04:35
but also including other mammals, birds,
106
260000
2000
senón tamén outros mamífeors, paxaros,
04:37
even marsupials
107
262000
2000
incluso marsupiais
04:39
like kangaroos and wombats,
108
264000
2000
coma os canguros ou os vombátidos,
04:41
it turns out that there's a relationship
109
266000
2000
resulta que hai relación
04:43
between how long a childhood a species has
110
268000
4000
entre a duración da infancia,
04:47
and how big their brains are compared to their bodies
111
272000
4000
e o tamaño relativo do cerebro
04:51
and how smart and flexible they are.
112
276000
2000
e a intelixencia e flexibilidade da especie.
04:53
And sort of the posterbirds for this idea are the birds up there.
113
278000
3000
Un exemplo disto sacámolo destes paxaros que podedes ver aquí.
04:56
On one side
114
281000
2000
Por unha banda
04:58
is a New Caledonian crow.
115
283000
2000
temos o corvo de Nova Caledonia.
05:00
And crows and other corvidae, ravens, rooks and so forth,
116
285000
3000
Os corvos e outros córvidos, grallas, pegas, etcétera,
05:03
are incredibly smart birds.
117
288000
2000
son paxaros moi intelixentes.
05:05
They're as smart as chimpanzees in some respects.
118
290000
3000
En certos sentidos son tan intelixentes coma os chimpancés.
05:08
And this is a bird on the cover of science
119
293000
2000
E este é un paxaro moi estudado
05:10
who's learned how to use a tool to get food.
120
295000
3000
que ten aprendido a usar ferramentas para conseguir comida.
05:13
On the other hand,
121
298000
2000
Por outra banda,
05:15
we have our friend the domestic chicken.
122
300000
2000
temos á nosa coñecida galiña doméstica.
05:17
And chickens and ducks and geese and turkeys
123
302000
3000
As galiñas, así coma os patos, pavos e gansos,
05:20
are basically as dumb as dumps.
124
305000
2000
son parvos coma pedras.
05:22
So they're very, very good at pecking for grain,
125
307000
3000
Son moi moi bos picando gran,
05:25
and they're not much good at doing anything else.
126
310000
3000
pero non son moi bos facendo calquera outra cousa.
05:28
Well it turns out that the babies,
127
313000
2000
Resulta que os bebés
05:30
the New Caledonian crow babies, are fledglings.
128
315000
2000
dos corvos de Nova Caledonia, os pitiños,
05:32
They depend on their moms
129
317000
2000
dependen de que as súas nais
05:34
to drop worms in their little open mouths
130
319000
3000
lles poñan os vermes na boca
05:37
for as long as two years,
131
322000
2000
ata os dous anos de vida,
05:39
which is a really long time in the life of a bird.
132
324000
2000
o que supón bastante tempo na curta vida dun paxaro.
05:41
Whereas the chickens are actually mature
133
326000
2000
Sen embargo, as galiñas son adultas
05:43
within a couple of months.
134
328000
2000
en apenas un par de meses.
05:45
So childhood is the reason
135
330000
3000
Por tanto, a infancia é a razón
05:48
why the crows end up on the cover of Science
136
333000
2000
pola que os corvos rematan na portada das revistas científicas
05:50
and the chickens end up in the soup pot.
137
335000
2000
mentras que as galiñas rematan no pote da sopa.
05:52
There's something about that long childhood
138
337000
3000
Hai algo nas infancias longas
05:55
that seems to be connected
139
340000
2000
que parece estar relacionado
05:57
to knowledge and learning.
140
342000
2000
co coñecemento e coa aprendizaxe.
05:59
Well what kind of explanation could we have for this?
141
344000
3000
Que explicación poderiamos ter para isto?
06:02
Well some animals, like the chicken,
142
347000
3000
Algúns animais, coma as galiñas,
06:05
seem to be beautifully suited
143
350000
2000
parecen creadas
06:07
to doing just one thing very well.
144
352000
2000
para facer unha cousa moi ben.
06:09
So they seem to be beautifully suited
145
354000
3000
Así que as galiñas son moi boas
06:12
to pecking grain in one environment.
146
357000
2000
picando gran nun entorno concreto.
06:14
Other creatures, like the crows,
147
359000
2000
Outras criaturas, coma os corvos,
06:16
aren't very good at doing anything in particular,
148
361000
2000
non son especialmente boas facendo nada particular,
06:18
but they're extremely good
149
363000
2000
pero son moi boas
06:20
at learning about laws of different environments.
150
365000
2000
aprendendo as normas de distintos entornos.
06:22
And of course, we human beings
151
367000
2000
E por suposto, nós, os seres humáns
06:24
are way out on the end of the distribution like the crows.
152
369000
3000
estamos moi lonxe nesa distribución.
06:27
We have bigger brains relative to our bodies
153
372000
2000
Temos cerebros máis grandes con relación ó noso corpo,
06:29
by far than any other animal.
154
374000
2000
moito máis que calquera outro animal.
06:31
We're smarter, we're more flexible,
155
376000
2000
Somo máis intelixentes, máis flexibles,
06:33
we can learn more,
156
378000
2000
podemos aprender mais,
06:35
we survive in more different environments,
157
380000
2000
podemos sobrevivir en moitos máis entornos:
06:37
we migrated to cover the world and even go to outer space.
158
382000
3000
temos emigrado por todo o planeta e incluso cara o espacio.
06:40
And our babies and children are dependent on us
159
385000
3000
E os nosos bebés e nenos dependen de nós
06:43
for much longer than the babies of any other species.
160
388000
3000
por moito máis tempo que os bebés doutras especies.
06:46
My son is 23.
161
391000
2000
O meu fillo ten 23.
06:48
(Laughter)
162
393000
2000
(Risos)
06:50
And at least until they're 23,
163
395000
2000
Polo menos ata os 23,
06:52
we're still popping those worms
164
397000
2000
seguimos a poñerlles eses vermiños
06:54
into those little open mouths.
165
399000
3000
nas súas bocas abertas
06:57
All right, why would we see this correlation?
166
402000
3000
Moi ben, por que observamos esta correlación?
07:00
Well an idea is that that strategy, that learning strategy,
167
405000
4000
Unha idea é que esa estratexia, a estratexia da aprendizaxe,
07:04
is an extremely powerful, great strategy for getting on in the world,
168
409000
3000
é unha forma moi poderosa e forte de adentrarse neste mundo.
07:07
but it has one big disadvantage.
169
412000
2000
Pero ten unha gran desvantaxe:
07:09
And that one big disadvantage
170
414000
2000
resulta que
07:11
is that, until you actually do all that learning,
171
416000
3000
ata que se aprende todo,
07:14
you're going to be helpless.
172
419000
2000
se está indefenso.
07:16
So you don't want to have the mastodon charging at you
173
421000
3000
Non sería bo que nos perseguise un mastodonte
07:19
and be saying to yourself,
174
424000
2000
e estar a pensar:
07:21
"A slingshot or maybe a spear might work. Which would actually be better?"
175
426000
4000
"Empregarei un tiracroios ou unha lanza? Cal será mellor?"
07:25
You want to know all that
176
430000
2000
Sería mellor saber todo iso
07:27
before the mastodons actually show up.
177
432000
2000
antes de que aparezan os mastodontes.
07:29
And the way the evolutions seems to have solved that problem
178
434000
3000
E a forma en que a evolución solucionou este problema
07:32
is with a kind of division of labor.
179
437000
2000
foi, parece ser, cunha división do traballo.
07:34
So the idea is that we have this early period when we're completely protected.
180
439000
3000
Por iso temos este periodo de tempo no que estamos totalmente protexidos.
07:37
We don't have to do anything. All we have to do is learn.
181
442000
3000
Non temos que facer nada. Simplemente aprender.
07:40
And then as adults,
182
445000
2000
E logo, de adultos,
07:42
we can take all those things that we learned when we were babies and children
183
447000
3000
podemos coller iso que aprendemos de bebés e nenos
07:45
and actually put them to work to do things out there in the world.
184
450000
3000
e poñelo en práctica para saírmos polo mundo adiante.
07:48
So one way of thinking about it
185
453000
2000
Unha forma de pensar nisto
07:50
is that babies and young children
186
455000
2000
é que os bebés e os nenos pequenos
07:52
are like the research and development division of the human species.
187
457000
3000
son coma o departamento de Investigación e Desenvolvemento da especie humana.
07:55
So they're the protected blue sky guys
188
460000
3000
Son a xente protexida que investiga,
07:58
who just have to go out and learn and have good ideas,
189
463000
2000
os que só teñen que saír, aprender e ter boas ideas.
08:00
and we're production and marketing.
