ABOUT THE SPEAKER
Chris Gerdes - Mechanical engineer
An autonomous car may seem like a thing of the distant future, but mechanical engineer Chris Gerdes is racing to make it a reality today.

Why you should listen

Imagine a car that can drive itself -- that with the push of a button can get you home safely when you’re too tired to drive or have had a night of one too many drinks. Dr. Chris Gerdes , the Director of the Center for Automotive Research at Stanford (conveniently acronymed CARS), and his team are developing a robotic race car, capable of driving at outrageous speeds while avoiding every possible accident. Gerdes’ research focuses on the development of driver assistance systems for collision avoidance, as well as on new combustion processes for engines.

Prior to teaching at Stanford, Gerdes was the project leader for vehicle dynamics at the Vehicle Systems Technology Center of Daimler-Benz Research and Technology North America. His work at Daimler focused on safety analysis.

More profile about the speaker
Chris Gerdes | Speaker | TED.com
TEDxStanford

Chris Gerdes: The future race car -- 150mph, and no driver

Chris Gerdes: Trkaći automobil budućnosti -- 241 km/h, i to bez vozača

Filmed:
806,444 views

Autonomni automobil dolaze -- i voziti će bolje nego vi. Chris Gerdes otkriva kako on i njegov tim razvijaju robotizirane automobile za utrke koji mogu voziti 241 km/h i pritom izbjegavati sve moguće nezgode. I još, tijekom istraživanja moždanih valova profesionalnih vozača, Gerades kaže da je počeo uvažavati njihove instinkte. (Snimljeno na TEDxStanford.)
- Mechanical engineer
An autonomous car may seem like a thing of the distant future, but mechanical engineer Chris Gerdes is racing to make it a reality today. Full bio

Double-click the English transcript below to play the video.

00:16
So, how manymnogi of you have ever
0
506
1407
Dakle, koliko vas je ikad
00:17
gottendobivši behindiza the wheelkotač of a carautomobil
1
1913
1655
sjelo za upravljač auta
00:19
when you really shouldn'tne treba have been drivingvožnja?
2
3568
5687
a da ste znali da nebi smjeli voziti?
00:25
Maybe you're out on the roadcesta for a long day,
3
9255
1905
Možda ste bili na cesti čitavi dan,
00:27
and you just wanted to get home.
4
11160
1490
i samo ste htjeli doći doma.
00:28
You were tiredumoran, but you feltosjećala you could drivepogon a fewnekoliko more milesmilja.
5
12650
2647
Bili ste umorni, ali ste osjećali da možete voziti još par kilometara.
00:31
Maybe you thought,
6
15297
1199
Možda ste mislili,
00:32
I've had lessmanje to drinkpiće than everybodysvi elsedrugo,
7
16496
2017
popio sam manje nego drugi,
00:34
I should be the one to go home.
8
18513
1736
pa bih ja trebao voziti doma.
00:36
Or maybe your mindum was just entirelypotpuno elsewheredrugdje.
9
20249
4591
Ili možda uopće niste razmišljali o tome.
00:40
Does this soundzvuk familiarupoznat to you?
10
24840
1454
Zvuči li vam to poznato?
00:42
Now, in those situationssituacije, wouldn'tne bi it be great
11
26294
2898
U ovim situacijama, zar ne bi bilo odlično
00:45
if there was a buttondugme on your dashboardnadzorne ploče
12
29192
1593
kada bi postojao gumb na upravljačkoj konzoli
00:46
that you could pushgurnuti, and the carautomobil would get you home safelySigurno?
13
30785
6343
koji bi mogli stisnuti, i auto bi vas sam sigurno odvezao kući?
00:53
Now, that's been the promiseobećanje of the self-drivingself-vožnje carautomobil,
14
37128
2293
To je do sada bilo obećanje automobila koji samostalno upravlja,
00:55
the autonomousautonoman vehiclevozilo, and it's been the dreamsan
15
39421
2627
autonomnog vozila, i to je bio san
00:57
sinceod at leastnajmanje 1939, when GeneralOpće MotorsMotori showcasedprikazana
16
42048
3249
od barem 1939. kada je General Motors objavio
01:01
this ideaideja at theirnjihov FuturamaFuturama boothštand at the World'sSvjetski FairSajam.
17
45297
3302
ovu ideju za svojim Futurama štandom na Svjetskom sajmu.
01:04
Now, it's been one of those dreamssnovi
18
48599
1943
To je uvijek bio jedan od onih snova,
01:06
that's always seemedčinilo se about 20 yearsgodina in the futurebudućnost.
19
50542
4214
koji se uvijek činio ostvariv tek za 20 godina u budućnosti.
01:10
Now, two weeksTjedni agoprije, that dreamsan tookuzeo a stepkorak forwardnaprijed,
20
54756
2683
Prije dva tjedna, taj san je otišao korak naprijed,
01:13
when the statedržava of NevadaNevada grantedodobreno Google'sGoogle self-drivingself-vožnje carautomobil
21
57439
3265
kada je savezna država Nevada odobrila Googlovom automobilu
01:16
the very first licenselicenca for an autonomousautonoman vehiclevozilo,
22
60704
3600
prvu dozvolu za vožnju autonomnog vozila,
01:20
clearlyjasno establishinguspostavljanje that it's legalpravni for them
23
64304
2245
čime je jasno poručila da ga mogu legalno
01:22
to testtest it on the roadsceste in NevadaNevada.
24
66549
1810
testirati na ulicama Nevade.
01:24
Now, California'sKalifornija je considerings obzirom na similarsličan legislationzakonodavstvo,
25
68359
3727
Kalifornija razmatra sličnu regulativu,
01:27
and this would make sure that the autonomousautonoman carautomobil
26
72086
2408
i time bi se sigurno postiglo da autonomni automobil
01:30
is not one of those things that has to stayboravak in VegasVegas.
27
74494
2977
nisu jedna od onih stvari koje moraju ostati u Vegasu.
01:33
(LaughterSmijeh)
28
77471
2096
(Smijeh)
01:35
Now, in my lablaboratorija at StanfordStanford, we'veimamo been workingrad on
29
79567
3784
Eh sada, u mom laboratoriju u Stanfordu, i mi smo radili na
01:39
autonomousautonoman carsautomobili too, but with a slightlymalo differentdrugačiji spinzavrtiti
30
83351
3487
autonomnim automobilima, ali na malo drugačiji
01:42
on things. You see, we'veimamo been developingrazvoju roboticrobotski raceutrka carsautomobili,
31
86838
4248
način. Vidite, mi smo razvijali robotske automobile za utrke,
01:46
carsautomobili that can actuallyzapravo pushgurnuti themselvesse to the very limitsgranice
32
91086
4120
automobile koji se mogu natjerati do samih granica
01:51
of physicalfizička performanceizvođenje.
33
95206
2240
fizičkih performansi.
01:53
Now, why would we want to do suchtakav a thing?
34
97446
2613
Eh sada, zašto bismo željeli učiniti takvu stvar?
01:55
Well, there's two really good reasonsrazlozi for this.
35
100059
2100
Pa, postoje dva jako dbora razloga za to.
01:58
First, we believe that before people turnskretanje over controlkontrolirati
36
102159
3959
Prvo, vjerujemo da prije nego što ljudi predaju kontrolu
02:02
to an autonomousautonoman carautomobil, that autonomousautonoman carautomobil should be
37
106118
2834
autonomnom automobilu, taj autonomni automobil mora biti
02:04
at leastnajmanje as good as the very bestnajbolje humanljudski driversupravljački programi.
38
108952
3254
barem toliko dobar koliko i najbolji ljudski vozači.
02:08
Now, if you're like me, and the other 70 percentposto of the populationpopulacija
39
112206
3305
Eh sada, ako ste poput mene, i poput ostalih 70 posto populacije
02:11
who know that we are above-averageiznad prosjeka driversupravljački programi,
40
115511
2193
koji znaju da su iznad proječni vozači,
02:13
you understandrazumjeti that's a very highvisok barbar.
41
117704
3175
razumijete da je to vrlo visok cilj.
02:16
There's anotherjoš reasonrazlog as well.
42
120879
2392
No tu također postoji i drugi razlog.
02:19
Just like raceutrka carautomobil driversupravljački programi can use all of the frictiontrenje
43
123271
3576
Baš kao što vozači trkačih automobila mogu iskoristiti svo trenje
02:22
betweenizmeđu the tireguma and the roadcesta,
44
126847
1280
između guma i ceste,
02:24
all of the car'sautomobili capabilitiessposobnosti to go as fastbrzo as possiblemoguće,
45
128127
3177
sve mogućnosti automobila da idu najbrže što mogu,
02:27
we want to use all of those capabilitiessposobnosti to avoidIzbjegavajte
46
131304
3345
mi želimo iskoristiti sve te mogućnosti da izbjegnemo
02:30
any accidentnesreća we can.
47
134649
1588
svaku moguću nesreću.
02:32
Now, you maysvibanj pushgurnuti the carautomobil to the limitsgranice
48
136237
2050
Eh sada, možda možete natjerati auto do samih granica
02:34
not because you're drivingvožnja too fastbrzo,
49
138287
1967
ne zato jer vozite prebrzo,
02:36
but because you've hithit an icyLedena patchzakrpa of roadcesta,
50
140254
2160
već zato jer ste naišli na zaleđeni dio ceste,
02:38
conditionsUvjeti have changedpromijenjen.
51
142414
1704
jer su se uvjeti promijenili.
02:40
In those situationssituacije, we want a carautomobil
52
144118
2761
U takvim situacijama, mi želimo da je auto
02:42
that is capablesposoban enoughdovoljno to avoidIzbjegavajte any accidentnesreća
53
146879
3720
dovoljno sposoban da izbjegne svaku nesreću
02:46
that can physicallytjelesno be avoidedizbjegavati.
54
150599
2678
koja bi se zapravo mogla izbjeći.
02:49
I mustmora confesspriznati, there's kindljubazan of a thirdtreći motivationmotivacija as well.
55
153277
4267
Moram priznati, postoji tu i treća motivacija.
02:53
You see, I have a passionstrast for racingtrkaći.
56
157544
2256
Vidite, ja sam strastven u vezi utrka.
02:55
In the pastprošlost, I've been a raceutrka carautomobil ownervlasnik,
57
159800
2764
U prošlosti, posjedovao sam trkaći auto,
02:58
a crewposada chiefglavni and a drivingvožnja coachtrener,
58
162564
2555
bio sam šef tima, i instruktor za vožnju,
03:01
althoughiako maybe not at the levelnivo that you're currentlytrenutno expectingočekujući.
59
165119
3855
iako možda ne na nivou koji trenutno očekujete.
03:04
One of the things that we'veimamo developedrazvijen in the lablaboratorija --
60
168974
2704
Jedna od stvari koje smo razvili u laboratoriju --
03:07
we'veimamo developedrazvijen severalnekoliko vehiclesvozila --
61
171678
1704
a razvili smo više vozila--
03:09
is what we believe is the world'ssvijetu first
62
173382
2235
je ono što vjerujemo da je prvi na svijetu
03:11
autonomouslysamostalno driftingsplavarenja carautomobil.
63
175617
2365
autonoman auto koji drifta.
03:13
It's anotherjoš one of those categorieskategorije
64
177982
2513
To je još jedna od onih kategorija
03:16
where maybe there's not a lot of competitionkonkurencija.
65
180495
2423
gdje vjerovatno nema mnogo konkurencije.
03:18
(LaughterSmijeh)
66
182918
1408
(Smijeh)
03:20
But this is P1. It's an entirelypotpuno student-builtstudent-izgrađen electricelektrični vehiclevozilo,
67
184326
3822
Ali ovo je P1. To električno vozilo u potpunosti napravljeno od strane studenata
03:24
whichkoji throughkroz usingkoristeći its rear-wheelstražnji kotač drivepogon
68
188148
2078
koje uz pomoć stražnjeg pogona
03:26
and front-wheelprednji kotač steer-by-wireSteer-by-wire
69
190226
1565
i prednjeg upravljanja preko žica
03:27
can driftzanošenje around cornerskutovi.
70
191791
2067
može driftati u zavojima.
03:29
It can get sidewaysbočno like a rallyreli carautomobil drivervozač,
71
193858
2200
Mogu se zanositi postrance poput vozača relija,
03:31
always ableu stanju to take the tightestnajtješnji curvezavoj,
72
196058
1715
uvijek su u mogučnosti proći kroz najuži zavoj,
03:33
even on slipperyklizav, changingmijenjanje surfacespovršine,
73
197773
3304
čak i na skliskim, nepredvidljivim površinama,
03:36
never spinningpredenje out.
74
201077
1616
i nikada se ne izmaknu kontroli.
03:38
We'veMoramo alsotakođer workedradio with VolkswagenVolkswagen OracleProročanstvo,
75
202693
2368
Također smo radili s Volkswagen Oracleom,
03:40
on ShelleyShelley, an autonomousautonoman raceutrka carautomobil that has racedTrk
76
205061
3424
na Schelly, autonomnom trkačem automobilu koji je jurio
03:44
at 150 milesmilja an hoursat throughkroz the BonnevilleBonneville SaltSoli FlatsStanovi,
77
208485
3070
241 kilometar na sat na Bonnevilskim slanim ravnicama.
03:47
goneotišao around ThunderhillThunderhill RacewayRaceway ParkPark in the sunsunce,
78
211555
4471
vozio po Thunderhill trkačem parku po suncu,
03:51
the windvjetar and the rainkiša,
79
216026
2639
vjetru i po kiši,
03:54
and navigatedploviti the 153 turnsokreti and 12.4 milesmilja
80
218665
5018
i uspješno prošao svih 153 zavoja na 20 kilometara
03:59
of the PikesŠtuka PeakVrh HillBrdo ClimbUspon routeput
81
223683
1562
dugom usponu Pikes Peak brda
04:01
in ColoradoColorado with nobodynitko at the wheelkotač.
82
225245
3473
u Koloradu dok nikog nije bilo za volanom.
04:04
(LaughterSmijeh)
83
228718
1448
(Smijeh)
04:06
(ApplausePljesak)
84
230166
5566
(Aplauz)
04:11
I guessnagađati it goeside withoutbez sayingizreka that we'veimamo had a lot of funzabava
85
235732
3279
Pretpostavljam da vam ni ne moramo reči koliko smo se jako zabavljali
04:14
doing this.
86
239011
1304
dok smo radili na ovome.
04:16
But in factčinjenica, there's something elsedrugo that we'veimamo developedrazvijen
87
240315
3657
Ali, postoji još nešto što smo razvili
04:19
in the processpostupak of developingrazvoju these autonomousautonoman carsautomobili.
88
243972
3055
u procesu razvoja ovih autonomnih automobila.
04:22
We have developedrazvijen a tremendousogroman appreciationzahvalnost
89
247027
3871
Razvili smo nevjerojatno poštovanje
04:26
for the capabilitiessposobnosti of humanljudski raceutrka carautomobil driversupravljački programi.
90
250898
3817
prema mogučnostima koji vozači ovih trkačih auta imaju.
04:30
As we'veimamo lookedgledao at the questionpitanje of how well do these carsautomobili performizvesti,
91
254715
4345
Dok smo istraživali koliko su dobri ovi auti,
04:34
we wanted to compareusporediti them to our humanljudski counterpartskolege.
92
259060
3279
htjeli smo ih usporediti s našim ljudskim suparnicima.
04:38
And we discoveredotkriven theirnjihov humanljudski counterpartskolege are amazingnevjerojatan.
93
262339
5680
I otkrili smo da su njihovi ljudski suparnici nevjerojatni.
04:43
Now, we can take a mapkarta of a raceutrka trackstaza,
94
268019
4023
Možemo uzeti kartu trkače staze,
04:47
we can take a mathematicalmatematički modelmodel of a carautomobil,
95
272042
2370
možemo uzeti matematički model auta,
04:50
and with some iterationiteracija, we can actuallyzapravo find
96
274412
2903
i uz nešto iteracije, možemo zapravo naći
04:53
the fastestnajbrži way around that trackstaza.
97
277315
1625
najbržu putanju za tu stazu.
04:54
We linecrta that up with datapodaci that we recordsnimiti
98
278940
2533
Usporedili smo te podatke s onima koje smo snimili
04:57
from a professionalprofesionalac drivervozač,
99
281473
1433
od profesionalnog vozača,
04:58
and the resemblancesličnost is absolutelyapsolutno remarkableizvanredan.
100
282906
4107
i podudarnost je bila apsolutno nevjerojatna.
05:02
Yes, there are subtlefin differencesRazlike here,
101
287013
3212
Da, ovdje postoje male razlike,
05:06
but the humanljudski raceutrka carautomobil drivervozač is ableu stanju to go out
102
290225
3127
ali čovjek može izaći na stazu
05:09
and drivepogon an amazinglyzačuđeno fastbrzo linecrta,
103
293352
2335
i voziti nevjerojatno brzim putanjama,
05:11
withoutbez the benefitkorist of an algorithmalgoritam that comparesuspoređuje
104
295687
2330
bez pomoći algoritma koji uspoređuje
05:13
the trade-offtrade-off betweenizmeđu going as fastbrzo as possiblemoguće
105
298017
2608
balans između jurenja najbrže što možemo
05:16
in this cornerugao, and shavingza brijanje a little bitbit of time
106
300625
2037
kroz ovaj zavoj, i "skidanja" vremena
05:18
off of the straightravno over here.
107
302662
1902
na onoj ravnini.
05:20
Not only that, they're ableu stanju to do it lapkrug
108
304564
3457
Ne samo to, oni su u mogućnosti da to rade krug
05:23
after lapkrug after lapkrug.
109
308021
2375
za krugom za krugom.
05:26
They're ableu stanju to go out and consistentlydosljedno do this,
110
310396
2912
Oni su u mogućnosti izaći na stazu i neprestano to raditi,
05:29
pushingguranje the carautomobil to the limitsgranice everysvaki singlesingl time.
111
313308
4128
gurati automobil do samih granica svakog puta.
05:33
It's extraordinaryizvanredan to watch.
112
317436
3169
To je nevjerojatno za gledati.
05:36
You put them in a newnovi carautomobil,
113
320605
2066
Stavite ih u neki novi auto,
05:38
and after a fewnekoliko lapskrugova, they'vešto ga do foundpronađeno the fastestnajbrži linecrta in that carautomobil,
114
322671
3902
i nakon par krugova, oni su našli najbržu putanju za taj auto,
05:42
and they're off to the racesutrke.
115
326573
3877
i već se mogu utrkivati.
05:46
It really makesmarke you think,
116
330450
1146
To vas zaista natjera da pomislite,
05:47
we'dmi bismo love to know what's going on insideiznutra theirnjihov brainmozak.
117
331596
4871
voljeli bismo znati što se događa u njihovom mozgu.
05:52
So as researchersistraživači, that's what we decidedodlučio to find out.
118
336467
4541
A kako smo istraživači, upravo to smo odlučili doznati.
05:56
We decidedodlučio to instrumentinstrument not only the carautomobil,
119
341008
1812
Odlučili smo spojiti instrumente ne samo na auto,
05:58
but alsotakođer the raceutrka carautomobil drivervozač,
120
342820
2495
već i na vozača,
06:01
to try to get a glimpsesvjetlucanje into what was going on
121
345315
2769
kako bismo pokušali dobiti sliku o tome što se događa
06:03
in theirnjihov headglava as they were doing this.
122
348084
2186
u njihovoj glavi dok to rade.
06:06
Now, this is DrDr. LeneLene HarbottHarbott applyingprimjenom electrodeselektrode
123
350270
3950
Ovo je Dr. Lene Harbott dok postavlja elektrode
06:10
to the headglava of JohnJohn MortonMorton.
124
354220
1232
na glavu Johna Mortona.
06:11
JohnJohn MortonMorton is a formerprijašnji Can-AmCan-Am and IMSAIMSE drivervozač,
125
355452
2989
John Moron je bivši Can-Am i IMSA vozač,
06:14
who'stko je alsotakođer a classklasa championprvak at LeLe MansMans.
126
358441
1800
koji je također prvak u svojoj klasi na Le Mans utrci.
06:16
FantasticFantastičan drivervozač, and very willingspreman to put up with graduatediplomirani studentsstudenti
127
360241
3496
Odličan vozač, i vrlo strpljiv sa studentima
06:19
and this sortvrsta of researchistraživanje.
128
363737
1855
i ovakvom vrstom istraživanja.
06:21
She's puttingstavljanje electrodeselektrode on his headglava
129
365592
2672
Ona stavlja elektrode na glavu
06:24
so that we can monitormonitor the electricalelektrična activityaktivnost
130
368264
2112
kako bismo mogli pratiti električne aktivnosti
06:26
in John'sIvana brainmozak as he racesutrke around the trackstaza.
131
370376
2832
u Johnovom mozgu dok vozi stazom.
06:29
Now, clearlyjasno we're not going to put a couplepar of electrodeselektrode on his headglava
132
373208
3195
Eh sada, sigurno nećemo postaviti par elektroda na njegovu glavu
06:32
and understandrazumjeti exactlytočno what all of his thoughtsmisli are on the trackstaza.
133
376403
3270
i odma shvatiti što se sve točno događa dok je on na stazi.
06:35
HoweverMeđutim, neuroscientistsNeuroznanstvenici have identifiedidentificirati certainsiguran patternsobrasci
134
379673
3407
Kako bilo, neuroznanstvenici su uočili određene uzorke
06:38
that let us teasezafrkavati out some very importantvažno aspectsaspekti of this.
135
383080
3761
pomoću kojih vidimo neke vrlo bitne značajke.
06:42
For instanceprimjer, the restingodmaranje brainmozak
136
386841
1847
Na primjer, mozak koji se odmara
06:44
tendsteži to generategenerirati a lot of alphaalfa wavesvalovi.
137
388688
2155
proizvodi mnogo alfa valova.
06:46
In contrastkontrast, thetaTheta wavesvalovi are associatedpovezan with
138
390843
3752
Nasuprot tome, theta valovi su povezani s
06:50
a lot of cognitivespoznajni activityaktivnost, like visualvidni processingobrada,
139
394595
3184
mnogo kongitivne aktivnosti, poput obrade vida,
06:53
things where the drivervozač is thinkingmišljenje quitedosta a bitbit.
140
397779
3048
te stvari gdje vozač poprilično puno razmišlja.
06:56
Now, we can measuremjera this,
141
400827
1663
Mi možemo izmjeriti ovo,
06:58
and we can look at the relativerođak powervlast
142
402490
1985
i možemo usporediti relativnu snagu
07:00
betweenizmeđu the thetaTheta wavesvalovi and the alphaalfa wavesvalovi.
143
404475
2200
između theta valova i alfa valova.
07:02
This givesdaje us a measuremjera of mentalmentalni workloadradno opterećenje,
144
406675
2442
To nam daje mjeru mentalnog opterećenja,
07:05
how much the drivervozač is actuallyzapravo challengedizazvan cognitivelykognitivno
145
409117
3567
koliko je vozač zapravo zaokupljen kongitivno
07:08
at any pointtočka alonguz the trackstaza.
146
412684
1786
tijekom svakog dijela staze.
07:10
Now, we wanted to see if we could actuallyzapravo recordsnimiti this
147
414470
2942
Mi smo htjeli vidjeti možemo li to zapravo snimiti
07:13
on the trackstaza, so we headeds glavom down southjug to LagunaLaguna SecaSeca.
148
417412
3038
na stazi, pa smo otišli dolje na jug u Laguna Seca.
07:16
LagunaLaguna SecaSeca is a legendarylegendaran racewayRaceway
149
420450
2016
Laguna Seca je legendarna trkača staza
07:18
about halfwayna pola puta betweenizmeđu SalinasSalinas and MontereyMonterey.
150
422466
2301
na pola puta između Salinasa i Montereya.
07:20
It has a curvezavoj there calledzvao the CorkscrewVadičep.
151
424767
2087
Ima zavoj koji nazivaju vadičep.
07:22
Now, the CorkscrewVadičep is a chicanešikana, followedslijedi by a quickbrz
152
426854
2717
Vadičep je zapravo šikana, nakon koje slijedi brzi
07:25
right-handeddešnjak turnskretanje as the roadcesta dropsKapi threetri storiespriče.
153
429571
2746
zavoj u desno tjekom kojeg se staza spušta tri kata prema dolje.
07:28
Now, the strategystrategija for drivingvožnja this as explainedobjašnjen to me was,
154
432317
3766
Strategija za vožnju ovim zavojem, kako su meni objasnili je,
07:31
you aimcilj for the bushgrm in the distanceudaljenost,
155
436083
2022
da ciljate grmić u daljini,
07:34
and as the roadcesta fallsSlapovi away, you realizeostvariti it was actuallyzapravo the topvrh of a treedrvo.
156
438105
3025
i kako se cesta počinje spuštati, shvatite da je to zapravo vrh drveta.
07:37
All right, so thanksHvala to the RevsBrojevima okretaja ProgramProgram at StanfordStanford,
157
441130
3304
U redu, zahvaljujući Revs programu na Stanfordu,
07:40
we were ableu stanju to take JohnJohn there
158
444434
1473
bili smo u mogućnosti odvesti Johna ondje
07:41
and put him behindiza the wheelkotač
159
445907
964
i staviti za za upravljač
07:42
of a 1960 PorschePorsche AbarthAbarth CarreraCarrera.
160
446871
2439
Porshe Avarth Carrere iz 1960.
07:45
Life is way too shortkratak for boringdosadan carsautomobili.
161
449310
3698
Jer život je prekratak za dosadne aute.
07:48
So, here you see JohnJohn on the trackstaza,
162
453008
1759
Dakle, ovdje vidite Johna na stazi,
07:50
he's going up the hillbrdo -- Oh! SomebodyNetko likedvolio that --
163
454767
2184
kako se penje uz brdo -- Oh! Nekome se svidjelo ovo --
07:52
and you can see, actuallyzapravo, his mentalmentalni workloadradno opterećenje
164
456951
2465
i možete vidjeti, zapravo, njegovo mentalno opterećenje
07:55
-- measuringmjerenje here in the redcrvena barbar --
165
459416
2153
-- koje se mjeri ovdje crvenim grafikonom --
07:57
you can see his actionsakcije as he approachespristupi.
166
461569
2343
možete vidjeti njegove reakcije dok prilazi.
07:59
Now watch, he has to downshiftdownshift.
167
463912
3230
Sada pazite, treba prebaciti u nižu brzinu.
08:03
And then he has to turnskretanje left.
168
467142
761
I onda treba skreniti ulijevo.
08:03
Look for the treedrvo, and down.
169
467903
3993
Pogledati u drvo, i dolje.
08:07
Not surprisinglyiznenađujuče, you can see this is a prettyprilično challengingizazovno taskzadatak.
170
471896
2838
Neiznenađujuće, možete vidjeti da je ovo poprilično zahtjevan zadatak.
08:10
You can see his mentalmentalni workloadradno opterećenje spikešiljak as he goeside throughkroz this,
171
474734
2976
Možete vidjeti kako njegovo mentalno opetrećenje jako raste dok prolazi kroz ovo,
08:13
as you would expectočekivati with something that requirestraži
172
477710
2064
kao što možete i očekivati s nečim što zahtjeva
08:15
this levelnivo of complexitysloženost.
173
479774
2809
ovoliki supanj kompleksnosti.
08:18
But what's really interestingzanimljiv is to look at areaspodručja of the trackstaza
174
482583
3416
Ali ono što je zaista zanimljivo jest pogledati dijelove staze
08:21
where his mentalmentalni workloadradno opterećenje doesn't increasepovećati.
175
485999
2846
gdje se njegovo moždano opterećenje ne povećava.
08:24
I'm going to take you around now
176
488845
1495
Odvesti ću vas preko sada,
08:26
to the other sidestrana of the trackstaza.
177
490340
1089
na drugi dio staze.
08:27
TurnRed threetri. And John'sIvana going to go into that cornerugao
178
491429
2336
Zavoj broj tri. John će ući u taj zavoj
08:29
and the rearstražnji endkraj of the carautomobil is going to beginpočeti to slideklizanje out.
179
493765
2551
i zadnji dio automobila će početi poklizavati.
08:32
He's going to have to correctispravan for that with steeringupravljanja.
180
496316
2017
To će morati ispraviti upravljanjem.
08:34
So watch as JohnJohn does this here.
181
498333
2231
Pa pogledajte Johna kako to radi ovdje.
08:36
Watch the mentalmentalni workloadradno opterećenje, and watch the steeringupravljanja.
182
500564
2322
Pogledajte njegovo moždano opterečenje, i pogledajte kako upravlja.
08:38
The carautomobil beginspočinje to slideklizanje out, dramaticdramatičan maneuvermanevar to correctispravan it,
183
502886
3672
Auto počinje proklizavati, dramatičan manevar da ispravi to,
08:42
and no changepromijeniti whatsoevergod in the mentalmentalni workloadradno opterećenje.
184
506558
3523
i nema baš nikakve promjene u moždanom opterećenju.
08:45
Not a challengingizazovno taskzadatak.
185
510081
2832
To nije zahtijevan zadatak.
08:48
In factčinjenica, entirelypotpuno reflexiverefleksivne.
186
512913
3200
Zapravo, to je potpuno refleksno.
08:52
Now, our datapodaci processingobrada on this is still preliminarypreliminaran,
187
516113
3643
Naša obrada podataka u vezi ovoga je još preliminarna,
08:55
but it really seemsčini se that these phenomenalfenomenalan featspodviga
188
519756
2672
ali uistinu se čini da ovi fenomenali pothvati
08:58
that the raceutrka carautomobil driversupravljački programi are performingobavljanje
189
522428
1610
koje izvode vozači trkačih automobila
08:59
are instinctiveinstinktivan.
190
524038
1910
su instiktivni.
09:01
They are things that they have simplyjednostavno learnednaučeno to do.
191
525948
3390
To su stvari koje su oni jednostavno naučili raditi.
09:05
It requirestraži very little mentalmentalni workloadradno opterećenje
192
529338
2282
Zahtjeva se jako malo moždanog rada
09:07
for them to performizvesti these amazingnevjerojatan featspodviga.
193
531620
2824
da bi se izveli ti nevjerojatni podvizi.
09:10
And theirnjihov actionsakcije are fantasticfantastičan.
194
534444
3135
I njihova djela su fantastična.
09:13
This is exactlytočno what you want to do on the steeringupravljanja wheelkotač
195
537579
2611
Ovo je upravo ono što želite napraviti s upravljačem
09:16
to catchulov the carautomobil in this situationsituacija.
196
540190
3337
kako biste ispravili auto u ovoj situaciji.
09:19
Now, this has givendan us tremendousogroman insightuvid
197
543527
3445
Ovo nam je pružilo nevjerojatan uvid
09:22
and inspirationinspiracija for our ownvlastiti autonomousautonoman vehiclesvozila.
198
546972
3122
i inspiraciju za naša autonomna vozila.
09:25
We'veMoramo startedpočeo to askpitati the questionpitanje:
199
550094
1928
Pitali smo se jednu stvar:
09:27
Can we make them a little lessmanje algorithmicalgoritamski
200
552022
2253
Možemo li ih napraviti da se manje oslanjaju na algoritme
09:30
and a little more intuitiveintuitivan?
201
554275
2449
i malo više intuitivnima.
09:32
Can we take this reflexiverefleksivne actionakcijski
202
556724
2281
Možemo li uzeti ovaj refleksni pokret
09:34
that we see from the very bestnajbolje raceutrka carautomobil driversupravljački programi,
203
559005
2287
koji vidimo kod najboljih vozača trkačih automobila,
09:37
introducepredstaviti it to our carsautomobili,
204
561292
1649
uvesti ih u naše aute,
09:38
and maybe even into a systemsistem that could
205
562941
1984
a možda čak i u sustave koji bi se mogli
09:40
get ontona your carautomobil in the futurebudućnost?
206
564925
1968
naći u vašim autima u budučnosti?
09:42
That would take us a long stepkorak
207
566893
1611
To bi nas odvelo velikim korakom prema naprijed
09:44
alonguz the roadcesta to autonomousautonoman vehiclesvozila
208
568504
2509
na putu prema autonomnim vozilima
09:46
that drivepogon as well as the bestnajbolje humansljudi.
209
571013
1912
koji voze jednako dobro kao i najbolji ljudi.
09:48
But it's madenapravljen us think a little bitbit more deeplyduboko as well.
210
572925
3440
Ali to nas je također natjeralo da razmišljamo malo dublje.
09:52
Do we want something more from our carautomobil
211
576365
2968
Želimo li još nešto od našeg auta
09:55
than to simplyjednostavno be a chauffeurvozač?
212
579333
1840
osim da nam jednostavno bude vozač?
09:57
Do we want our carautomobil to perhapsmožda be a partnerpartner, a coachtrener,
213
581173
4235
Želimo li možda da nam auto bude partner, trener,
10:01
someonenetko that can use theirnjihov understandingrazumijevanje of the situationsituacija
214
585408
3087
netko tko može iskoristiti svoje razumijevanje situacije
10:04
to help us reachdohvatiti our potentialpotencijal?
215
588495
4256
kako bi nam pomogao da dosegnemo svoje potencijale?
10:08
Can, in factčinjenica, the technologytehnologija not simplyjednostavno replacezamijeniti humansljudi,
216
592751
2273
Može li, zapravo, tehnologija ne samo zamijeniti ljude,
10:10
but allowdopustiti us to reachdohvatiti the levelnivo of reflexrefleks and intuitionintuicija
217
595024
4575
nego dopustiti nam da dostignemo razinu refleksa i intuicije
10:15
that we're all capablesposoban of?
218
599599
3425
na koju smo svi sposobni?
10:18
So, as we movepotez forwardnaprijed into this technologicaltehnološki futurebudućnost,
219
603024
1923
Stoga, dok se krećemo naprijed u ovu tehnološku budućnost,
10:20
I want you to just pausepauza and think of that for a momenttrenutak.
220
604947
2821
želim da malo zastanete i razmislite na trenutak.
10:23
What is the idealidealan balanceravnoteža of humanljudski and machinemašina?
221
607768
3775
Koja je idealna ravnoteža ljudi i strojeva?
10:27
And as we think about that,
222
611543
1709
I dok razmišljamo o tome,
10:29
let's take inspirationinspiracija
223
613252
1731
preuzmimo inspiraciju
10:30
from the absolutelyapsolutno amazingnevjerojatan capabilitiessposobnosti
224
614983
3329
od apsolutno nevjerojatnih sposobnosti
10:34
of the humanljudski bodytijelo and the humanljudski mindum.
225
618312
2816
ljudskog tijela i ljudskog uma.
10:37
Thank you.
226
621128
1736
Hvala vam.
10:38
(ApplausePljesak)
227
622864
4604
(Aplauz)
Translated by Ivan Lovas
Reviewed by SIBELA KESAC

▲Back to top

ABOUT THE SPEAKER
Chris Gerdes - Mechanical engineer
An autonomous car may seem like a thing of the distant future, but mechanical engineer Chris Gerdes is racing to make it a reality today.

Why you should listen

Imagine a car that can drive itself -- that with the push of a button can get you home safely when you’re too tired to drive or have had a night of one too many drinks. Dr. Chris Gerdes , the Director of the Center for Automotive Research at Stanford (conveniently acronymed CARS), and his team are developing a robotic race car, capable of driving at outrageous speeds while avoiding every possible accident. Gerdes’ research focuses on the development of driver assistance systems for collision avoidance, as well as on new combustion processes for engines.

Prior to teaching at Stanford, Gerdes was the project leader for vehicle dynamics at the Vehicle Systems Technology Center of Daimler-Benz Research and Technology North America. His work at Daimler focused on safety analysis.

More profile about the speaker
Chris Gerdes | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee