ABOUT THE SPEAKER
Matt Beane - Organizational ethnographer
Matt Beane is an Assistant Professor in the Technology Management Program at the University of California, Santa Barbara and a Research Affiliate with MIT's Institute for the Digital Economy.

Why you should listen

Matt Beane does field research on work involving robots to help us understand the implications of intelligent machines for the broader world of work. Any of his projects mean many hundreds of hours -- sometimes years -- watching, interviewing and often working side by side with people trying to work with robots to get their jobs done.

Beane has studied robotic surgery, robotic materials transport and robotic telepresence in healthcare, elder care and knowledge work. He has published in top management journals such as Administrative Science Quarterly, he was selected in 2012 as a Human Robot Interaction Pioneer and is a regular contributor to popular outlets such as Wired, MIT Technology Review, TechCrunch, Forbes and Robohub. He also took a two-year hiatus from his doctoral studies to help found and fund Humatics, an MIT-connected, full-stack IoT startup.

Beane is an Assistant Professor in the Technology Management Program at the University of California, Santa Barbara and a Research Affiliate with MIT's Institute for the Digital Economy. He received his PhD from the MIT Sloan School of Management.

More profile about the speaker
Matt Beane | Speaker | TED.com
TED Salon Zebra Technologies

Matt Beane: How do we learn to work with intelligent machines?

麥特·比恩: 如何學習與智慧型機器共事?

Filmed:
1,770,815 views

數千年來,全球學習技能的途徑都是一樣的。那就是在專家的訓練之下,我們從小而簡單的工作開始,然後進階到風險更高、更困難的工作。但現在我們應用人工智慧的方式,阻擋了這條學習的途徑——犧牲了學習機會來達到更多生產力,組織人類學家麥特·比恩這麼說。我們可以做什麼呢?比恩分享了一個願景——將翻轉現況。一個由智慧型機器輔助的對應導師制,在將人工智慧潛能的發揮到極致之際,同時也加強我們的工作技能。
- Organizational ethnographer
Matt Beane is an Assistant Professor in the Technology Management Program at the University of California, Santa Barbara and a Research Affiliate with MIT's Institute for the Digital Economy. Full bio

Double-click the English transcript below to play the video.