190
465000
2000
E nós somos a produción e comercialización.
08:02
We have to take all those ideas
191
467000
2000
Temos que coller todas esas ideas
08:04
that we learned when we were children
192
469000
2000
que aprendemos de nenos
08:06
and actually put them to use.
193
471000
2000
e poñelas en práctica.
08:08
Another way of thinking about it
194
473000
2000
Outra forma de velo é,
08:10
is instead of thinking of babies and children
195
475000
2000
en lugar de pensar nos bebés e os nenos
08:12
as being like defective grownups,
196
477000
2000
coma adultos incompletos,
08:14
we should think about them
197
479000
2000
pensar neles coma seres
08:16
as being a different developmental stage of the same species --
198
481000
2000
nun estado de desenvolvemento distinto da mesma especie;
08:18
kind of like caterpillars and butterflies --
199
483000
3000
coma os casulos e as bolboretas.
08:21
except that they're actually the brilliant butterflies
200
486000
2000
Pero os bebés serían as bolboretas
08:23
who are flitting around the garden and exploring,
201
488000
3000
que borbolean polo xardín explorando,
08:26
and we're the caterpillars
202
491000
2000
e nós seriamos os casulos
08:28
who are inching along our narrow, grownup, adult path.
203
493000
3000
encerrados no noso estreito camiño de adultos.
08:31
If this is true, if these babies are designed to learn --
204
496000
3000
Se isto é certo, se os bebés están deseñados para aprender,
08:34
and this evolutionary story would say children are for learning,
205
499000
3000
e esta historia da evolución nos mostra que así é,
08:37
that's what they're for --
206
502000
2000
que os nenos están para aprender,
08:39
we might expect
207
504000
2000
podemos esperar
08:41
that they would have really powerful learning mechanisms.
208
506000
2000
que sexan uns mecanismos de aprendizaxe bastante poderosos.
08:43
And in fact, the baby's brain
209
508000
3000
E de feito, o cerebro dun bebé
08:46
seems to be the most powerful learning computer
210
511000
2000
parece ser o ordenador de aprendizaxe máis poderoso
08:48
on the planet.
211
513000
2000
do planeta.
08:50
But real computers are actually getting to be a lot better.
212
515000
3000
Aínda que os verdadeiros ordenadores están a mellorar moito.
08:53
And there's been a revolution
213
518000
2000
Está a haber unha revolución
08:55
in our understanding of machine learning recently.
214
520000
2000
na nosa forma de entender as máquinas de aprendizaxe.
08:57
And it all depends on the ideas of this guy,
215
522000
3000
E todo a causa das ideas deste home,
09:00
the Reverend Thomas Bayes,
216
525000
2000
o reverendo Thomas Bayes,
09:02
who was a statistician and mathematician in the 18th century.
217
527000
3000
un estatístico e matemático do século XVIII.
09:05
And essentially what Bayes did
218
530000
3000
Básicamente, Bayes proporcionou
09:08
was to provide a mathematical way
219
533000
2000
un procedemento matemático que empregaba
09:10
using probability theory
220
535000
2000
a teoría da probabilidade
09:12
to characterize, describe,
221
537000
2000
para caracterizar e describir
09:14
the way that scientists find out about the world.
222
539000
2000
a forma na que os científicos descubrían cousas do mundo.
09:16
So what scientists do
223
541000
2000
O que os científicos fan
09:18
is they have a hypothesis that they think might be likely to start with.
224
543000
3000
é plantexar unha hipótese, algo co que poder comezar.
09:21
They go out and test it against the evidence.
225
546000
2000
Logo evalúan esa hipótese con probas.
09:23
The evidence makes them change that hypothesis.
226
548000
2000
As probas fanlles cambiar a hipótese,
09:25
Then they test that new hypothesis
227
550000
2000
que volven a evaluar con novas probas,
09:27
and so on and so forth.
228
552000
2000
e así sucesivamente.
09:29
And what Bayes showed was a mathematical way that you could do that.
229
554000
3000
O que Bayes mostrou foi un procedemenento matemático que podía facer iso.
09:32
And that mathematics is at the core
230
557000
2000
E as matemáticas son a base
09:34
of the best machine learning programs that we have now.
231
559000
2000
dos mellores programas de aprendizaxe que temos hoxe en día.
09:36
And some 10 years ago,
232
561000
2000
Hai dez anos,
09:38
I suggested that babies might be doing the same thing.
233
563000
4000
suxerín que os bebés debían estar a facer o mesmo.
09:42
So if you want to know what's going on
234
567000
2000
Se queremos saber o que está a pasar
09:44
underneath those beautiful brown eyes,
235
569000
2000
baixo estes preciosos olliños marróns,
09:46
I think it actually looks something like this.
236
571000
2000
penso que é algo moi parecido
09:48
This is Reverend Bayes's notebook.
237
573000
2000
ó atopado nas notas do reverendo Bayes.
09:50
So I think those babies are actually making complicated calculations
238
575000
3000
Penso que os bebés están a facer cálculos moi complicados
09:53
with conditional probabilities that they're revising
239
578000
3000
con probabilidades condicionadas que revisan
09:56
to figure out how the world works.
240
581000
2000
e así descobren como funciona o mundo.
09:58
All right, now that might seem like an even taller order to actually demonstrate.
241
583000
4000
Ben, isto é aínda máis dificil de demostrar.
10:02
Because after all, if you ask even grownups about statistics,
242
587000
2000
Se preguntamos a un adulto sobre estatística,
10:04
they look extremely stupid.
243
589000
2000
pódese sentir bastante estúpido.
10:06
How could it be that children are doing statistics?
244
591000
3000
Como é posible que os nenos fagan estatísticas?
10:09
So to test this we used a machine that we have
245
594000
2000
Para probar isto, empregamos unha máquina que
10:11
called the Blicket Detector.
246
596000
2000
demos en chamar o Detector Blicket.
10:13
This is a box that lights up and plays music
247
598000
2000
É unha caixa que se acende e soa
10:15
when you put some things on it and not others.
248
600000
3000
cando se poñen encima dela uns obxectos determinados.
10:18
And using this very simple machine,
249
603000
2000
Empregando esta máquina tan simple,
10:20
my lab and others have done dozens of studies
250
605000
2000
no meu laboratorio, e tamén noutros, se realizaron
10:22
showing just how good babies are
251
607000
2000
ducias de estudos sobre o bos
10:24
at learning about the world.
252
609000
2000
que son os nenos aprendendo sobre o mundo.
10:26
Let me mention just one
253
611000
2000
Mostrarei simplemente un
10:28
that we did with Tumar Kushner, my student.
254
613000
2000
que fixemos con Tumar Kushner, un dos meus estudantes.
10:30
If I showed you this detector,
255
615000
2000
Se vos mostrase este detector
10:32
you would be likely to think to begin with
256
617000
2000
probablemente empezariades por pensar
10:34
that the way to make the detector go
257
619000
2000
que a forma de activalo
10:36
would be to put a block on top of the detector.
258
621000
3000
é colocar un bloque sobre o detector.
10:39
But actually, this detector
259
624000
2000
Pero o caso é que o detector
10:41
works in a bit of a strange way.
260
626000
2000
funciona dunha forma un tanto estraña.
10:43
Because if you wave a block over the top of the detector,
261
628000
3000
Se se abanea un bloque enriba do detector,
10:46
something you wouldn't ever think of to begin with,
262
631000
3000
algo no que non pensariamos nun principio,
10:49
the detector will actually activate two out of three times.
263
634000
3000
o detector se activa dúas de cada tres veces.
10:52
Whereas, if you do the likely thing, put the block on the detector,
264
637000
3000
Namentres que se colocamos o bloque enriba, o que sería o lóxico,
10:55
it will only activate two out of six times.
265
640000
4000
só se activa dúas de cada seis veces.
10:59
So the unlikely hypothesis
266
644000
2000
Polo tanto, a hipótese menos probable
11:01
actually has stronger evidence.
267
646000
2000
ten probas máis evidentes.
11:03
It looks as if the waving
268
648000
2000
Parece que a estratexia
11:05
is a more effective strategy than the other strategy.
269
650000
2000
de abanear o obxecto é mais efectiva que a outra.
11:07
So we did just this; we gave four year-olds this pattern of evidence,
270
652000
3000
Así que explicamos estes datos ós nenos de catro anos
11:10
and we just asked them to make it go.
271
655000
2000
e pedémoslles que o intentasen.
11:12
And sure enough, the four year-olds used the evidence
272
657000
3000
E con seguridade, os nenos de catro anos empregaron os datos
11:15
to wave the object on top of the detector.
273
660000
3000
e abanearon o obxecto enriba do detector.
11:18
Now there are two things that are really interesting about this.
274
663000
3000
Hai dous datos interesantes neste feito.
11:21
The first one is, again, remember, these are four year-olds.
275
666000
3000
A primeira, recordade que son nenos de catro anos,
11:24
They're just learning how to count.
276
669000
2000
que están aprendendo a contar;
11:26
But unconsciously,
277
671000
2000
pero inconscientemente
11:28
they're doing these quite complicated calculations
278
673000
2000
xa están a facer cálculos complexos
11:30
that will give them a conditional probability measure.
279
675000
3000
que lles dan unha medida de probabilidades condicionadas.
11:33
And the other interesting thing
280
678000
2000
O segundo dato interesante
11:35
is that they're using that evidence
281
680000
2000
é que están a usar as probas
11:37
to get to an idea, get to a hypothesis about the world,
282
682000
3000
para chegar a unha idea, a unha hipótese sobre o mundo,
11:40
that seems very unlikely to begin with.
283
685000
3000
que parece algo pouco probable ó principio.
11:43
And in studies we've just been doing in my lab, similar studies,
284
688000
3000
En estudos que realizamos no laboratorio, outros similares,
11:46
we've show that four year-olds are actually better
285
691000
2000
demostramos que estes nenos de catro anos son mellores
11:48
at finding out an unlikely hypothesis
286
693000
3000
descubrindo hipóteses pouco probables
11:51
than adults are when we give them exactly the same task.
287
696000
3000
ca os adultos, dada a mesma tarefa.
11:54
So in these circumstances,
288
699000
2000
Nestas circunstancias,
11:56
the children are using statistics to find out about the world,
289
701000
3000
os nenos fan estatísticas para desvelar cousas sobre o mundo.
11:59
but after all, scientists also do experiments,
290
704000
3000
Pero os científicos experimentan, despois de todo,
12:02
and we wanted to see if children are doing experiments.
291
707000
3000
e queriamos ver se os nenos experimentaban tamén.
12:05
When children do experiments we call it "getting into everything"
292
710000
3000
É o que normalmente chamamos "meterse en todo"
12:08
or else "playing."
293
713000
2000
ou "xogar".
12:10
And there's been a bunch of interesting studies recently
294
715000
3000
Ten habido moitos estudos interesantes ultimamente
12:13
that have shown this playing around
295
718000
3000
que mostraron que estes xogos
12:16
is really a kind of experimental research program.
296
721000
2000
son coma unha especie de programa de investigación experimental.
12:18
Here's one from Cristine Legare's lab.
297
723000
3000
Mostramos un do laboratorio de Cristine Legare.
12:21
What Cristine did was use our Blicket Detectors.
298
726000
3000
Cristine empregou de novo Detectores Blicket.
12:24
And what she did was show children
299
729000
2000
Mostrou aos nenos que
12:26
that yellow ones made it go and red ones didn't,
300
731000
2000
os bloques amarelos facíano funcionar e os vermellos non,
12:28
and then she showed them an anomaly.
301
733000
3000
ademais de mostrarlles unha anomalía.
12:31
And what you'll see
302
736000
2000
O que veremos agora é
12:33
is that this little boy will go through five hypotheses
303
738000
3000
a este rapaz formulando 5 hipóteses
12:36
in the space of two minutes.
304
741000
3000
en 2 minutos de tempo.
12:39
(Video) Boy: How about this?
305
744000
3000
Neno: E así?
12:43
Same as the other side.
306
748000
3000
Neno: Igual que no outro lado.
12:46
Alison Gopnik: Okay, so his first hypothesis has just been falsified.
307
751000
4000
Alison: Ben, a primeira hipótese rexéitase.
12:55
(Laughter)
308
760000
2000
Neno: Nada (Risos)
12:57
Boy: This one lighted up, and this one nothing.
309
762000
3000
Neno: Este acéndese, pero este non.
13:00
AG: Okay, he's got his experimental notebook out.
310
765000
3000
Alison: Empeza a describir a experimentación.
13:06
Boy: What's making this light up.
311
771000
4000
Neno: Por que este si que se encende?
13:11
(Laughter)
312
776000
9000
(Risos)
13:20
I don't know.
313
785000
2000
Neno: Non o entendo.
13:22
AG: Every scientist will recognize that expression of despair.
314
787000
4000
Alison: Os científicos han recoñecer esa cara de desesperación.
13:26
(Laughter)
315
791000
3000
(Risos)
13:29
Boy: Oh, it's because this needs to be like this,
316
794000
6000
Neno: Oh, é porque este ten que estar así,
13:35
and this needs to be like this.
317
800000
2000
e este ten que estar así.
13:37
AG: Okay, hypothesis two.
318
802000
3000
Alison: Lista, hipótese 2.
13:40
Boy: That's why.
319
805000
2000
Neno: Así ten que ser.
13:42
Oh.
320
807000
2000
Neno: Oh... non pode ser.
13:44
(Laughter)
321
809000
5000
(Risos)
13:49
AG: Now this is his next idea.
322
814000
2000
Alison: Agora vén a seguinte idea.
13:51
He told the experimenter to do this,
323
816000
2000
Pediulle á investigadora que
13:53
to try putting it out onto the other location.
324
818000
4000
tentase poñelo enriba do outro.
13:57
Not working either.
325
822000
2000
Tampouco funcionou.
14:02
Boy: Oh, because the light goes only to here,
326
827000
4000
Neno: Oh, é porque a luz só vai ata aquí,
14:06
not here.
327
831000
3000
non ata aquí.
14:09
Oh, the bottom of this box
328
834000
3000
Baixo esta caixa
14:12
has electricity in here,
329
837000
2000
hai electricidade,
14:14
but this doesn't have electricity.
330
839000
2000
pero esta non ten.
14:16
AG: Okay, that's a fourth hypothesis.
331
841000
2000
Alison: Ben, esa sería a cuarta hipótese.
14:18
Boy: It's lighting up.
332
843000
2000
Neno: Agora si se acende!
14:20
So when you put four.
333
845000
5000
Se pos catro bloques.
14:26
So you put four on this one to make it light up
334
851000
3000
Se pos catro bloques neste, acéndese
14:29
and two on this one to make it light up.
335
854000
2000
e dous para que se encenda o outro.
14:31
AG: Okay,there's his fifth hypothesis.
336
856000
2000
Alison: Ben, esa é a quinta hipótese.
14:33
Now that is a particularly --
337
858000
3000
Este neno é...
14:36
that is a particularly adorable and articulate little boy,
338
861000
3000
é un neno moi riquiño e elocuente,
14:39
but what Cristine discovered is this is actually quite typical.
339
864000
3000
pero Cristine descubriu que é un neno moi típico.
14:42
If you look at the way children play, when you ask them to explain something,
340
867000
3000
Se observamos como xogan os nenos, se lles pedimos que expliquen algo,
14:45
what they really do is do a series of experiments.
341
870000
3000
o que fan é experimentar.
14:48
This is actually pretty typical of four year-olds.
342
873000
3000
Moi típico dos nenos de 4 anos.
14:51
Well, what's it like to be this kind of creature?
343
876000
3000
Ben, e que se sente sendo este tipo de criatura?
14:54
What's it like to be one of these brilliant butterflies
344
879000
3000
Que se sente sendo unha destas bolboretas
14:57
who can test five hypotheses in two minutes?
345
882000
3000
que poden probar 5 hipóteses en 2 minutos?
15:00
Well, if you go back to those psychologists and philosophers,
346
885000
3000
Se volvemos ás teoría de psicólogos e filósofos,
15:03
a lot of them have said
347
888000
2000
moitas din que
15:05
that babies and young children were barely conscious
348
890000
2000
os bebés e os nenos apenas son conscientes,
15:07
if they were conscious at all.
349
892000
2000
ou incluso que non o son en absoluto.
15:09
And I think just the opposite is true.
350
894000
2000
Pero eu penso que é o contrario.
15:11
I think babies and children are actually more conscious than we are as adults.
351
896000
3000
Penso que os bebés e os nenos son máis conscientes ca os adultos.
15:14
Now here's what we know about how adult consciousness works.
352
899000
3000
Isto é o que sabemos sobre como funciona a conciencia adulta.
15:17
And adults' attention and consciousness
353
902000
2000
A conciencia e atención dun adulto
15:19
look kind of like a spotlight.
354
904000
2000
parécese a un foco.
15:21
So what happens for adults
355
906000
2000
O que ocorre nos adultos
15:23
is we decide that something's relevant or important,
356
908000
2000
é que cando decidimos que algo é importante ou relevante,
15:25
we should pay attention to it.
357
910000
2000
prestámoslle atención.
15:27
Our consciousness of that thing that we're attending to
358
912000
2000
A conciencia niso no que nos fixamos
15:29
becomes extremely bright and vivid,
359
914000
3000
vólvese relucente e intensa,
15:32
and everything else sort of goes dark.
360
917000
2000
mentras que o resto case que se apaga.
15:34
And we even know something about the way the brain does this.
361
919000
3000
Tamén sabemos como ocorre isto no cerebro.
15:37
So what happens when we pay attention
362
922000
2000
Cando prestamos atención a algo,
15:39
is that the prefrontal cortex, the sort of executive part of our brains,
363
924000
3000
a parte frontal do cerebro, a parte que executa as accións,
15:42
sends a signal
364
927000
2000
manda un sinal
15:44
that makes a little part of our brain much more flexible,
365
929000
2000
que fai que unha pequena parte do cerebro se flexibilice,
15:46
more plastic, better at learning,
366
931000
2000
se volva máis plástica, mellor para aprender;
15:48
and shuts down activity
367
933000
2000
e apaga a actividade
15:50
in all the rest of our brains.
368
935000
2000
no resto do cerebro.
15:52
So we have a very focused, purpose-driven kind of attention.
369
937000
4000
Temos así unha atención moi centrada, orientada ó propósito.
15:56
If we look at babies and young children,
370
941000
2000
Se observamos os bebés e nenos,
15:58
we see something very different.
371
943000
2000
vemos algo moi distinto.
16:00
I think babies and young children
372
945000
2000
Penso que os bebés e os nenos
16:02
seem to have more of a lantern of consciousness
373
947000
2000
parecen ter unha conciencia máis parecida
16:04
than a spotlight of consciousness.
374
949000
2000
a unha lanterna ca a un foco.
16:06
So babies and young children are very bad
375
951000
3000
Ós bebés e ós nenos cústalles moito
16:09
at narrowing down to just one thing.
376
954000
3000
limitar a atención a unha soa cousa.
16:12
But they're very good at taking in lots of information
377
957000
3000
Pero dáselles moi ben ter en conta moita información
16:15
from lots of different sources at once.
378
960000
2000
de moitas fontes á vez.
16:17
And if you actually look in their brains,
379
962000
2000
E se observamos os seus cerebros,
16:19
you see that they're flooded with these neurotransmitters
380
964000
3000
o que vemos é que están asolagados de neurotransmisores
16:22
that are really good at inducing learning and plasticity,
381
967000
2000
que inducen á aprendizaxe e á plasticidade,
16:24
and the inhibitory parts haven't come on yet.
382
969000
3000
e que a inhibición aínda non se leva a cabo.
16:27
So when we say that babies and young children
383
972000
2000
Por iso cando dicimos que os bebés e os nenos
16:29
are bad at paying attention,
384
974000
2000
teñen problemas para prestar atención,
16:31
what we really mean is that they're bad at not paying attention.
385
976000
4000
o que realmente significa é que lles custa non prestar atención.
16:35
So they're bad at getting rid
386
980000
2000
Cústalles desfacerse
16:37
of all the interesting things that could tell them something
387
982000
2000
das cousas interesantes que lles poderían dicir algo
16:39
and just looking at the thing that's important.
388
984000
2000
por só mirar ó que é importante.
16:41
That's the kind of attention, the kind of consciousness,
389
986000
3000
Ese é o tipo de atención, o tipo de conciencia
16:44
that we might expect
390
989000
2000
que debemos esperar
16:46
from those butterflies who are designed to learn.
391
991000
2000
desas bolboretas que están deseñadas para aprender.
16:48
Well if we want to think about a way
392
993000
2000
Se queremos pensar nunha forma
16:50
of getting a taste of that kind of baby consciousness as adults,
393
995000
4000
de sentir ese tipo de conciencia infantil coma adultos,
16:54
I think the best thing is think about cases
394
999000
2000
penso que a mellor forma é pensar sobre casos
16:56
where we're put in a new situation that we've never been in before --
395
1001000
3000
nos que estamos ante unha situación nova na que non estivemos nunca;
16:59
when we fall in love with someone new,
396
1004000
2000
cada vez que nos enamoramos de alguén,
17:01
or when we're in a new city for the first time.
397
1006000
3000
ou cando vamos a unha cidade por primeira vez.
17:04
And what happens then is not that our consciousness contracts,
398
1009000
2000
Neses casos a conciencia non se contrae,
17:06
it expands,
399
1011000
2000
senón que se expande,
17:08
so that those three days in Paris
400
1013000
2000
por iso parece que en 3 días en Paris
17:10
seem to be more full of consciousness and experience
401
1015000
2000
hai máis conciencia e experiencias
17:12
than all the months of being
402
1017000
2000
que en todos os meses
17:14
a walking, talking, faculty meeting-attending zombie back home.
403
1019000
4000
de volta na casa, andando, falando, indo a clases coma zombis.
17:18
And by the way, that coffee,
404
1023000
2000
Por certo, ese café,
17:20
that wonderful coffee you've been drinking downstairs,
405
1025000
2000
ese magnífico café que tomamos abaixo,
17:22
actually mimics the effect
406
1027000
2000
en realidade imita o efecto
17:24
of those baby neurotransmitters.
407
1029000
2000
dos neurotransmisores dos bebés.
17:26
So what's it like to be a baby?
408
1031000
2000
Así que, cómo é ser un bebé?
17:28
It's like being in love
409
1033000
2000
É coma estar namorado,
17:30
in Paris for the first time
410
1035000
2000
en París, por primeira vez,
17:32
after you've had three double-espressos.
411
1037000
2000
despois de tomarse 3 expresos dobres.
17:34
(Laughter)
412
1039000
3000
(Risos)
17:37
That's a fantastic way to be,
413
1042000
2000
Unha sensación marabillosa,
17:39
but it does tend to leave you waking up crying at three o'clock in the morning.
414
1044000
4000
pero que adoita espertarnos chorando ás 3 da mañá.
17:43
(Laughter)
415
1048000
3000
(Risos)
17:46
Now it's good to be a grownup.
416
1051000
2000
Pero está ben ser adulto.
17:48
I don't want to say too much about how wonderful babies are.
417
1053000
2000
Non quero dicir demasiado sobre o magníficos que son os bebés.
17:50
It's good to be a grownup.
418
1055000
2000
Está ben ser adulto.
17:52
We can do things like tie our shoelaces and cross the street by ourselves.
419
1057000
3000
Podemos facer cousas coma atarnos os zapatos ou cruzar a rúa sós.
17:55
And it makes sense that we put a lot of effort
420
1060000
2000
E ten sentido que poñamos moito esforzo
17:57
into making babies think like adults do.
421
1062000
4000
en facer que os bebés pensen coma os adultos.
18:01
But if what we want is to be like those butterflies,
422
1066000
3000
Pero se o que queremos é ser coma esas bolboretas,
18:04
to have open-mindedness, open learning,
423
1069000
3000
ter a mente aberta, estar abertos á aprendizaxe,
18:07
imagination, creativity, innovation,
424
1072000
2000
imaxinación, creatividade, innovación...
18:09
maybe at least some of the time
425
1074000
2000
quizais, polo menos ás veces,
18:11
we should be getting the adults
426
1076000
2000
debamos facer que os adultos
18:13
to start thinking more like children.
427
1078000
2000
pensen un pouco coma os nenos.
18:15
(Applause)
428
1080000
8000
(Aplausos)
Translated by Eulalia Baroja
Reviewed by Xosé María Moreno

▲Back to top

ABOUT THE SPEAKER
Alison Gopnik - Child development psychologist
Alison Gopnik takes us into the fascinating minds of babies and children, and shows us how much we understand before we even realize we do.

Why you should listen

What’s it really like to see through the eyes of a child? Are babies and young children just empty, irrational vessels to be formed into little adults, until they become the perfect images of ourselves? On the contrary, argues Alison Gopnik, professor of psychology and philosophy at the University of California at Berkeley.

The author of The Philosophical BabyThe Scientist in the Crib and other influential books on cognitive development, Gopnik presents evidence that babies and children are conscious of far more than we give them credit for, as they engage every sense and spend every waking moment discovering, filing away, analyzing and acting on information about how the world works. Gopnik’s work draws on psychological, neuroscientific, and philosophical developments in child development research to understand how the human mind learns, how and why we love, our ability to innovate, as well as giving us a deeper appreciation for the role of parenthood.

She says: "What's it like to be a baby? Being in love in Paris for the first time after you've had 3 double espressos."

More profile about the speaker
Alison Gopnik | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee