ABOUT THE SPEAKER
Ajit Narayanan - Visual grammar engine inventor
Ajit Narayanan is the inventor of Avaz, an affordable, tablet-based communication device for people who are speech-impaired.

Why you should listen

Ajit Narayanan is the founder and CEO of Invention Labs, and the inventor of Avaz AAC, the first assistive device aimed at an Indian market that helps people with speech disabilities -- such as cerebral palsy, autism, intellectual disability, aphasia and learning disabilities -- to communicate. Avaz is also available as an iPad app, aimed at children with autism. In 2010, Avaz won the National Award for Empowerment of People with Disabilities from the president of India, and in 2011, Narayanan was listed in MIT Technology Review 35 under 35.
 
Narayanan is a prolific inventor with more than 20 patent applications. He is an electrical engineer with degrees from IIT Madras. His research interests are embedded systems, signal processing and understanding how the brain perceives language and communication.

More profile about the speaker
Ajit Narayanan | Speaker | TED.com
TED2013

Ajit Narayanan: A word game to communicate in any language

阿吉特.納拉亞南 (Ajit Narayanan): 能用任何語言溝通的文字遊戲

Filmed:
1,391,245 views

阿吉特.納拉亞南 (Ajit Narayanan) 服務有語言困難的孩子時,構思出以圖片來思考語言,在「地圖」中連結文字和概念。現在,這個概念演變成一個應用程式,幫助無口說能力的人溝通,而背後的重要點子,一種語言概念「輕鬆講」 (FreeSpeech) 也潛力無窮。
- Visual grammar engine inventor
Ajit Narayanan is the inventor of Avaz, an affordable, tablet-based communication device for people who are speech-impaired. Full bio

Double-click the English transcript below to play the video.

00:12
I work with children孩子 with autism自閉症.
0
721
2670
我服務有自閉症的孩子。
00:15
Specifically特別, I make technologies技術
1
3391
1914
更確切來說,我發明科技
00:17
to help them communicate通信.
2
5305
2171
幫助他們溝通。
00:19
Now, many許多 of the problems問題 that children孩子
3
7476
1539
許多自閉症孩童面臨的問題
00:21
with autism自閉症 face面對, they have a common共同 source資源,
4
9015
3763
出自於同樣的因素,
00:24
and that source資源 is that they find it difficult
5
12778
2094
那就是他們很難
00:26
to understand理解 abstraction抽象化, symbolism象徵.
6
14872
5260
了解抽象概念與象徵性的符號。
00:32
And because of this, they have
a lot of difficulty困難 with language語言.
7
20132
4652
因此,他們在面對語言時
會有很大的困難。
00:36
Let me tell you a little bit about why this is.
8
24784
3015
讓我告訴你一些原因。
00:39
You see that this is a picture圖片 of a bowl of soup.
9
27799
3934
你可以看到這張圖片是一碗湯。
00:43
All of us can see it. All of us understand理解 this.
10
31733
2485
我們每個人都看得見,也都了解這是什麼。
00:46
These are two other pictures圖片 of soup,
11
34218
2312
這是另外兩張湯的圖片,
00:48
but you can see that these are more abstract抽象
12
36530
2067
但是你會發現它們比較抽象,
00:50
These are not quite相當 as concrete具體.
13
38597
1856
不太具體。
00:52
And when you get to language語言,
14
40453
2174
當你使用語言時,
00:54
you see that it becomes a word
15
42627
1868
會發現那個字詞
00:56
whose誰的 look, the way it looks容貌 and the way it sounds聲音,
16
44495
3261
看起來、聽起來
00:59
has absolutely絕對 nothing to do
with what it started開始 with,
17
47756
2912
和它以什麼開頭
01:02
or what it represents代表, which哪一個 is the bowl of soup.
18
50668
2830
或是和它代表的意義「那碗湯」完全無關。
01:05
So it's essentially實質上 a completely全然 abstract抽象,
19
53498
2900
因此,基本上那是一個完全抽象、
01:08
a completely全然 arbitrary隨意 representation表示 of something
20
56398
2576
存在真實世界中某種事物的
01:10
which哪一個 is in the real真實 world世界,
21
58974
1163
一種任意的表述,
01:12
and this is something that children孩子 with autism自閉症
22
60137
1791
自閉症的孩子在這方面
01:13
have an incredible難以置信 amount of difficulty困難 with.
23
61928
3164
有很大的困難。
01:17
Now that's why most of the people
that work with children孩子 with autism自閉症 --
24
65092
2751
那就是為什麼許多
協助自閉症孩童的人們
01:19
speech言語 therapists治療師, educators教育工作者 --
25
67843
1878
——語言治療師、教育人士——
01:21
what they do is, they try to help children孩子 with autism自閉症
26
69721
2633
他們協助自閉症孩童
01:24
communicate通信 not with words, but with pictures圖片.
27
72354
3229
不是用文字溝通,而是用圖片溝通。
01:27
So if a child兒童 with autism自閉症 wanted to say,
28
75583
1930
因此如果有個自閉症孩童想說:「我想喝湯。」
01:29
"I want soup," that child兒童 would pick
29
77513
2458
這孩子會拿起
01:31
three different不同 pictures圖片, "I," "want," and "soup,"
30
79971
2260
三張不同的圖片「我」、「想喝」、「湯」,
01:34
and they would put these together一起,
31
82231
1609
然後把圖排在一起,
01:35
and then the therapist治療師 or the parent would
32
83840
1867
那麼治療師或家長就能理解
01:37
understand理解 that this is what the kid孩子 wants to say.
33
85707
1887
這是孩子想說的話。
01:39
And this has been incredibly令人難以置信 effective有效;
34
87594
1778
三四十年來
01:41
for the last 30, 40 years年份
35
89372
2141
這方法一直都很有效,
01:43
people have been doing this.
36
91513
1613
大家都這麼做。
01:45
In fact事實, a few少數 years年份 back,
37
93126
1349
事實上,幾年前
01:46
I developed發達 an app應用 for the iPadiPad的
38
94475
2675
我開發了一個 iPad 的應用程式,
01:49
which哪一個 does exactly究竟 this. It's called AvazAvaz,
39
97150
2255
名為「阿維思」(Avaz),就是採用此法。
01:51
and the way it works作品 is that kids孩子 select選擇
40
99405
2279
操作方式是讓孩子選擇
01:53
different不同 pictures圖片.
41
101684
1321
不同的圖片,
01:55
These pictures圖片 are sequenced測序
together一起 to form形成 sentences句子,
42
103005
2570
將圖片排列成句子,
01:57
and these sentences句子 are spoken out.
43
105575
1719
然後這些句子會被唸出。
01:59
So AvazAvaz is essentially實質上 converting轉換 pictures圖片,
44
107294
3025
因此基本上「阿維思」會轉換圖片,
02:02
it's a translator翻譯者, it converts轉換 pictures圖片 into speech言語.
45
110319
3960
它是翻譯機,能將圖片轉換成言語。
02:06
Now, this was very effective有效.
46
114279
1718
這很有用。
02:07
There are thousands數千 of children孩子 using運用 this,
47
115997
1384
有成千上萬的孩子使用它,
02:09
you know, all over the world世界,
48
117381
1430
遍及全世界,
02:10
and I started開始 thinking思維 about
49
118811
2175
於是我開始思考
02:12
what it does and what it doesn't do.
50
120986
2654
它做了什麼,又漏了什麼。
02:15
And I realized實現 something interesting有趣:
51
123640
1684
我發現某件很有趣的事:
02:17
AvazAvaz helps幫助 children孩子 with autism自閉症 learn學習 words.
52
125324
4203
「阿維思」協助有自閉症的孩子學習文字。
但沒有教他們
02:21
What it doesn't help them do is to learn學習
53
129527
2405
02:23
word patterns模式.
54
131932
2748
文字模式。
02:26
Let me explain說明 this in a little more detail詳情.
55
134680
2472
讓我說明一些細節。
02:29
Take this sentence句子: "I want soup tonight今晚."
56
137152
3057
以此句為例:「我今晚想喝湯。」
02:32
Now it's not just the words
here that convey傳達 the meaning含義.
57
140209
4080
這不只是文字傳達了意義,
02:36
It's also the way in which哪一個 these words are arranged安排,
58
144289
3140
這些文字排列的方式、
02:39
the way these words are modified改性 and arranged安排.
59
147429
2515
這些文字修飾與排列的方式也有意義。
02:41
And that's why a sentence句子 like "I want soup tonight今晚"
60
149959
2306
那就是為什麼像是「我今晚想喝湯」這句話
02:44
is different不同 from a sentence句子 like
61
152265
1984
會完全不同於
02:46
"Soup want I tonight今晚," which哪一個
is completely全然 meaningless無意義的.
62
154249
3312
「湯想喝我今晚」這樣無意義的句子。
02:49
So there is another另一個 hidden abstraction抽象化 here
63
157561
2619
這裡有另一種隱藏的抽象概念,
02:52
which哪一個 children孩子 with autism自閉症 find
a lot of difficulty困難 coping應對 with,
64
160180
3557
讓自閉症孩童難以處理,
02:55
and that's the fact事實 that you can modify修改 words
65
163737
2840
那就是你能透過修飾文字、
02:58
and you can arrange安排 them to have
66
166577
2101
排列文字,
03:00
different不同 meanings含義, to convey傳達 different不同 ideas思路.
67
168678
2895
讓它有不同的意義,傳達不同的想法。
03:03
Now, this is what we call grammar語法.
68
171573
3459
我們稱之為文法。
03:07
And grammar語法 is incredibly令人難以置信 powerful強大,
69
175032
2036
而文法的力量十分強大,
03:09
because grammar語法 is this one component零件 of language語言
70
177068
3157
因為文法是語言的其中一項要素,
03:12
which哪一個 takes this finite有限 vocabulary詞彙 that all of us have
71
180225
3489
讓我們使用所擁有的有限字彙
03:15
and allows允許 us to convey傳達 an
infinite無窮 amount of information信息,
72
183714
4531
傳達無限種資訊、
03:20
an infinite無窮 amount of ideas思路.
73
188245
2134
無限種想法。
03:22
It's the way in which哪一個 you can put things together一起
74
190379
2002
這種方式能讓你把東西組合在一起
03:24
in order訂購 to convey傳達 anything you want to.
75
192381
2168
來傳達所有你想表達的事。
03:26
And so after I developed發達 AvazAvaz,
76
194549
2127
因此在我開發「阿維思」之後,
03:28
I worried擔心 for a very long time
77
196676
1568
有件事讓我擔心很久,
03:30
about how I could give grammar語法
to children孩子 with autism自閉症.
78
198244
3910
那就是我要怎麼教自閉症孩童文法。
03:34
The solution came來了 to me from
a very interesting有趣 perspective透視.
79
202154
2275
解決方式來自一種非常有趣的觀點。
03:36
I happened發生 to chance機會 upon a child兒童 with autism自閉症
80
204429
3449
我巧遇自閉症的孩童
03:39
conversing交談 with her mom媽媽,
81
207878
2109
和她的母親對話,
03:41
and this is what happened發生.
82
209987
2094
事情就這樣發生了。
03:44
Completely全然 out of the blue藍色, very spontaneously自發,
83
212081
2186
事發非常突然、不期而遇,
03:46
the child兒童 got up and said, "Eat."
84
214267
2463
那孩子站起來說:「吃。」
03:48
Now what was interesting有趣 was
85
216730
1770
有趣的是
03:50
the way in which哪一個 the mom媽媽 was trying to tease out
86
218500
4244
那位媽媽誘導小孩的方式,
03:54
the meaning含義 of what the child兒童 wanted to say
87
222744
2213
她讓小孩透過回答她的問題
03:56
by talking to her in questions問題.
88
224957
2260
表達出想說的話。
03:59
So she asked, "Eat what? Do
you want to eat ice cream奶油?
89
227217
2593
因此她問:「吃什麼?」
「你想吃冰淇淋?」
04:01
You want to eat? Somebody else其他 wants to eat?
90
229810
2112
「你想吃?」
「其他人想吃?」
04:03
You want to eat cream奶油 now? You
want to eat ice cream奶油 in the evening晚間?"
91
231922
3313
「你想現在吃冰淇淋?」
「你想晚上吃冰淇淋?」
04:07
And then it struck來襲 me that
92
235235
1514
我突然意識到
04:08
what the mother母親 had doneDONE was something incredible難以置信.
93
236749
2028
那位母親做了一件非常棒的事。
04:10
She had been able能夠 to get that child兒童 to communicate通信
94
238777
1994
她已經能讓那個孩子
04:12
an idea理念 to her without grammar語法.
95
240771
4138
不用文法就能傳達想法。
04:16
And it struck來襲 me that maybe this is what
96
244909
2696
我突然想到也許這就是
04:19
I was looking for.
97
247605
1385
我在找的方式。
04:20
Instead代替 of arranging整理 words in an order訂購, in sequence序列,
98
248990
4142
與其透過按照規則、順序
將文字排列成句子,
04:25
as a sentence句子, you arrange安排 them
99
253132
2172
不如將文字排列在這張圖中,
04:27
in this map地圖, where they're all linked關聯 together一起
100
255304
3811
文字連結在一起的方式
04:31
not by placing配售 them one after the other
101
259115
2143
不是透過將它們一個接一個排列,
而是透過問題,多組問答題。
04:33
but in questions問題, in question-answer問答 pairs.
102
261258
3284
04:36
And so if you do this, then what you're conveying輸送
103
264542
2358
因此如果你這麼做,那你傳達的
04:38
is not a sentence句子 in English英語,
104
266900
1986
不是一個英文句子,
04:40
but what you're conveying輸送 is really a meaning含義,
105
268886
2966
你傳達的是一個意義,
04:43
the meaning含義 of a sentence句子 in English英語.
106
271852
1511
一個英文句子的意義。
04:45
Now, meaning含義 is really the underbelly軟肋,
in some sense, of language語言.
107
273363
2932
從某個層面來說,
意義在語言中屬於較深層的部分。
04:48
It's what comes after thought but before language語言.
108
276295
3821
意義出現在想法之後,但是在語言之前。
04:52
And the idea理念 was that this particular特定 representation表示
109
280116
2503
而此想法是這種特殊的表述
04:54
might威力 convey傳達 meaning含義 in its raw生的 form形成.
110
282619
3261
可能是用它的根本樣貌來傳達意義。
04:57
So I was very excited興奮 by this, you know,
111
285880
1771
這件事讓我很興奮,
04:59
hopping躍遷 around all over the place地點,
112
287651
1493
開心得手舞足蹈,
05:01
trying to figure數字 out if I can convert兌換
113
289144
1771
試著確認我是否能
05:02
all possible可能 sentences句子 that I hear into this.
114
290915
2524
將所有聽見的詞句轉換成這樣。
05:05
And I found發現 that this is not enough足夠.
115
293439
1773
我發現這還不夠。
05:07
Why is this not enough足夠?
116
295212
1385
為什麼不夠呢?
05:08
This is not enough足夠 because if you wanted to convey傳達
117
296597
1711
不夠是因為如果你想要傳達
05:10
something like negation否定,
118
298308
2250
否定的句子,
05:12
you want to say, "I don't want soup,"
119
300558
1736
比如說:「我不想喝湯。」
05:14
then you can't do that by asking a question.
120
302294
2220
那麼你就不能用問句完成。
05:16
You do that by changing改變 the word "want."
121
304514
2285
你會改變「想」這個字。
05:18
Again, if you wanted to say,
122
306799
1637
同樣地,如果你想說:
05:20
"I wanted soup yesterday昨天,"
123
308436
1980
「我昨天本來 想喝湯。」
05:22
you do that by converting轉換
the word "want" into "wanted."
124
310416
2737
你把「想」轉換成「本來想」。
05:25
It's a past過去 tense緊張.
125
313153
1666
那是過去式。
05:26
So this is a flourish繁榮 which哪一個 I added添加
126
314819
2103
因此我加了這個功能
05:28
to make the system系統 complete完成.
127
316922
1576
讓系統更完善。
05:30
This is a map地圖 of words joined加盟 together一起
128
318498
1977
這是許多單字的連結圖,
05:32
as questions問題 and answers答案,
129
320475
1656
以問句和答案組合而成,
05:34
and with these filters過濾器 applied應用的 on top最佳 of them
130
322131
2264
有了這些篩選功能在上面,
05:36
in order訂購 to modify修改 them to represent代表
131
324395
1817
就能做修改,呈現出
05:38
certain某些 nuances細微之處.
132
326212
1709
較細微的差異。
05:39
Let me show顯示 you this with a different不同 example.
133
327921
1951
讓我舉個不同的例子來說明。
05:41
Let's take this sentence句子:
134
329872
1254
以這個句子來說:
05:43
"I told the carpenter木匠 I could not pay工資 him."
135
331126
1980
「我告訴了木工我不能付錢。」
05:45
It's a fairly相當 complicated複雜 sentence句子.
136
333106
1792
這是個蠻複雜的句子。
05:46
The way that this particular特定 system系統 works作品,
137
334898
1893
這個特殊系統運作的方式是
05:48
you can start開始 with any part部分 of this sentence句子.
138
336791
2578
你可以從句子的任何一處開始。
05:51
I'm going to start開始 with the word "tell."
139
339369
1698
我用「告訴」開頭來做說明。
05:53
So this is the word "tell."
140
341067
1462
這個字是「告訴」,
05:54
Now this happened發生 in the past過去,
141
342529
1600
但這是以前發生的事,
05:56
so I'm going to make that "told."
142
344129
2223
所以我要說「告訴了」。
05:58
Now, what I'm going to do is,
143
346352
1708
現在我想做的是,
06:00
I'm going to ask questions問題.
144
348060
1756
我開始問問題。
06:01
So, who told? I told.
145
349816
2364
是誰「告訴」?
是我。
06:04
I told whom? I told the carpenter木匠.
146
352180
1927
我告訴了誰?
我告訴了木工。
06:06
Now we start開始 with a different不同 part部分 of the sentence句子.
147
354107
1751
現在我們從句子的另一處開始,
06:07
We start開始 with the word "pay工資,"
148
355858
1867
以「付錢」開始,
06:09
and we add the ability能力 filter過濾 to it to make it "can pay工資."
149
357725
4577
我們加上使役動詞,讓它變成「能付錢」,
06:14
Then we make it "can't pay工資,"
150
362302
2101
接著我們就能改成「不能付錢」,
06:16
and we can make it "couldn't不能 pay工資"
151
364403
1599
接著就能更改時態,
06:18
by making製造 it the past過去 tense緊張.
152
366002
1663
將它改為過去式。
06:19
So who couldn't不能 pay工資? I couldn't不能 pay工資.
153
367665
1923
那是誰不能付錢?
我不能付錢。
06:21
Couldn't不能 pay工資 whom? I couldn't不能 pay工資 the carpenter木匠.
154
369588
2676
不能付錢給誰?
我不能付錢給木工。
06:24
And then you join加入 these two together一起
155
372264
1731
接著你透過問這個問題
06:25
by asking this question:
156
373995
1350
把這兩個部分連在一起:
06:27
What did I tell the carpenter木匠?
157
375345
1737
我告訴了木工什麼?
06:29
I told the carpenter木匠 I could not pay工資 him.
158
377082
4049
我告訴了木工我不能付錢。
06:33
Now think about this. This is
159
381131
1937
想想看這個問題,
06:35
—(Applause掌聲)—
160
383068
3542
(掌聲)
06:38
this is a representation表示 of this sentence句子
161
386610
3672
這是這個句子要表達的內容,
06:42
without language語言.
162
390282
2435
沒有語言。
06:44
And there are two or three
interesting有趣 things about this.
163
392717
2192
這裡有兩到三件有趣的事。
06:46
First of all, I could have started開始 anywhere隨地.
164
394909
3131
首先,我能從任何一個單字開始,
06:50
I didn't have to start開始 with the word "tell."
165
398040
2243
我不一定要從「告訴」開始。
06:52
I could have started開始 anywhere隨地 in the sentence句子,
166
400283
1416
我能從句子的任何一部分開始,
06:53
and I could have made製作 this entire整個 thing.
167
401699
1507
還是能完成整件事。
06:55
The second第二 thing is, if I wasn't an English英語 speaker揚聲器,
168
403206
2776
第二點是,如果我不是說英語的人,
06:57
if I was speaking請講 in some other language語言,
169
405982
2175
如果我說的是別的語言,
07:00
this map地圖 would actually其實 hold保持 true真正 in any language語言.
170
408157
3156
這個地圖真的在任何語言都管用。
07:03
So long as the questions問題 are standardized標準化,
171
411313
1990
只要這個問題符合標準,
07:05
the map地圖 is actually其實 independent獨立 of language語言.
172
413303
4287
這個地圖就能獨立於語言使用。
07:09
So I call this FreeSpeechFreeSpeech,
173
417590
2115
因此我稱它為「輕鬆講」 (FreeSpeech),
07:11
and I was playing播放 with this for many許多, many許多 months個月.
174
419705
2935
我已經玩了好幾個月,
07:14
I was trying out so many許多
different不同 combinations組合 of this.
175
422640
2726
並試著使用許多不同的組合。
07:17
And then I noticed注意到 something very
interesting有趣 about FreeSpeechFreeSpeech.
176
425366
2289
後來,我注意到「輕鬆講」有個有趣的部分。
07:19
I was trying to convert兌換 language語言,
177
427655
3243
我試著轉換語言,
07:22
convert兌換 sentences句子 in English英語
into sentences句子 in FreeSpeechFreeSpeech,
178
430898
2384
轉換英語句子和「輕鬆講」的句子,
07:25
and vice versa反之亦然, and back and forth向前.
179
433282
1752
來回反覆不斷嘗試。
07:27
And I realized實現 that this particular特定 configuration組態,
180
435034
2255
我理解這種特殊的結構,
07:29
this particular特定 way of representing代表 language語言,
181
437289
2026
這種表現語言的特殊方式
07:31
it allowed允許 me to actually其實 create創建 very concise簡潔 rules規則
182
439315
4395
讓我能夠真正地建立很簡要的規則,
07:35
that go between之間 FreeSpeechFreeSpeech on one side
183
443710
2734
在「輕鬆講」
07:38
and English英語 on the other.
184
446444
1488
以及英語之間的規則。
07:39
So I could actually其實 write this set of rules規則
185
447932
2180
我確實能寫下這組規則,
07:42
that translates轉換 from this particular特定
representation表示 into English英語.
186
450112
3395
讓這個特殊的表述轉換成英語。
07:45
And so I developed發達 this thing.
187
453507
1831
因此我發明了這項產品,
07:47
I developed發達 this thing called
the FreeSpeechFreeSpeech Engine發動機
188
455338
2232
稱為「輕鬆講引擎」,
07:49
which哪一個 takes any FreeSpeechFreeSpeech sentence句子 as the input輸入
189
457570
2561
能把任何「輕鬆講」的句子輸入,
07:52
and gives out perfectly完美 grammatical語法的 English英語 text文本.
190
460131
3930
然後產出有完美文法的英語。
07:56
And by putting these two pieces together一起,
191
464061
1605
透過組合
07:57
the representation表示 and the engine發動機,
192
465666
1881
表述與引擎,
07:59
I was able能夠 to create創建 an app應用, a
technology技術 for children孩子 with autism自閉症,
193
467547
3796
我就能建立一個應用程式,
一個供自閉症孩童用的科技,
08:03
that not only gives them words
194
471343
2499
不只是提供他們文字,
08:05
but also gives them grammar語法.
195
473842
3941
也提供他們文法。
08:09
So I tried試著 this out with kids孩子 with autism自閉症,
196
477783
2360
我在自閉症孩童身上測試,
08:12
and I found發現 that there was an
incredible難以置信 amount of identification鑑定.
197
480143
5013
發現了很驚人的成效。
08:17
They were able能夠 to create創建 sentences句子 in FreeSpeechFreeSpeech
198
485156
2720
他們用「輕鬆講」建立的句子
08:19
which哪一個 were much more complicated複雜
but much more effective有效
199
487876
2558
複雜程度和效用都遠高於
08:22
than equivalent當量 sentences句子 in English英語,
200
490434
2899
用英語講同一句話,
08:25
and I started開始 thinking思維 about
201
493333
1682
我開始思考
08:27
why that might威力 be the case案件.
202
495015
1969
為什麼會成功。
08:28
And I had an idea理念, and I want to
talk to you about this idea理念 next下一個.
203
496984
4287
因此,接下來我想與大家分享一個想法。
08:33
In about 1997, about 15 years年份 back,
204
501271
3142
大約在 1997 年時,大約 15 年前,
08:36
there were a group of scientists科學家們 that were trying
205
504413
2011
有一群科學家嘗試
08:38
to understand理解 how the brain processes流程 language語言,
206
506424
2389
理解大腦處理語言的方式,
08:40
and they found發現 something very interesting有趣.
207
508813
1779
他們發現一件很有趣的事情。
08:42
They found發現 that when you learn學習 a language語言
208
510592
1872
就是當你學習一種語言,
08:44
as a child兒童, as a two-year-old二十歲,
209
512464
2912
身為一個兩歲小孩,
08:47
you learn學習 it with a certain某些 part部分 of your brain,
210
515376
2366
你用大腦的特定部位在學習;
而當你身為一名成人
08:49
and when you learn學習 a language語言 as an adult成人 --
211
517742
1600
08:51
for example, if I wanted to
learn學習 Japanese日本 right now —
212
519342
3911
──舉例來說,如果我現在想學日語──
08:55
a completely全然 different不同 part部分 of my brain is used.
213
523253
2707
就會運用完全不同部位的大腦。
08:57
Now I don't know why that's the case案件,
214
525960
1831
我不了解為什麼會這樣,
08:59
but my guess猜測 is that that's because
215
527791
1991
但我猜是因為
09:01
when you learn學習 a language語言 as an adult成人,
216
529782
2437
成年時學習語言
09:04
you almost幾乎 invariably不變地 learn學習 it
217
532219
1616
幾乎無可避免會
09:05
through通過 your native本地人 language語言, or
through通過 your first language語言.
218
533835
4266
透過你的母語、習慣語言來學習。
09:10
So what's interesting有趣 about FreeSpeechFreeSpeech
219
538101
3252
「輕鬆講」有趣的是
09:13
is that when you create創建 a sentence句子
220
541353
1802
當你建立一個句子,
09:15
or when you create創建 language語言,
221
543155
1695
或是建立一種語言,
09:16
a child兒童 with autism自閉症 creates創建
language語言 with FreeSpeechFreeSpeech,
222
544850
3070
自閉症孩童用「輕鬆講」建立語言,
09:19
they're not using運用 this support支持 language語言,
223
547920
1833
他們不是用它來支援語言,
09:21
they're not using運用 this bridge language語言.
224
549753
2211
他們不是用它來連結語言,
09:23
They're directly constructing建設 the sentence句子.
225
551964
2657
他們是直接建立句子。
09:26
And so this gave me this idea理念.
226
554621
2193
這讓我有個想法。
09:28
Is it possible可能 to use FreeSpeechFreeSpeech
227
556814
2024
有可能讓「輕鬆講」
教自閉症孩童語言之外,
09:30
not for children孩子 with autism自閉症
228
558838
2510
09:33
but to teach language語言 to people without disabilities殘疾人?
229
561348
6262
也教非身障的孩童嗎?
09:39
And so I tried試著 a number of experiments實驗.
230
567610
1978
因此我嘗試許多實驗。
09:41
The first thing I did was I built內置 a jigsaw拼圖 puzzle難題
231
569588
2948
首先我設計了一個拼圖,
09:44
in which哪一個 these questions問題 and answers答案
232
572536
1970
這些問題和答案
09:46
are coded編碼 in the form形成 of shapes形狀,
233
574506
1835
都編碼成各種形狀,
09:48
in the form形成 of colors顏色,
234
576341
1138
各種顏色,
09:49
and you have people putting these together一起
235
577479
1849
操作人把這些放在一起,
09:51
and trying to understand理解 how this works作品.
236
579328
1773
試著了解這是如何運作。
09:53
And I built內置 an app應用 out of it, a game遊戲 out of it,
237
581101
2376
我設計了一個應用程式,以此為基礎的遊戲,
09:55
in which哪一個 children孩子 can play with words
238
583477
2661
孩童可以玩文字遊戲,
09:58
and with a reinforcement加強,
239
586138
1704
並且有強化的功能,
09:59
a sound聲音 reinforcement加強 of visual視覺 structures結構,
240
587842
2585
以聽覺強化視覺,
10:02
they're able能夠 to learn學習 language語言.
241
590427
2013
他們就能學習語言。
10:04
And this, this has a lot of potential潛在, a lot of promise諾言,
242
592440
2736
這有很大的潛力和前景,
10:07
and the government政府 of India印度 recently最近
243
595176
1975
而最近印度政府
10:09
licensed領有牌照 this technology技術 from us,
244
597151
1404
向我們取得這項科技的授權,
10:10
and they're going to try it out
with millions百萬 of different不同 children孩子
245
598555
2074
他們打算讓上百萬名孩童嘗試,
10:12
trying to teach them English英語.
246
600629
2605
試著教他們英語。
10:15
And the dream夢想, the hope希望, the vision視力, really,
247
603234
2614
而這個夢想、希望、願景
10:17
is that when they learn學習 English英語 this way,
248
605848
3082
即是當他們以此學習英語,
10:20
they learn學習 it with the same相同 proficiency精通
249
608930
2643
他們能夠表達流利,
10:23
as their mother母親 tongue.
250
611573
3718
就像母語一樣。
10:27
All right, let's talk about something else其他.
251
615291
3816
接下來,我們來討論另一點。
10:31
Let's talk about speech言語.
252
619107
1997
談談說話。
10:33
This is speech言語.
253
621104
1271
這是說話。
10:34
So speech言語 is the primary mode模式 of communication通訊
254
622375
1962
因此說話是溝通的基礎,
10:36
delivered交付 between之間 all of us.
255
624337
1613
在我們之間傳遞訊息。
10:37
Now what's interesting有趣 about speech言語 is that
256
625950
1855
關於說話,有趣的是
10:39
speech言語 is one-dimensional一維.
257
627805
1245
說話是單面的。
10:41
Why is it one-dimensional一維?
258
629050
1359
為什麼是單面的?
10:42
It's one-dimensional一維 because it's sound聲音.
259
630409
1568
因為說話是聲音,所以它是單面的。
10:43
It's also one-dimensional一維 because
260
631977
1539
也因為
10:45
our mouths嘴巴 are built內置 that way.
261
633516
1205
那是嘴巴的功能。
10:46
Our mouths嘴巴 are built內置 to create創建
one-dimensional一維 sound聲音.
262
634721
3512
嘴巴的功能即是創造單面的聲音。
10:50
But if you think about the brain,
263
638233
2866
但是如果你想想大腦,
10:53
the thoughts思念 that we have in our heads
264
641099
1764
在我們頭腦裡的思想
10:54
are not one-dimensional一維.
265
642863
2102
並非一面向的。
10:56
I mean, we have these rich豐富,
266
644965
1459
我的意思是,我們有這些豐富、
10:58
complicated複雜, multi-dimensional多維 ideas思路.
267
646424
3028
複雜和多面向的想法。
11:01
Now, it seems似乎 to me that language語言
268
649452
1690
對我來說,語言
11:03
is really the brain's大腦的 invention發明
269
651142
2332
就是大腦的發明,
11:05
to convert兌換 this rich豐富, multi-dimensional多維 thought
270
653474
3096
一方面轉換這豐富、
11:08
on one hand
271
656570
1587
多面向的思想,
11:10
into speech言語 on the other hand.
272
658157
1923
另一方面轉換成話語。
11:12
Now what's interesting有趣 is that
273
660080
1762
有趣的是
11:13
we do a lot of work in information信息 nowadays如今,
274
661842
2568
現在我們以資訊做許多事,
11:16
and almost幾乎 all of that is doneDONE
in the language語言 domain.
275
664410
3079
幾乎所有的事情都是在語言的領域中完成。
11:19
Take Google谷歌, for example.
276
667489
1939
以 Google 為例,
11:21
Google谷歌 trawls拖網 all these
countless無數 billions數十億 of websites網站,
277
669428
2677
Google 網羅千百萬個網站,
11:24
all of which哪一個 are in English英語,
and when you want to use Google谷歌,
278
672105
2725
全都是英語網站,
而當你想要用 Google,
11:26
you go into Google谷歌 search搜索, and you type類型 in English英語,
279
674830
2450
進入 Google 搜尋功能列,輸入英語,
11:29
and it matches火柴 the English英語 with the English英語.
280
677280
4163
會出現符合你要的英語。
11:33
What if we could do this in FreeSpeechFreeSpeech instead代替?
281
681443
3583
有沒有可能我們改用「輕鬆講」這樣做呢?
11:37
I have a suspicion懷疑 that if we did this,
282
685026
2301
我推測如果我們這麼做,
11:39
we'd星期三 find that algorithms算法 like searching搜索,
283
687327
2068
我們會發現一些規則系統,像是搜尋、
11:41
like retrieval恢復, all of these things,
284
689395
2325
像是擷取,所有的這些功能
11:43
are much simpler簡單 and also more effective有效,
285
691720
3075
都更簡單也更有效,
11:46
because they don't process處理
the data數據 structure結構體 of speech言語.
286
694795
4417
因為他們不是處理說話的資料結構。
11:51
Instead代替 they're processing處理
the data數據 structure結構體 of thought.
287
699212
5976
相反地,他們處理思想的資料結構。
11:57
The data數據 structure結構體 of thought.
288
705188
2808
思想的資料結構。
11:59
That's a provocative挑釁 idea理念.
289
707996
2076
那是個令人興奮的概念。
12:02
But let's look at this in a little more detail詳情.
290
710072
2142
讓我們多深入看一點細節。
12:04
So this is the FreeSpeechFreeSpeech ecosystem生態系統.
291
712214
2366
這是「輕鬆講」的生態系統。
12:06
We have the Free自由 Speech言語
representation表示 on one side,
292
714580
2884
我們一邊有「輕鬆講」的畫面,
12:09
and we have the FreeSpeechFreeSpeech
Engine發動機, which哪一個 generates生成 English英語.
293
717464
2228
另一邊也有「輕鬆講」的引擎產生英語。
12:11
Now if you think about it,
294
719694
1725
請想像
12:13
FreeSpeechFreeSpeech, I told you, is completely全然
language-independent語言無關.
295
721419
2544
「輕鬆講」是完全獨立的語言。
12:15
It doesn't have any specific具體 information信息 in it
296
723963
2087
裡面沒有任何關於英語的
12:18
which哪一個 is about English英語.
297
726050
1228
特定資訊。
12:19
So everything that this system系統 knows知道 about English英語
298
727278
2800
因此對這個系統來說,
英語都已在引擎中編碼。
12:22
is actually其實 encoded編碼 into the engine發動機.
299
730078
4620
12:26
That's a pretty漂亮 interesting有趣 concept概念 in itself本身.
300
734698
2237
這之中有個很有趣的概念。
12:28
You've encoded編碼 an entire整個 human人的 language語言
301
736935
3604
你已經將所有的人類語言編碼入
12:32
into a software軟件 program程序.
302
740539
2645
一套軟體中。
12:35
But if you look at what's inside the engine發動機,
303
743184
2531
但是如果你看這個引擎的內部,
12:37
it's actually其實 not very complicated複雜.
304
745715
2358
會發現其實不複雜,
12:40
It's not very complicated複雜 code.
305
748073
2105
不是很複雜的編碼。
12:42
And what's more interesting有趣 is the fact事實 that
306
750178
2672
更有趣的是,
12:44
the vast廣大 majority多數 of the code in that engine發動機
307
752850
2203
在那個引擎中大多數的編碼
12:47
is not really English-specific英語專用.
308
755053
2412
其實都不是只針對英語。
12:49
And that gives this interesting有趣 idea理念.
309
757465
1895
因此有了這個有趣的想法,
12:51
It might威力 be very easy簡單 for us to actually其實
310
759360
2038
我們也許可以因此輕易地
12:53
create創建 these engines引擎 in many許多,
many許多 different不同 languages語言,
311
761398
3826
建立很多很多不同語言的引擎,
12:57
in Hindi印地語, in French法國, in German德語, in Swahili斯瓦希裡.
312
765224
6354
印度語、法語、德語、斯瓦希里語。
(註:斯瓦希里語是非洲使用人數最多的語言之一)
13:03
And that gives another另一個 interesting有趣 idea理念.
313
771578
2799
這引起了另一個有趣的想法。
13:06
For example, supposing假如 I was a writer作家,
314
774377
2654
舉例來說,假設我是作家,
13:09
say, for a newspaper報紙 or for a magazine雜誌.
315
777031
2122
在報社或雜誌社工作。
13:11
I could create創建 content內容 in one language語言, FreeSpeechFreeSpeech,
316
779153
5011
我的文章可以用一種語言「輕鬆講」來寫,
13:16
and the person who's誰是 consuming消費 that content內容,
317
784164
2056
然後有個人買了那則報導,
13:18
the person who's誰是 reading that particular特定 information信息
318
786220
3061
閱讀資訊的那個人
13:21
could choose選擇 any engine發動機,
319
789281
2495
可以選擇任何引擎,
13:23
and they could read it in their own擁有 mother母親 tongue,
320
791776
2736
他們可以用自己的母語閱讀,
13:26
in their native本地人 language語言.
321
794512
3939
用他們當地的語言閱讀。
13:30
I mean, this is an incredibly令人難以置信 attractive有吸引力 idea理念,
322
798451
2722
我的意思是,這是非常吸引人的想法,
13:33
especially特別 for India印度.
323
801173
1999
尤其是在印度。
13:35
We have so many許多 different不同 languages語言.
324
803172
1690
我們有好多種語言。
13:36
There's a song歌曲 about India印度, and there's a description描述
325
804862
2142
有首關於印度的歌,其中有一段描述
13:39
of the country國家 as, it says,
326
807004
2344
將國家比喻為
13:41
(in Sanskrit梵文).
327
809348
2360
(梵語)。
13:43
That means手段 "ever-smiling永遠微笑 speaker揚聲器
328
811708
2773
意謂著「使用美好語言、
13:46
of beautiful美麗 languages語言."
329
814481
4519
永遠微笑的講者」。
13:51
Language語言 is beautiful美麗.
330
819000
1964
語言是美好的。
13:52
I think it's the most beautiful美麗 of human人的 creations創作.
331
820964
2454
我認為語言是人類最美好的創造。
13:55
I think it's the loveliest可愛 thing
that our brains大腦 have invented發明.
332
823418
3978
我認為語言是人腦發明最可愛的東西。
13:59
It entertains招待, it educates受教育者, it enlightens啟蒙觀,
333
827396
3584
語言能娛樂、教育、啟發,
14:02
but what I like the most about language語言
334
830980
2044
但是我最愛的一點是
14:05
is that it empowers如虎添翼.
335
833024
1500
語言能賦予力量。
14:06
I want to leave離開 you with this.
336
834524
1838
我想分享一件事。
14:08
This is a photograph照片 of my collaborators合作者,
337
836362
2385
這是我合作夥伴的照片,
14:10
my earliest最早 collaborators合作者
338
838747
997
我最初的合作夥伴,
14:11
when I started開始 working加工 on language語言
339
839744
1462
當我開始研究語言、
14:13
and autism自閉症 and various各個 other things.
340
841206
1502
自閉症和各種不同的事。
14:14
The girl's女孩 name名稱 is PavnaPavna,
341
842708
1417
這位女孩名為帕芙娜,
14:16
and that's her mother母親, Kalpana卡爾帕納.
342
844125
1902
那是她的母親卡派納,
14:18
And Pavna'sPavna的 an entrepreneur企業家,
343
846027
2138
帕芙娜是企業家,
14:20
but her story故事 is much more remarkable卓越 than mine,
344
848165
2371
但是她的故事比我的更非凡,
14:22
because PavnaPavna is about 23.
345
850536
2400
因為帕芙娜大概才 23 歲。
14:24
She has quadriplegic四肢癱瘓 cerebral顱內 palsy麻痺,
346
852936
2552
她患有四肢型腦性麻庳,
14:27
so ever since以來 she was born天生,
347
855488
1640
因此從她出生以來,
14:29
she could neither也不 move移動 nor也不 talk.
348
857128
3600
她就不能動也不能說話。
14:32
And everything that she's accomplished完成 so far,
349
860728
2403
迄今她所完成的所有事情,
14:35
finishing精加工 school學校, going to college學院,
350
863131
2227
完成學業、上大學、
14:37
starting開始 a company公司,
351
865358
1416
開公司,
14:38
collaborating合作 with me to develop發展 AvazAvaz,
352
866774
2140
和我合作開發「阿維思」,
14:40
all of these things she's doneDONE
353
868914
1892
她要做任何事情
14:42
with nothing more than moving移動 her eyes眼睛.
354
870806
5523
都只能移動她的雙眼。
14:48
Daniel丹尼爾 Webster韋伯斯特 said this:
355
876329
2689
丹尼爾.韋伯斯特說:
(註:美國已故政治家)
14:51
He said, "If all of my possessions財產 were taken採取
356
879018
2940
「如果要拿走我的一切,
14:53
from me with one exception例外,
357
881958
2988
只能留下一種,
14:56
I would choose選擇 to keep the power功率 of communication通訊,
358
884946
2981
我會選擇保留溝通的能力,
14:59
for with it, I would regain恢復 all the rest休息."
359
887927
3903
以此,我就能取回全部。」
15:03
And that's why, of all of these incredible難以置信
applications應用 of FreeSpeechFreeSpeech,
360
891830
5116
那就是「輕鬆講」的所有美好功能中,
15:08
the one that's closest最近的 to my heart
361
896946
2080
最能貼近我心的一種
15:11
still remains遺跡 the ability能力 for this
362
899026
2068
還保留這項能力,
15:13
to empower授權 children孩子 with disabilities殘疾人
363
901094
2380
賦予身障孩童
15:15
to be able能夠 to communicate通信,
364
903474
1773
擁能溝通的能力,
15:17
the power功率 of communication通訊,
365
905247
1789
擁有溝通的力量,
15:19
to get back all the rest休息.
366
907036
2240
就能取回一切。
15:21
Thank you.
367
909276
1397
謝謝。
15:22
(Applause掌聲)
368
910673
1332
(掌聲)
15:24
Thank you. (Applause掌聲)
369
912005
4199
謝謝。(掌聲)
15:28
Thank you. Thank you. Thank you. (Applause掌聲)
370
916204
5323
謝謝。(掌聲)
15:33
Thank you. Thank you. Thank you. (Applause掌聲)
371
921527
4000
謝謝。(掌聲)
Translated by Marssi Draw
Reviewed by Wen-Hsin (Willy) Feng

▲Back to top

ABOUT THE SPEAKER
Ajit Narayanan - Visual grammar engine inventor
Ajit Narayanan is the inventor of Avaz, an affordable, tablet-based communication device for people who are speech-impaired.

Why you should listen

Ajit Narayanan is the founder and CEO of Invention Labs, and the inventor of Avaz AAC, the first assistive device aimed at an Indian market that helps people with speech disabilities -- such as cerebral palsy, autism, intellectual disability, aphasia and learning disabilities -- to communicate. Avaz is also available as an iPad app, aimed at children with autism. In 2010, Avaz won the National Award for Empowerment of People with Disabilities from the president of India, and in 2011, Narayanan was listed in MIT Technology Review 35 under 35.
 
Narayanan is a prolific inventor with more than 20 patent applications. He is an electrical engineer with degrees from IIT Madras. His research interests are embedded systems, signal processing and understanding how the brain perceives language and communication.

More profile about the speaker
Ajit Narayanan | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee