Riccardo Sabatini: How to read the genome and build a human being
Rikardo Sabatini (Riccardo Sabatini): Kako čitati genom i sagraditi ljudsko biće
Riccardo Sabatini applies his expertise in numerical modeling and data to projects ranging from material science to computational genomics and food market predictions. Full bio
Double-click the English transcript below to play the video.
I'm going to take you on a journey
ću da vas povedem na putovanje
the biggest dream of humanity:
many, many years ago
pre mnogo, mnogo godina
raw material, some energy,
malo energije
that was not there before.
koji prethodno nije postojao.
I was coming back home
always knew a 3D printer.
poznat oduvek.
my father and my mom in this case,
između mog oca i moje majke,
in the same media, that is food,
u istom medijumu, to jest hrani,
proizvela je mene.
discovering that she was a 3D printer,
kad je saznala da je 3D štampač,
by that piece,
biste mogli da ispunite?
at the beginning
as a gigantic Lego piece.
poput džinovske lego slagalice.
blocks are little atoms
a carbon here, a nitrogen here.
ugljenik ovde, azot ovde.
that compose a human being,
od kojih se sastoji ljudsko biće,
quite an astonishing number.
drive to assemble a little baby,
da bih sastavio bebicu,
of thumb drives --
čitav Titanik fleš memorijama -
a pregnant lady,
amount of information
anything you heard of.
zaboravite bilo šta što ste čuli.
of information that exists.
koja postoji.
than a young physicist,
daleko pametnija od mladog fizičara
to pack this information
je uspela da upakuje ove informacije
when Rosalind Franklin,
kada ga je Rozalind Frenklin,
to finally poke inside a human cell,
da konačno prodremo unutar ljudske ćelije,
a fairly simple alphabet,
prilično jednostavna abeceda,
you need three billion of them.
potrebno vam je tri milijarde njih.
any sense as a number, right?
nikakvog smisla, zar ne?
I could explain myself better
I'm going to have some help,
introduce the code
da predstavim kôd
to sequence it, Dr. Craig Venter.
koji ga je sekvencirao, dr Kreg Venter.
dr Kreg Venter.
slovo po slovo:
from the United States to Canada
iz SAD-a u Kanadu,
Lulu.com, a start-up, did everything.
Lulu.com, startap, su sve odradili.
of what is the code of life.
toga šta je životni kôd.
I can do something fun.
mogu da uradim nešto zabavno.
i da ga čitam.
book ... like this one.
zanimljivu knjigu... poput ove.
it's a fairly big book.
what is the code of life.
the color of the eyes to Craig.
odaje Kregovu boju očiju.
more complicated.
two letters in this position --
u ovom redosledu -
to a terrible disease:
we don't know how to solve it,
ne znamo kako da je izlečimo,
of difference from what we are.
su različita nego kod nas ostalih.
me, me and you, you --
a vi ste vi -
is the miracle of life that you are.
je čudo života koje predstavljate vi.
kad pomislite kako smo svi različiti.
when we think that we are different.
at assembling Swedish furniture,
u sastavljanju švedskog nameštaja,
is nothing you can crack in your life.
je nešto što nećete shvatiti dok ste živi.
we can learn from these books,
da naučimo iz ovih knjiga,
of personalized medicine,
should be done to have better health
kako bismo bili zdraviji
and many, many more people,
i još mnogo, mnogo ljudi,
called machine learning.
koja se zove mašinsko učenje.
thousands of them.
hiljade njih.
the biggest database of human beings:
najveću bazu podataka o ljudskim bićima:
everything you can think of.
rezonancu, sve što vam pada na pamet.
and we train a machine --
i obučili smo mašinu -
many, many machines --
mnogo, mnogo mašina -
the genome in a phenotype.
genom u fenotipu.
and what do they do?
be used for everything,
koji može da se koristi svuda,
is particularly complicated.
je naročito komplikovana.
to build different challenges.
da napravimo nove izazove.
from common traits.
od zajedničkih osobina.
because they are common,
jer su zajedničke,
predvideti visinu?
and predict your height?
je usko povezan s vašim načinom života,
eight kilograms of precision.
preciznošću od osam kilograma.
the code changes during your life.
kôd menja tokom vašeg života.
it gets insertions.
dodaju se umeci.
among millions of these letters.
među milionima ovih slova.
a very well-defined object.
naročito dobro definisan objekat.
čitav niz njih
a machine what a face is,
mašinu da zna šta je lice,
with machine learning,
we read the first sequence --
nakon što smo pročitali prvi isečak -
to see some signals.
da zapažamo neke signale.
coming in our lab.
koji je došao u našu laboratoriju.
we reduce the complexity,
svedemo složenost
and asymmetries come from your life.
i asimetrija potiču iz vašeg života.
and we run our algorithm.
i provlačimo ga kroz naš algoritam.
from the blood.
left and right, left and right,
levo i desno, levo i desno,
those pictures to be identical.
da te slike budu identične.
another exercise, to be honest.
da budete iskreni.
comes from gender,
the ethnicity component of a human.
čovekova etnička komponenta.
is much more complicated.
je daleko komplikovanije.
even in the differences,
that we are in the right ballpark,
da su naše pretpostavke tačne,
that comes in place,
koji se poklopio,
the complete cranial structure,
u potpunosti strukturu lobanje,
u našu laboratoriju,
in the training of the machine.
nikad nije videla ove ljude.
probably never believe.
za vas neuverljivi ljudi.
in a scientific publication,
Chris challenged me.
and tried to predict
i pokušao sam da predvidim
and believe me, you have no idea
i verujte mi, nemate pojma
this blood now, here --
da bismo doneli krv ovde -
of biological information
bioloških informacija
da sekvenciramo čitav genom.
and I'm going to do it with you.
i uradiću to s vama.
all the understanding we have.
sve znanje koje imamo.
we predicted he's a male.
predvideli smo da je muškarac u pitanju.
the subject is 82.
zapravo je '82.
and peculiar ethnicity.
i karakterističnog sam porekla.
they never fit in models.
nikad se ne uklapaju u kalupe.
is a complex corner case for our model.
kompleksan izuzetak za naš model.
a lot to recognize people
da bismo prepoznali ljude
but my beard cut.
već moja brada.
in this case, transfer it --
u ovom slučaju ću da to prenesem -
than Photoshop, no modeling --
nije modelarstvo -
much, much better in the feeling.
mnogo, mnogo bolji utisak.
for predicting height
da bismo predvideli visinu
out of your blood.
iz vaše krvi.
and the same approach,
i isti pristup,
researchers around the world.
istraživača širom sveta.
from a statistical approach
sa statističkog pristupa,
of exactly how you are.
tačno kako ste vi.
complicated challenge,
in the world on this topic.
se bave ovim pitanjem.
be confronted with decisions
inner detail on how life works.
pojedinost kako život funkcioniše.
that cannot be confined
koja ne može da bude ograničena
we're building as a humanity.
koju kao čovečanstvo gradimo.
with artists, with philosophers,
umetnicima, filozofima,
that we make in the next year
ABOUT THE SPEAKER
Riccardo Sabatini - Scientist, entrepreneurRiccardo Sabatini applies his expertise in numerical modeling and data to projects ranging from material science to computational genomics and food market predictions.
Why you should listen
Data scientist Riccardo Sabatini harnesses numerical methods for a surprising variety of fields, from material science research to the study of food commodities (as a past director of the EU research project FoodCAST). His most recent research centers on computational genomics and how to crack the code of life.
In addition to his data research, Sabatini is deeply involved in education for entrepreneurs. He is the founder and co-director of the Quantum ESPRESSO Foundation, an advisor in several data-driven startups, and funder of The HUB Trieste, a social impact accelerator.
Riccardo Sabatini | Speaker | TED.com