ABOUT THE SPEAKER
Markus Fischer - Designer
Markus Fischer led the team at Festo that developed the first ultralight artificial bird capable of flying like a real bird.

Why you should listen

One of the oldest dreams of mankind is to fly like a bird. Many, from Leonardo da Vinci to contemporary research teams, tried to crack the "code" for the flight of birds, unsuccessfully. Until in 2011 the engineers of the Bionic Learning Network established by Festo, a German technology company, developed a flight model of an artificial bird that's capable of taking off and rising in the air by means of its flapping wings alone. It's called SmartBird. Markus Fischer is Festo's head of corporate design, where he's responsible for a wide array of initiatives. He established the Bionic Learning Network in 2006.

SmartBird is inspired by the herring gull. The wings not only beat up and down but twist like those of a real bird -- and seeing it fly leaves no doubt: it's a perfect technical imitation of the natural model, just bigger. (Even birds think so.) Its wingspan is almost two meters, while its carbon-fiber structure weighs only 450 grams.

Fischer says: "We learned from the birds how to move the wings, but also the need to be very energy efficient."

More profile about the speaker
Markus Fischer | Speaker | TED.com
TEDGlobal 2011

Markus Fischer: A robot that flies like a bird

一隻飛得像鳥的機器人

Filmed:
8,646,669 views

那麼多的機器人,沒有一個可以飛得像隻真正的鳥。直到Markus Fischer和其團隊在Festo公司創作出能振翅而飛的「聰明鳥」:一隻仿照海鷗的外型而製成之大型、輕盈的機器鳥。在TEDGlobal2011首次登場,展翅飛翔。
- Designer
Markus Fischer led the team at Festo that developed the first ultralight artificial bird capable of flying like a real bird. Full bio

Double-click the English transcript below to play the video.

00:15
It is a dream夢想 of mankind人類
0
0
3000
人類的夢想─
00:18
to fly like a bird.
1
3000
2000
─像鳥一樣的遨翔。
00:20
Birds鳥類 are very agile敏捷.
2
5000
2000
鳥類是非常輕快敏捷的
00:22
They fly, not with rotating旋轉 components組件,
3
7000
3000
它們飛行靠的不是旋轉的機械零件
00:25
so they fly only by flapping their wings翅膀.
4
10000
3000
而是藉由振動雙翼飛翔。
00:28
So we looked看著 at the birds鳥類,
5
13000
3000
所以我們盯著鳥類觀察,
00:31
and we tried試著 to make a model模型
6
16000
3000
企圖建構一個模型
00:34
that is powerful強大, ultralight超輕,
7
19000
3000
是高功率、超輕型的飛行器
00:37
and it must必須 have excellent優秀 aerodynamic空氣動力學的 qualities氣質
8
22000
4000
它必須具備極佳的航空動力學的特性
00:41
that would fly by its own擁有
9
26000
2000
──能夠自體飛行
00:43
and only by flapping its wings翅膀.
10
28000
3000
而且只靠拍動翅膀。
00:46
So what would be better [than] to use
11
31000
3000
那麼有什麼會比使用
00:49
the Herring鯡魚 Gull, in its freedom自由,
12
34000
2000
銀鷗(為模型典範)更好!它自由自在地
00:51
circling盤旋 and swooping俯衝 over the sea,
13
36000
2000
在海上盤旋俯衝,
00:53
and [to] use this as a role角色 model模型?
14
38000
3000
我們以它做為模型主角。
00:56
So we bring帶來 a team球隊 together一起.
15
41000
2000
我們組成一個團隊,
00:58
There are generalists多面手 and also specialists專家
16
43000
3000
團隊中,有萬事通也有來自某個領域的專家
01:01
in the field領域 of aerodynamics空氣動力學
17
46000
3000
有航空動力學領域的專家
01:04
in the field領域 of building建造 gliders滑翔機.
18
49000
2000
也有打造滑翔機的專家。
01:06
And the task任務 was to build建立
19
51000
2000
而任務是製造
01:08
an ultralight超輕 indoor-flying室內飛揚 model模型
20
53000
3000
一架超輕型的室內飛行模型,
01:11
that is able能夠 to fly over your heads.
21
56000
3000
能飛越你們的頭頂。
01:14
So be careful小心 later後來 on.
22
59000
3000
所以,稍會兒大家請小心
01:19
And this was one issue問題:
23
64000
2000
而且製作時有個議題:
01:21
to build建立 it that lightweight輕量級
24
66000
2000
將它製造得那樣的輕
01:23
that no one would be hurt傷害
25
68000
2000
就沒有人會受傷,
01:25
if it fell下跌 down.
26
70000
3000
如果它掉下來的話。
01:28
So why do we do all this?
27
73000
2000
那麼為何我們要做這些事?
01:30
We are a company公司 in the field領域 of automation自動化,
28
75000
3000
我們是一間經營自動化的公司,
01:33
and we'd星期三 like to do very lightweight輕量級 structures結構
29
78000
3000
想要製作極輕的結構體
01:36
because that's energy能源 efficient高效,
30
81000
2000
因為那符合「能源效率」。
01:38
and we'd星期三 like to learn學習 more about
31
83000
3000
而且我們想知道更多關於
01:41
pneumatics氣動 and air空氣 flow phenomena現象.
32
86000
3000
氣動力學(pneumatics)和氣流現象。
01:44
So I now would like you
33
89000
3000
那麼現在請你們
01:47
to [put] your seat座位 belts皮帶 on
34
92000
2000
繫上安全帶
01:49
and put your hats帽子 [on].
35
94000
2000
戴上安全帽
01:51
So maybe we'll try it once一旦 --
36
96000
3000
也許我們來試飛一次,
01:54
to fly a SmartBirdSmartBird.
37
99000
2000
讓「聰明鳥」展翅飛翔。
01:56
Thank you.
38
101000
2000
謝謝大家
01:58
(Applause掌聲)
39
103000
6000
(掌聲響起)
02:14
(Applause掌聲)
40
119000
17000
(掌聲又起)
02:52
(Applause掌聲)
41
157000
15000
(掌聲如雷)
03:07
So we can now
42
172000
2000
那我們現在
03:09
look at the SmartBirdSmartBird.
43
174000
3000
就來看看「聰明鳥」的結構。
03:12
So here is one without a skin皮膚.
44
177000
3000
這有一隻沒有外殼包覆的鳥模型
03:15
We have a wingspan翼展 of about two meters.
45
180000
3000
展翼約二米長
03:18
The length長度 is one meter儀表 and six,
46
183000
3000
身長一米六,
03:21
and the weight重量,
47
186000
2000
而重量
03:23
it is only 450 grams.
48
188000
3000
只有450克
03:26
And it is all out of carbon fiber纖維.
49
191000
3000
骨架材質是碳纖維
03:29
In the middle中間 we have a motor發動機,
50
194000
2000
在中間有個發動機
03:31
and we also have a gear齒輪 in it,
51
196000
4000
在內部還有齒輪
03:35
and we use the gear齒輪
52
200000
2000
而且我們用齒輪
03:37
to transfer轉讓 the circulation循環 of the motor發動機.
53
202000
3000
協助馬達傳動。
03:40
So within the motor發動機, we have three Hall大廳 sensors傳感器,
54
205000
3000
在發動機內部,有三個霍爾感測器(Hall sensors),
03:43
so we know exactly究竟 where
55
208000
3000
所以能確切辨識
03:46
the wing翅膀 is.
56
211000
3000
翅膀拍動的位置
03:49
And if we now beat擊敗 up and down ...
57
214000
3000
若翅膀能上下拍動
03:56
we have the possibility可能性
58
221000
2000
就有可能
03:58
to fly like a bird.
59
223000
2000
像鳥那樣飛行。
04:00
So if you go down, you have the large area of propulsion動力,
60
225000
3000
翅膀向下拍,就會有充裕的空間作推進
04:03
and if you go up,
61
228000
3000
翅膀向上揚起,
04:06
the wings翅膀 are not that large,
62
231000
4000
翅膀的幅度就沒那麼大
04:10
and it is easier更輕鬆 to get up.
63
235000
3000
那就更容易起飛。
04:14
So, the next下一個 thing we did,
64
239000
3000
所以,接下來我們得做的
04:17
or the challenges挑戰 we did,
65
242000
2000
或者說我們挑戰的下一個任務是
04:19
was to coordinate坐標 this movement運動.
66
244000
3000
調節翅膀的動作
04:22
We have to turn it, go up and go down.
67
247000
3000
讓翅膀可以上下振動
04:25
We have a split分裂 wing翅膀.
68
250000
2000
我們將羽翼分節。
04:27
With a split分裂 wing翅膀
69
252000
2000
因羽翼分節
04:29
we get the lift電梯 at the upper wing翅膀,
70
254000
3000
上翼可協助上升
04:32
and we get the propulsion動力 at the lower降低 wing翅膀.
71
257000
3000
下翼產生推進力
04:35
Also, we see
72
260000
2000
我們也監管
04:37
how we measure測量 the aerodynamic空氣動力學的 efficiency效率.
73
262000
3000
我們測量「空氣動力效率」的過程
04:40
We had knowledge知識 about
74
265000
2000
我們熟諳
04:42
the electromechanical機電 efficiency效率
75
267000
2000
機電效能,
04:44
and then we can calculate計算
76
269000
2000
我們能計算
04:46
the aerodynamic空氣動力學的 efficiency效率.
77
271000
2000
空氣動力效率,
04:48
So therefore因此,
78
273000
2000
測得結果是,
04:50
it rises上升 up from passive被動 torsion扭力 to active活性 torsion扭力,
79
275000
3000
它升起時從被動扭力轉至積極扭力
04:53
from 30 percent百分
80
278000
2000
效能從百分之三十
04:55
up to 80 percent百分.
81
280000
2000
提升至百分之八十
04:57
Next下一個 thing we have to do,
82
282000
2000
接下來我們必須做的事是
04:59
we have to control控制 and regulate調節
83
284000
2000
控管及校準
05:01
the whole整個 structure結構體.
84
286000
2000
整個架構。
05:03
Only if you control控制 and regulate調節 it,
85
288000
3000
唯有控管和校準整體架構,
05:06
you will get that aerodynamic空氣動力學的 efficiency效率.
86
291000
3000
才能達到「空氣動力效率」的功效。
05:09
So the overall總體 consumption消費 of energy能源
87
294000
3000
所以總消耗能量是
05:12
is about 25 watts at takeoff脫掉
88
297000
3000
起飛需要電量約25瓦特
05:15
and 16 to 18 watts in flight飛行.
89
300000
3000
飛行則是16至18瓦特。
05:18
Thank you.
90
303000
2000
謝謝大家
05:20
(Applause掌聲)
91
305000
6000
(掌聲)
05:26
Bruno布魯諾 Giussani吉薩尼: Markus馬庫斯, I think that we should fly it once一旦 more.
92
311000
3000
Bruno Giussani(TED歐洲主管):我認為,我們應該讓它再飛一次
05:29
Markus馬庫斯 Fischer菲舍爾: Yeah, sure.
93
314000
2000
當然好啊
05:31
(Laughter笑聲)
94
316000
2000
笑笑
05:53
(Gasps喘氣)
95
338000
3000
(驚呼)
06:02
(Cheers乾杯)
96
347000
2000
(歡呼喝采)
06:04
(Applause掌聲)
97
349000
9000
(掌聲如雷)
Translated by Resa CC
Reviewed by Jenny Yang

▲Back to top

ABOUT THE SPEAKER
Markus Fischer - Designer
Markus Fischer led the team at Festo that developed the first ultralight artificial bird capable of flying like a real bird.

Why you should listen

One of the oldest dreams of mankind is to fly like a bird. Many, from Leonardo da Vinci to contemporary research teams, tried to crack the "code" for the flight of birds, unsuccessfully. Until in 2011 the engineers of the Bionic Learning Network established by Festo, a German technology company, developed a flight model of an artificial bird that's capable of taking off and rising in the air by means of its flapping wings alone. It's called SmartBird. Markus Fischer is Festo's head of corporate design, where he's responsible for a wide array of initiatives. He established the Bionic Learning Network in 2006.

SmartBird is inspired by the herring gull. The wings not only beat up and down but twist like those of a real bird -- and seeing it fly leaves no doubt: it's a perfect technical imitation of the natural model, just bigger. (Even birds think so.) Its wingspan is almost two meters, while its carbon-fiber structure weighs only 450 grams.

Fischer says: "We learned from the birds how to move the wings, but also the need to be very energy efficient."

More profile about the speaker
Markus Fischer | Speaker | TED.com