00:13
It’s 6:30 in the morning早上,
0
1292
1875
凌晨六點半,
00:15
and Kristen克裡 斯汀 is wheeling續流
her prostate前列腺 patient患者 into the OR.
1
3583
4875
克莉絲汀推著她的
前列腺病人進入手術室。
00:21
She's a resident居民, a surgeon外科醫生 in training訓練.
2
9500
2250
她是住院醫師——
培訓中的外科醫師。
00:24
It’s her job工作 to learn學習.
3
12333
2167
學習是她的義務。
00:27
Today今天, she’s really hoping希望 to do
some of the nerve-sparing神經保留,
4
15292
3351
今天她非常希望能參與
部分的雙側神經保留手術,
00:30
extremely非常 delicate精巧 dissection解剖
that can preserve保留 erectile勃起 function功能.
5
18667
3875
需要精湛的手術技巧,
讓病人保有勃起的功能。
00:35
That'll那會 be up to the attending出席 surgeon外科醫生,
though雖然, but he's not there yet然而.
6
23500
3338
不過,這還要看主治醫師的意思,
而他還沒有到場。
00:39
She and the team球隊 put the patient患者 under,
7
27625
2393
克莉絲汀和團隊給病人打了麻醉,
00:42
and she leads引線 the initial初始 eight-inch8英寸
incision切口 in the lower降低 abdomen腹部.
8
30042
3708
她在病人的下腹部開了
第一道 8 英吋的切口。
00:47
Once一旦 she’s got that clamped夾 緊 back,
she tells告訴 the nurse護士 to call the attending出席.
9
35042
3586
當她把切口夾好,
她請護理師打電話給主治醫師。
00:51
He arrives到達, gowns禮服 up,
10
39583
2292
主治醫師到場,穿上手術服,
00:54
And from there on in, their four hands
are mostly大多 in that patient患者 --
11
42458
5792
接著,他們的四隻手
就大都在病人體內,
01:00
with him guiding主導
but Kristin克里斯汀 leading領導 the way.
12
48708
2917
在主治醫師的指導下,
由克莉絲汀操作。
01:04
When the prostates前列腺 out (and, yes,
he let Kristen克裡 斯汀 do a little nerve神經 sparing保守的),
13
52875
4643
當病人的前列腺被取出後,
(太好了!他讓她做了
部分神經保留手術。)
01:09
he rips裂口 off his scrubs磨砂.
14
57542
1226
主治醫師脫掉了手術服,
01:10
He starts啟動 to do paperwork證件.
15
58792
1375
開始填寫資料。
01:12
Kristen克裡 斯汀 closes關閉 the patient患者 by 8:15,
16
60833
5375
而克莉絲汀在八點十五分完成了手術,
01:18
with a junior初級 resident居民
looking over her shoulder.
17
66583
2435
一位資淺的住院醫師在旁觀摩學習。
01:21
And she lets讓我們 him do
the final最後 line of sutures縫線.
18
69042
3083
她讓他為病人做最後的縫合。
01:24
Kristen克裡 斯汀 feels感覺 great.
19
72833
3042
克莉絲汀感覺好極了!
01:28
Patient患者’s going to be fine,
20
76250
1559
病人應該很快就會恢復,
01:29
and no doubt懷疑 she’s a better surgeon外科醫生
than she was at 6:30.
21
77833
3167
無疑地,比起做這個手術前,
她是一位更好的外科醫師。
01:34
Now this is extreme極端 work.
22
82208
2834
這是種極端的工作。
01:37
But Kristin克里斯汀’s learning學習 to do her job工作
the way that most of us do:
23
85417
3833
但克莉絲汀邊做邊學的方式
和我們大多數人無異:
01:41
watching觀看 an expert專家 for a bit,
24
89625
1893
觀察專家如何操作,
01:43
getting得到 involved參與 in easy簡單,
safe安全 parts部分 of the work
25
91542
3142
從簡單、安全的部分開始著手,
01:46
and progressing進展 to riskier風險較高
and harder更難 tasks任務
26
94708
2185
然後在專家的指導和確認合格之下,
接手風險更高、難度更大的工作。
01:48
as they guide指南 and decide決定 she’s ready準備.
27
96917
2333
我一直對這樣的學習過程感到著迷。
01:52
My whole整個 life I’ve已經 been fascinated入迷
by this kind of learning學習.
28
100042
2892
01:54
It feels感覺 elemental元素,
part部分 of what makes品牌 us human人的.
29
102958
3667
我覺得這似乎是人類
之所以為人類的基本要素之一。
01:59
It has different不同 names: apprenticeship學徒,
coaching教練, mentorship導師, on the job工作 training訓練.
30
107750
5417
人們為這過程賦予不同的名字:
學徒、訓練、師徒制、在職訓練。
02:05
In surgery手術, it’s called
“see one, do one, teach one.”
31
113542
3291
外科稱之為
「看一次、做一遍、教一位」,
02:09
But the process處理 is the same相同,
32
117625
1344
但過程是一樣的,
02:10
and it’s been the main主要 path路徑 to skill技能
around the globe地球 for thousands數千 of years年份.
33
118993
4174
這也是數千年來,
全球在培養人才時運用的方式。
02:16
Right now, we’re回覆 handling處理 AIAI
in a way that blocks that path路徑.
34
124333
4500
現在我們應用人工智慧的方式
阻礙了這條學習路徑。
02:21
We’re回覆 sacrificing犧牲 learning學習
in our quest尋求 for productivity生產率.
35
129625
2690
為了更高的生產率,
我們犧牲了在工作中學習的機會。
我最初在麻省理工學院的手術
發現了這一個現象,
02:25
I found發現 this first in surgery手術
while I was at MITMIT,
36
133292
2809
02:28
but now I’ve已經 got evidence證據
it’s happening事件 all over,
37
136125
2476
但現在,我發現這個情況隨處可見,
02:30
in very different不同 industries行業
and with very different不同 kinds of AIAI.
38
138625
3875
遍佈各行各業,
應用著各種人工智慧的技術。
02:35
If we do nothing, millions百萬 of us
are going to hit擊中 a brick wall
39
143083
5851
如果我們對此不做出改變,
在我們學著面對人工智慧技術時,
成千上萬的人將受挫。
02:40
as we try to learn學習 to deal合同 with AIAI.
40
148958
2417
02:45
Let’s go back to surgery手術 to see how.
41
153125
1772
讓我們回到外科手術作為例子,
02:47
Fast快速 forward前鋒 six months個月.
42
155708
1935
時間快轉六個月,
02:49
It’s 6:30am again, and Kristen克裡 斯汀
is wheeling續流 another另一個 prostate前列腺 patient患者 in,
43
157667
5476
同樣是凌晨六點半,克莉絲汀推著
另一位前列腺病人進來,
02:55
but this time to the robotic機器人 OR.
44
163167
3166
但這一次,病人被推到機器人手術室,
02:59
The attending出席 leads引線 attaching附上
45
167667
1684
由主治醫師主導著
把一個有著四支手臂、
03:01
a four-armed四武裝, thousand-pound千磅
robot機器人 to the patient患者.
46
169375
2833
重一千磅的機器人,
連接到病人身上。
03:04
They both rip安息 off their scrubs磨砂,
47
172750
2434
他們都脫下了手術服,
03:07
head to control控制 consoles遊戲機
10 or 15 feet away,
48
175208
3125
來到 10 ~ 15 英尺外的控制台,
03:11
and Kristen克裡 斯汀 just watches手錶.
49
179167
3750
而克莉絲汀只能旁觀。
03:16
The robot機器人 allows允許 the attending出席
to do the whole整個 procedure程序 himself他自己,
50
184375
3053
在機器人的幫助下,
主治醫師一個人便可完成手術,
03:19
so he basically基本上 does.
51
187452
1583
他基本上也這麼做,
03:21
He knows知道 she needs需求 practice實踐.
52
189917
2101
他知道克莉絲汀需要練習,
03:24
He wants to give her control控制.
53
192042
1583
他也希望可以讓她主導,
03:26
But he also knows知道 she’d be slower比較慢
and make more mistakes錯誤,
54
194250
3393
但是他同樣清楚她會比較慢,
可能會有失誤,
03:29
and his patient患者 comes first.
55
197667
1500
而他的病人第一。
03:32
So Kristin克里斯汀 has no hope希望 of getting得到 anywhere隨地
near those nerves神經 during this rotation迴轉.
56
200250
4625
在這次手術中,克莉絲汀
沒有任何機會接近那些神經,
03:37
She’ll be lucky幸運 if she operates操作 more than
15 minutes分鐘 during a four-hour四小時 procedure程序.
57
205417
4375
在長達四小時的手術中,
若她能操作十五分鐘就算幸運了。
03:42
And she knows知道 that when she slips卡瓦 up,
58
210250
2625
她知道一旦她有失誤,
03:45
he’ll tap龍頭 a touch觸摸 screen屏幕,
and she’ll be watching觀看 again,
59
213458
3042
他只要輕敲螢幕,
她又回到旁觀的角色,
03:48
feeling感覺 like a kid孩子 in the corner
with a dunce傻瓜 cap.
60
216917
2625
感覺像個戴笨蛋高帽的
孩子在角落裡罰站。
03:53
Like all the studies學習 of robots機器人 and work
I’ve已經 doneDONE in the last eight years年份,
61
221583
3501
就像這八年來我所做的
有關機器人與工作的研究,
我以一個重要且有爭議的問題開始:
03:57
I started開始 this one
with a big, open打開 question:
62
225108
2118
03:59
How do we learn學習 to work
with intelligent智能 machines?
63
227250
2792
我們如何學習與智慧型機器共事呢?
04:02
To find out, I spent花費 two and a half years年份
observing觀察 dozens許多 of residents居民 and surgeons外科醫生
64
230792
5809
為了找出答案,
我花了兩年半的時間
觀察數十位做傳統與機器人手術的
住院醫師和外科醫師,
04:08
doing traditional傳統 and robotic機器人 surgery手術,
interviewing面試 them
65
236625
3476
訪問他們,
04:12
and in general一般 hanging out
with the residents居民 as they tried試著 to learn學習.
66
240125
3338
基本上,當他們在學習的時候,
我和他們混在一起。
04:16
I covered覆蓋 18 of the top最佳
US teaching教學 hospitals醫院,
67
244250
3351
我涵蓋了十八所美國頂尖的教學醫院,
04:19
and the story故事 was the same相同.
68
247625
1458
故事都是相同的。
04:21
Most residents居民 were in Kristen's克裡斯汀的 shoes.
69
249875
2542
絕大多數的住院醫師的
處境跟克莉斯汀一樣。
04:24
They got to “see one” plenty豐富,
70
252958
1792
他們有很多「看一次」的機會,
04:27
but the “do one” was barely僅僅 available可得到.
71
255583
2292
但「做一遍」的機會少之又少。
他們沒有機會受挫,
也沒能進一步學習。
04:30
So they couldncouldn’t struggle鬥爭,
and they weren間沒有’t learning學習.
72
258333
2528
04:33
This was important重要 news新聞 for surgeons外科醫生, but
I needed需要 to know how widespread廣泛 it was:
73
261291
3810
這對外科醫師來說是很重要的消息,
但我想知道這個情況擴散的程度。
04:37
Where else其他 was using運用 AIAI
blocking閉塞 learning學習 on the job工作?
74
265125
3833
哪些產業也在運用人工智慧時,
阻礙了做中學呢?
04:42
To find out, I’ve已經 connected連接的 with a small
but growing生長 group of young年輕 researchers研究人員
75
270208
4310
為了找出答案,我聯繫了一群
小而成長中的年輕研究者,
04:46
who’ve已經 doneDONE boots-on-the-ground現場引導 studies學習
of work involving涉及 AIAI
76
274542
3434
他們腳踏實地研究過人工智慧
04:50
in very diverse多種 settings設置
like start-ups創業, policing治安,
77
278000
2976
在不同的領域的運用,
包括:新創、警政、
04:53
investment投資 banking銀行業 and online線上 education教育.
78
281000
2601
投資銀行和線上教育。
04:55
Like me, they spent花費 at least最小 a year
and many許多 hundreds數以百計 of hours小時 observing觀察,
79
283625
5851
像我一樣,他們花了至少一年,
以及數百個小時
觀察、訪問,並經常和他們
研究的對象肩並肩一起工作。
05:01
interviewing面試 and often經常 working加工
side-by-side並排側 with the people they studied研究.
80
289500
3917
05:06
We shared共享 data數據, and I looked看著 for patterns模式.
81
294458
2417
我們分享了數據,而我觀察模式。
05:09
No matter the industry行業, the work,
the AIAI, the story故事 was the same相同.
82
297917
5208
不論是哪種產業、工作、人工智慧,
故事都是相同的。
05:16
Organizations組織 were trying harder更難
and harder更難 to get results結果 from AIAI,
83
304042
3642
所有組織都非常努力地
運用人工智慧以得到更好的成果,
05:19
and they were peeling去皮 learners學習者 away from
expert專家 work as they did it.
84
307708
3542
在這過程中,他們剝奪了
學徒習做專家工作的機會。
05:24
Start-up啟動時間 managers經理 were outsourcing外包
their customer顧客 contact聯繫.
85
312333
2875
新創公司的經理人
外包他們的客服窗口。
05:27
Cops員警 had to learn學習 to deal合同 with crime犯罪
forecasts預測 without experts專家 support支持.
86
315833
4042
警察在沒有專家的協助下,
學著做犯罪預測。
05:32
Junior初級 bankers銀行家 were getting得到
cut out of complex複雜 analysis分析,
87
320875
3250
資淺的銀行家無法
接觸到複雜的分析,
05:36
and professors教授 had to build建立
online線上 courses培訓班 without help.
88
324500
3083
而教授得在沒有幫助的狀況下
打造線上課程。
05:41
And the effect影響 of all of this
was the same相同 as in surgery手術.
89
329125
3226
所有這些帶來的影響
跟手術的情形是一樣的。
05:44
Learning學習 on the job工作
was getting得到 much harder更難.
90
332375
2917
做中學變得越來越困難。
05:48
This can’t last.
91
336958
1417
這情況不能繼續下去。
05:51
McKinsey麥肯錫 estimates估計 that between之間 half
a billion十億 and a billion十億 of us
92
339542
4267
麥肯錫顧問公司估計:
大約有五~十億人在 2030 年以前,
05:55
are going to have to adapt適應 to AIAI
in our daily日常 work by 2030.
93
343833
4125
必須將人工智慧應用在日常工作中。
我們以為當我們在做的時候,
會有在職訓練。
06:01
And we’re回覆 assuming假設
that on-the-job在工作中 learning學習
94
349000
2011
06:03
will be there for us as we try.
95
351035
1917
06:05
Accenture埃森哲’s latest最新 workers工人 survey調查 showed顯示
that most workers工人 learned學到了 key skills技能
96
353500
4268
埃森哲顧問公司最新的工作調查顯示:
多數人透過做中學得到工作的
關鍵技能,而非透過正式的訓練。
06:09
on the job工作, not in formal正式 training訓練.
97
357792
2291
06:13
So while we talk a lot about its
potential潛在 future未來 impact碰撞,
98
361292
3517
當我們高談闊論人工智慧
對未來的潛在衝擊,
06:16
the aspect方面 of AIAI
that may可能 matter most right now
99
364833
3685
此時此刻,人工智慧
對我們最重要的影響是
06:20
is that we’re回覆 handling處理 it in a way
that blocks learning學習 on the job工作
100
368542
3375
我們應用人工智慧的方式,
阻礙了人們邊做邊學的機會。
而那是我們最需要學習的時候。
06:24
just when we need it most.
101
372375
1625
06:27
Now across橫過 all our sites網站,
a small minority少數民族 found發現 a way to learn學習.
102
375458
6042
在我們的研究對象中,
有一小群人找到一種學習方式。
06:35
They did it by breaking破壞 and bending彎曲 rules規則.
103
383625
3042
他們透過打破常規來學習。
06:39
Approved批准 methods方法 weren間沒有’t working加工,
so they bent彎曲 and broke打破 rules規則
104
387083
4643
被准許的作法不可行,
所以他們改變了遊戲規則,
06:43
to get hands-on動手 practice實踐 with experts專家.
105
391750
1976
才得以與專家一同實際操作作。
06:45
In my setting設置, residents居民 got involved參與
in robotic機器人 surgery手術 in medical school學校
106
393750
5601
我看到的是,住院醫師
在醫學院裡為了參與機器人手術,
06:51
at the expense費用
of their generalist通才 education教育.
107
399375
3583
犧牲了上全科醫師的課為代價,
06:56
And they spent花費 hundreds數以百計 of extra額外 hours小時
with simulators模擬器 and recordings錄音 of surgery手術,
108
404417
5851
他們多花了數百個小時
使用模擬器與看手術錄影來學習。
07:02
when you were supposed應該 to learn學習 in the OR.
109
410292
2541
那是他們本來應當
在手術室裡學習的。
07:05
And maybe most importantly重要的,
they found發現 ways方法 to struggle鬥爭
110
413375
3476
或許更重要的,
他們在有限的專家指導下,
找到在實際的手術中練習的機會。
07:08
in live生活 procedures程序
with limited有限 expert專家 supervision監督.
111
416875
3750
07:13
I call all this “shadow陰影 learning學習,”
because it bends彎曲 the rules規則
112
421792
4309
我稱之為「在陰影中學習」
因為這違反了規則,
學生得要偷偷摸摸地學習。
07:18
and learner學習者’s do it out of the limelight聚光燈.
113
426125
2000
07:21
And everyone大家 turns a blind eye
because it gets得到 results結果.
114
429542
4101
大家對此睜一隻眼閉一隻眼,
因為這樣的確有效。
07:25
Remember記得, these are
the star pupils學生 of the bunch.
115
433667
3166
但記住,這些僅是少數的明星學生。
07:29
Now, obviously明顯, this is not OK,
and it’s not sustainable可持續發展.
116
437792
3208
顯然,這樣並不恰當,
這不是長久之計。
07:33
No one should have to risk風險 getting得到 fired解僱
117
441708
2185
沒有人應該冒著被開除的風險,
07:35
to learn學習 the skills技能
they need to do their job工作.
118
443917
2150
去學習他們工作必要的技巧。
07:38
But we do need to learn學習 from these people.
119
446792
2056
但我們必須從這些人身上學習。
07:41
They took serious嚴重 risks風險 to learn學習.
120
449917
2250
他們為了學習而承擔高度風險。
07:44
They understood了解 they needed需要 to protect保護
struggle鬥爭 and challenge挑戰 in their work
121
452792
4351
他們明白必須保護工作中
受挫與挑戰的機會,
07:49
so that they could push themselves他們自己
to tackle滑車 hard problems問題
122
457167
2892
以推動他們自己去挑戰
比他們的能力能解決的
更困難的問題。
07:52
right near the edge邊緣 of their capacity容量.
123
460083
1959
07:54
They also made製作 sure
there was an expert專家 nearby附近
124
462458
2216
他們也確保會有一個專家在旁,
07:56
to offer提供 pointers指針 and to backstop逆止
against反對 catastrophe災難.
125
464698
3094
提供建議跟收拾殘局,
以防他們搞砸了。
08:00
Let’s build建立 this combination組合
of struggle鬥爭 and expert專家 support支持
126
468875
3458
讓我們設計
在導入每項人工智慧時
加入學習機會及專家協助的組合。
08:04
into each AIAI implementation履行.
127
472708
2750
08:08
Here’s one clear明確 example
I could get of this on the ground地面.
128
476375
2828
這裡有個清楚的案例,
我能在現實中找到。
08:12
Before robots機器人,
129
480125
1226
在機器人出現之前,
08:13
if you were a bomb炸彈 disposal處置 technician技術員,
you dealt處理 with an IEDIED by walking步行 up to it.
130
481375
4792
如果你是個拆彈技術專家
面對簡易爆炸裝置時,你得走近它。
08:19
A junior初級 officer was
hundreds數以百計 of feet away,
131
487333
2143
一個資淺的警官在數百公尺外支援,
08:21
so could only watch and help
if you decided決定 it was safe安全
132
489500
3309
他可以觀察並協助,
直到你確定裝置是安全的
並邀請他們到近距離。
08:24
and invited邀請 them downrange下行範圍.
133
492833
1417
08:27
Now you sit side-by-side並排側
in a bomb-proof防彈 truck卡車.
134
495208
3893
現在你們肩並肩地坐在防彈車裡。
08:31
You both watched看著 the video視頻 feed飼料.
135
499125
1809
你們一同觀看機器人傳來的影片資訊。
08:32
They control控制 a distant遙遠 robot機器人,
and you guide指南 the work out loud.
136
500958
4310
資淺者控制著遠端機器人,
而你大聲引導著作業。
08:37
Trainees學員 learn學習 better than they
did before robots機器人.
137
505292
3208
受訓者的學習效果
比機器人出現之前更佳。
08:41
We can scale規模 this to surgery手術,
start-ups創業, policing治安,
138
509125
3933
我們可以按比例複製這樣的模式
到手術、新創公司、警政、
08:45
investment投資 banking銀行業,
online線上 education教育 and beyond.
139
513082
2625
投資銀行、線上教育,
以及更多產業。
08:48
The good news新聞 is
we’ve已經 got new tools工具 to do it.
140
516375
2500
好消息是我們有新的工具去執行。
08:51
The internet互聯網 and the cloud mean we don不要’t
always need one expert專家 for every一切 trainee實習生,
141
519750
4082
網路跟雲端代表著我們不再需要
一對一的師徒制,
08:56
for them to be physically物理 near each other
or even to be in the same相同 organization組織.
142
524167
4458
他們不再需要去到同一個空間
甚至在不同的組織單位裡。
09:01
And we can build建立 AIAI to help:
143
529292
3041
我們可以打造人工智慧來協助。
09:05
to coach教練 learners學習者 as they struggle鬥爭,
to coach教練 experts專家 as they coach教練
144
533167
5059
當學生困惑時教導他們,
當專家指導學生時協助專家,
09:10
and to connect those two groups
in smart聰明 ways方法.
145
538250
2542
並以聰明的方式聯繫這兩群人。
09:15
There are people at work
on systems系統 like this,
146
543375
2542
有人正在開發這樣的系統,
09:18
but they’ve已經 been mostly大多 focused重點
on formal正式 training訓練.
147
546333
2792
但他們大多專注於正式的訓練。
09:21
And the deeper更深 crisis危機
is in on-the-job在工作中 learning學習.
148
549458
2584
但更深的危機是工作做中學的部分。
09:24
We must必須 do better.
149
552417
1851
我們必須做得更好。
09:26
Today今天’s problems問題 demand需求 we do better
150
554292
2583
今天所面臨的挑戰促使我們要更好地
09:29
to create創建 work that takes full充分 advantage優點
of AIAI’s amazing驚人 capabilities功能
151
557375
4875
創造應用人工智慧無限潛能的工作,
09:35
while enhancing提高 our skills技能 as we do it.
152
563042
2750
同時讓我們在工作時
也能加強我們的技能。
09:38
That’s the kind of future未來
I dreamed夢見 of as a kid孩子.
153
566333
2750
這是我從孩提時代以來
一直有的夢想。
09:41
And the time to create創建 it is now.
154
569458
2167
現在就是創造它的時刻。
09:44
Thank you.
155
572333
1226
謝謝大家。
09:45
(Applause掌聲)
156
573583
3625
(掌聲)
Translated by Val Zhang
Reviewed by Melody Tang

▲Back to top

ABOUT THE SPEAKER
Matt Beane - Organizational ethnographer
Matt Beane is an Assistant Professor in the Technology Management Program at the University of California, Santa Barbara and a Research Affiliate with MIT's Institute for the Digital Economy.

Why you should listen

Matt Beane does field research on work involving robots to help us understand the implications of intelligent machines for the broader world of work. Any of his projects mean many hundreds of hours -- sometimes years -- watching, interviewing and often working side by side with people trying to work with robots to get their jobs done.

Beane has studied robotic surgery, robotic materials transport and robotic telepresence in healthcare, elder care and knowledge work. He has published in top management journals such as Administrative Science Quarterly, he was selected in 2012 as a Human Robot Interaction Pioneer and is a regular contributor to popular outlets such as Wired, MIT Technology Review, TechCrunch, Forbes and Robohub. He also took a two-year hiatus from his doctoral studies to help found and fund Humatics, an MIT-connected, full-stack IoT startup.

Beane is an Assistant Professor in the Technology Management Program at the University of California, Santa Barbara and a Research Affiliate with MIT's Institute for the Digital Economy. He received his PhD from the MIT Sloan School of Management.

More profile about the speaker
Matt Beane | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee