ABOUT THE SPEAKER
Larry Page - CEO of Google
Larry Page is the CEO and cofounder of Google, making him one of the ruling minds of the web.

Why you should listen

Larry Page and Sergey Brin met in grad school at Stanford in the mid-'90s, and in 1996 started working on a search technology based on a new idea: that relevant results come from context. Their technology analyzed the number of times a given website was linked to by other sites — assuming that the more links, the more relevant the site — and ranked sites accordingly. In 1998, they opened Google in a garage-office in Menlo Park. In 1999 their software left beta and started its steady rise to web domination.

Beyond the company's ubiquitous search, including AdSense/AdWords, Google Maps, Google Earth and the mighty Gmail. In 2011, Page stepped back into his original role of chief executive officer. He now leads Google with high aims and big thinking, and finds time to devote to his projects like Google X, the idea lab for the out-there experiments that keep Google pushing the limits.

More profile about the speaker
Larry Page | Speaker | TED.com
TED2014

Larry Page: Where's Google going next?

查理.羅斯與賴瑞.佩吉: Google 下一步將前往何方?

Filmed:
2,575,315 views

在 TED2014 會議上,查理.羅斯採訪了 Google 執行長賴瑞.佩吉,話題圍繞他對公司遠景的展望。其中包括空中自行車道、網路熱氣球……隨著佩吉講述公司近期對 DeepMind 的併購,以及正在學習新奇事物的人工智慧系統,訪談變得更加生動有趣。
- CEO of Google
Larry Page is the CEO and cofounder of Google, making him one of the ruling minds of the web. Full bio

Double-click the English transcript below to play the video.

00:13
Charlie查理 Rose玫瑰: So Larry拉里 sent發送 me an email電子郵件
0
1381
3626
查理.羅斯:賴瑞發了封信給我,
00:17
and he basically基本上 said,
1
5007
1987
基本上他就是說,
00:18
we've我們已經 got to make sure that
we don't seem似乎 like we're
2
6994
3729
我們得確保我們看起來不能像
00:22
a couple一對 of middle-aged中年 boring無聊 men男人.
3
10723
4491
兩個乏味的中年人。
00:27
I said, I'm flattered受寵若驚 by that --
4
15214
3042
我回他說,你這麼講我深感榮幸──
00:30
(Laughter笑聲) —
5
18256
2372
(笑聲)──
00:32
because I'm a bit older舊的,
6
20628
3515
因為我年紀大一點,
00:36
and he has a bit more net worth價值 than I do.
7
24143
4151
而他的淨資產又比我多一點。
00:40
Larry拉里 Page: Well, thank you.
8
28294
2599
賴瑞.佩吉:呵,謝謝。
00:42
CRCR: So we'll have a conversation會話 about
9
30893
2980
查理.羅斯:我們會聊聊網際網路,
00:45
the Internet互聯網, and we'll have a conversation會話 Google谷歌,
10
33873
2698
還會聊聊 Google,
00:48
and we'll have a conversation會話 about search搜索
11
36571
1434
聊聊搜尋,
00:50
and privacy隱私,
12
38005
1367
和隱私,
00:51
and also about your philosophy哲學
13
39372
1555
還有你的處世哲學,
00:52
and a sense of how you've connected連接的 the dots
14
40927
2456
以及你如何把這
一切聯接起來的,
00:55
and how this journey旅程 that began開始
15
43383
2091
以及多年前開始的
00:57
some time ago
16
45474
1284
這個旅程,
00:58
has such這樣 interesting有趣 prospects前途.
17
46758
1895
具有怎樣的有趣前景。
01:00
Mainly主要 we want to talk about the future未來.
18
48653
2596
我們主要來討論一下未來。
01:03
So my first question: Where is Google谷歌
19
51249
1589
那我的第一個問題是:Google 身在何處,
01:04
and where is it going?
20
52838
2046
它將前往何方?
01:06
LP唱片: Well, this is something we think about a lot,
21
54884
1459
賴瑞.佩吉:
好的,這個問題我們思考過很多,
01:08
and our mission任務 we defined定義 a long time ago
22
56343
3575
我們很早以前所定下的目標
01:11
is to organize組織 the world's世界 information信息
23
59918
2263
就是將全世界的資訊組織起來
01:14
and make it universally舉世 accessible無障礙 and useful有用.
24
62181
3438
讓全世界的人們可以
獲得它並且從中受益。
01:17
And people always say,
25
65619
2042
人們總會問,
01:19
is that really what you guys are still doing?
26
67661
2215
你們還在做這樣的事情嗎?
01:21
And I always kind of think about that myself,
27
69876
2118
我自己也常思考這問題,
01:23
and I'm not quite相當 sure.
28
71994
2196
我還不是很確定。
01:26
But actually其實, when I think about search搜索,
29
74190
4007
但事實上,說到搜尋,
01:30
it's such這樣 a deep thing for all of us,
30
78197
2616
對所有人來說都
是個深奧的問題,
01:32
to really understand理解 what you want,
31
80813
2243
要真正理解你想要的是什麼,
01:35
to understand理解 the world's世界 information信息,
32
83056
2368
要理解這個世界的資訊,
01:37
and we're still very much in the early stages階段 of that,
33
85424
3532
我們還處於非常早期的階段,
01:40
which哪一個 is totally完全 crazy.
34
88956
1813
這真的很誇張。
01:42
We've我們已經 been at it for 15 years年份 already已經,
35
90769
2518
我們在這個領域裡已有十五年,
01:45
but it's not at all doneDONE.
36
93287
3575
卻離實現它還差得很遠。
01:48
CRCR: When it's doneDONE, how will it be?
37
96862
2676
查理.羅斯:
當實現時,它會是什麼樣?
01:51
LP唱片: Well, I guess猜測,
38
99538
2717
賴瑞.佩吉:我猜,
01:54
in thinking思維 about where we're going --
39
102255
2400
想想我們的前進方向──
01:56
you know, why is it not doneDONE? --
40
104655
2287
像是,為什麼還沒有完成?──
01:58
a lot of it is just computing's計算的 kind of a mess食堂.
41
106942
2436
大部分原因是
數據計算還是一團亂。
02:01
You know, your computer電腦
doesn't know where you are,
42
109378
1803
電腦不知道你在哪、
02:03
it doesn't know what you're doing,
43
111181
2035
不知道你在做什麼,
02:05
it doesn't know what you know,
44
113216
1682
也不知道你懂什麼。
02:06
and a lot we've我們已經 been trying to do recently最近
45
114898
2576
近年來我們花了很多的精力,
02:09
is just make your devices設備 work,
46
117474
3295
只為了讓你的設備運作起來,
02:12
make them understand理解 your context上下文.
47
120769
2341
讓它理解你的大致意圖。
02:15
Google谷歌 Now, you know, knows知道 where you are,
48
123110
2003
Google Now 知道你人在哪,
02:17
knows知道 what you may可能 need.
49
125113
2182
知道你可能需要什麼。
02:19
So really having computing計算
work and understand理解 you
50
127295
4108
所以讓電腦真正地
運作起來、理解你
02:23
and understand理解 that information信息,
51
131403
2056
並且理解這些資訊,
02:25
we really haven't沒有 doneDONE that yet然而.
52
133459
2310
我們還沒真的做到那步。
02:27
It's still very, very clunky笨重.
53
135769
1549
它仍非常地不成熟。
02:29
CRCR: Tell me, when you look at what Google谷歌 is doing,
54
137318
2366
查理.羅斯:
對於 Google 正在做的事,
02:31
where does Deep Mind心神 fit適合?
55
139684
2969
DeepMind 扮演什麼角色?
02:34
LP唱片: Yeah, so Deep Mind心神 is a company公司
56
142653
1584
賴瑞.佩吉:DeepMind 這家公司,
02:36
we just acquired後天 recently最近.
57
144237
2531
我們最近才併購進來。
02:38
It's in the U.K.
58
146768
3082
它在英國。
02:41
First, let me tell you the way we got there,
59
149850
2654
首先,我講一下我們當時的狀況,
02:44
which哪一個 was looking at search搜索
60
152504
2228
當時我們焦點放在搜尋,
02:46
and really understanding理解,
61
154732
1623
並真正地理解,
02:48
trying to understand理解 everything,
62
156355
2233
試圖理解一切,
02:50
and also make the computers電腦 not clunky笨重
63
158588
1605
讓電腦不那麼遲鈍,
02:52
and really understand理解 you --
64
160193
2201
並且真正地理解你──
02:54
like, voice語音 was really important重要.
65
162394
2112
比如,語音非常重要。
02:56
So what's the state of the art藝術
on speech言語 recognition承認?
66
164506
2861
最先進的語音辨識技術是怎樣的?
02:59
It's not very good.
67
167367
1660
它不是很好,
03:01
It doesn't really understand理解 you.
68
169027
2066
它並不能真正地理解你。
03:03
So we started開始 doing machine learning學習 research研究
69
171093
2003
於是我們研究機器學習,
03:05
to improve提高 that.
70
173096
1537
以改進它,
03:06
That helped幫助 a lot.
71
174633
1703
結果成效很大。
03:08
And we started開始 just looking at things like YouTubeYouTube的.
72
176336
2367
然後我們開始轉向
YouTube 之類的東西。
03:10
Can we understand理解 YouTubeYouTube的?
73
178703
1968
我們可以理解 YouTube 嗎?
03:12
But we actually其實 ran machine learning學習 on YouTubeYouTube的
74
180671
2686
我們實際在 YouTube 上
進行機器學習,
03:15
and it discovered發現 cats, just by itself本身.
75
183357
4085
它找到了貓,完全靠自己。
03:19
Now, that's an important重要 concept概念.
76
187442
2091
這是個重要的概念。
03:21
And we realized實現 there's really something here.
77
189533
2991
我們意識到,其中有著深義。
03:24
If we can learn學習 what cats are,
78
192524
2117
如果我們能學習貓是什麼,
03:26
that must必須 be really important重要.
79
194641
2075
那一定是非常重要的。
03:28
So I think Deep Mind心神,
80
196716
2629
所以我認為 DeepMind,
03:31
what's really amazing驚人 about Deep Mind心神
81
199345
2364
它的真正神奇之處
03:33
is that it can actually其實 --
82
201709
2004
在於它真的可以
03:35
they're learning學習 things in this unsupervised無監督 way.
83
203713
3557
自主學習,無需人的干預。
03:39
They started開始 with video視頻 games遊戲,
84
207270
2567
他們從遊戲開始,
03:41
and really just, maybe I can show顯示 the video視頻,
85
209837
2493
真的只是
──也許我可以播一下那影片──
03:44
just playing播放 video視頻 games遊戲,
86
212330
2204
只是玩遊戲,
03:46
and learning學習 how to do that automatically自動.
87
214534
2015
並且學習怎樣自動地玩。
03:48
CRCR: Take a look at the video視頻 games遊戲
88
216549
1852
查理.羅斯:看一下這遊戲,
03:50
and how machines are coming未來 to be able能夠
89
218401
2410
機器是如何開始有能力
03:52
to do some remarkable卓越 things.
90
220811
2456
做一些驚人的事情。
03:55
LP唱片: The amazing驚人 thing about this
91
223267
1329
賴瑞.佩吉:這驚人之處在於,
03:56
is this is, I mean, obviously明顯,
92
224596
1680
我覺得很明顯,
03:58
these are old games遊戲,
93
226276
1474
這些都是老遊戲,
03:59
but the system系統 just sees看到 what you see, the pixels像素,
94
227750
4798
但是系統和你看到的
完全一樣,就是像素,
04:04
and it has the controls控制 and it has the score得分了,
95
232548
2431
並且它能控制、能得分,
04:06
and it's learned學到了 to play all of these games遊戲,
96
234979
2211
還有它學會了所有這些遊戲,
04:09
same相同 program程序.
97
237190
1579
同一個程式。
04:10
It's learned學到了 to play all of these games遊戲
98
238769
2037
它學會了所有這些遊戲,
04:12
with superhuman超人 performance性能.
99
240806
1786
而且表現是超人級的。
在過去,電腦是做不到這些事的。
04:14
We've我們已經 not been able能夠 to do things like this
100
242592
1855
04:16
with computers電腦 before.
101
244447
1518
04:17
And maybe I'll just narrate敘事 this one quickly很快.
102
245965
2295
我要簡單說明一下,
04:20
This is boxing拳擊, and it figures人物 out it can
103
248260
2805
這是拳擊遊戲,系統算出
04:23
sort分類 of pin the opponent對手 down.
104
251065
2634
如何制伏對手。
04:25
The computer's電腦 on the left,
105
253699
1739
左邊的是電腦,
04:27
and it's just racking貨架 up points.
106
255438
3085
它就是要贏得高分。
04:30
So imagine想像 if this kind
107
258523
2086
所以設想一下,如果這樣的
人工智慧能用在你的排程、
04:32
of intelligence情報 were thrown拋出 at your schedule時間表,
108
260609
2127
04:34
or your information信息 needs需求, or things like that.
109
262736
4637
解決你的訊息需求,
或類似的事情。
04:39
We're really just at the beginning開始 of that,
110
267373
2618
機器學習其實還在起步階段,
04:41
and that's what I'm really excited興奮 about.
111
269991
2365
而這讓我感到無比興奮。
04:44
CRCR: When you look at all that's taken採取 place地點
112
272356
2470
查理.羅斯:
當你看到 DeepMind 和拳擊遊戲
04:46
with Deep Mind心神 and the boxing拳擊,
113
274826
2584
上所發生的這一切,
04:49
also a part部分 of where we're going
114
277410
2340
加上人工智慧
04:51
is artificial人造 intelligence情報.
115
279750
2889
也是我們前進的方向之一。
04:54
Where are we, when you look at that?
116
282639
2799
從這些來看,我們走到哪步了?
04:57
LP唱片: Well, I think for me,
117
285438
1785
賴瑞.佩吉:我認為對於我來說,
04:59
this is kind of one of the most exciting扣人心弦 things
118
287223
1503
這是我看到的
最令人興奮的事情之一,
05:00
I've seen看到 in a long time.
119
288726
1912
在很長時間以來。
05:02
The guy who started開始 this company公司, Demis傑米斯,
120
290638
2413
創立這家公司的德米斯
05:05
has a neuroscience神經科學 and a
computer電腦 science科學 background背景.
121
293051
2778
擁有神經學和電腦科學的背景。
05:07
He went back to school學校
122
295829
1630
他回學校攻讀博士,
05:09
to get his Ph博士.D. to study研究 the brain.
123
297459
3126
課題是研究大腦。
05:12
And so I think we're seeing眼看 a lot of exciting扣人心弦 work
124
300585
2620
我們看到許多激勵人心的成果,
05:15
going on that sort分類 of crosses十字架 computer電腦 science科學
125
303205
3081
出現在跨神經學與
電腦科學的領域。
05:18
and neuroscience神經科學
126
306286
1750
05:20
in terms條款 of really understanding理解
127
308036
2325
關於如何真正去理解,
05:22
what it takes to make something smart聰明
128
310361
2454
去打造出有智慧的機器,
05:24
and do really interesting有趣 things.
129
312815
1715
來做一些有趣的事。
05:26
CRCR: But where's哪裡 the level水平 of it now?
130
314530
2138
查理.羅斯:
我們現在處於什麼階段呢?
05:28
And how fast快速 do you think we are moving移動?
131
316668
2706
你覺得我們的進展速度如何?
05:31
LP唱片: Well, this is the state of the art藝術 right now,
132
319374
3269
賴瑞.佩吉:
這是當前達到的最高水準,
05:34
understanding理解 cats on YouTubeYouTube的
133
322643
2131
理解 YouTube 上的貓
05:36
and things like that,
134
324774
1283
還有類似的事情,
05:38
improving提高 voice語音 recognition承認.
135
326057
2147
加強語音辨識技術。
05:40
We used a lot of machine learning學習
136
328204
2418
我們使用了許多機器學習
05:42
to improve提高 things incrementally增量,
137
330622
2479
來逐步改進各種問題,
05:45
but I think for me, this example's例子 really exciting扣人心弦,
138
333101
3394
我個人認為這例子非常令人興奮,
05:48
because it's one program程序
139
336495
2243
因為它只是一個程式
05:50
that can do a lot of different不同 things.
140
338738
2044
卻可以做許多不同事情。
05:52
CRCR: I don't know if we can do this,
141
340782
1138
查理.羅斯:
我不知道這樣做合不合適,
05:53
but we've我們已經 got the image圖片 of the cat.
142
341920
1185
我這兒有一張貓的圖片,
05:55
It would be wonderful精彩 to see this.
143
343105
1754
這張圖意義非凡。
05:56
This is how machines looked看著 at cats
144
344859
2509
這就是機器看貓,
05:59
and what they came來了 up with.
145
347368
1115
反映出的形象。
06:00
Can we see that image圖片?
146
348483
1055
可以看一下圖片嗎?
06:01
LP唱片: Yeah.
CRCR: There it is. Can you see the cat?
147
349538
2402
賴瑞.佩吉:好的。
查理.羅斯:這就是了。你能看到貓嗎?
06:03
Designed設計 by machines, seen看到 by machines.
148
351940
2027
機器自己設計、看到了它。
06:05
LP唱片: That's right.
149
353967
1110
賴瑞.佩吉:是的。
06:07
So this is learned學到了 from just watching觀看 YouTubeYouTube的.
150
355077
2607
這是僅僅透過觀看 YouTube 學到的。
06:09
And there's no training訓練,
151
357684
1867
沒有事先訓練過,
06:11
no notion概念 of a cat,
152
359551
1384
沒有貓的概念,
06:12
but this concept概念 of a cat
153
360935
2561
但這個貓的概念挺重要的,
06:15
is something important重要 that you would understand理解,
154
363496
2808
我們都知道什麼是貓,
06:18
and now that the machines can kind of understand理解.
155
366304
2523
而現在機器也有了一定理解。
06:20
Maybe just finishing精加工
156
368827
1172
也許它已經完成了搜尋這部分,
06:21
also on the search搜索 part部分,
157
369999
2222
06:24
it started開始 with search搜索, really understanding理解
158
372221
2786
它從搜尋開始,去理解人的意圖
06:27
people's人們 context上下文 and their information信息.
159
375007
2564
和他們的資訊。
06:29
I did have a video視頻
160
377571
1860
我有一個影片,
06:31
I wanted to show顯示 quickly很快 on that
161
379431
2010
我想快速展示一下
06:33
that we actually其實 found發現.
162
381441
1647
我發現了什麼。
06:35
(Video視頻) ["Soy黃豆, Kenya肯尼亞"]
163
383088
5112
(影片)
「肯亞,索伊」
06:40
Zack扎克 MatereMatere: Not long ago,
164
388580
1872
查克.馬泰爾:不久之前,
06:42
I planted種植的 a crop作物 of potatoes土豆.
165
390452
2586
我種了一片馬鈴薯,
06:45
Then suddenly突然 they started開始
dying垂死 one after the other.
166
393038
3400
然後突然地,
不斷有馬鈴薯死掉。
06:48
I checked檢查 out the books圖書 and
they didn't tell me much.
167
396438
2750
我查了書,但沒發現多少資訊,
06:51
So, I went and I did a search搜索.
168
399188
1946
所以我去搜尋了一下。
06:53
["Zack扎克 MatereMatere, Farmer農民"]
169
401134
3119
「查克.馬泰爾,農民」
06:57
Potato土豆 diseases疾病.
170
405609
3147
馬鈴薯、疾病。
07:00
One of the websites網站 told me
171
408756
1728
有一個網站告訴我
07:02
that ants螞蟻 could be the problem問題.
172
410484
1902
問題可能是螞蟻。
07:04
It said, sprinkle wood ash over the plants植物.
173
412386
2271
它說,在作物上撒一些木灰。
07:06
Then after a few少數 days the ants螞蟻 disappeared消失.
174
414657
2284
幾天之後螞蟻消失了。
07:08
I got excited興奮 about the Internet互聯網.
175
416941
2594
網路讓我非常興奮。
07:11
I have this friend朋友
176
419535
1665
我有個朋友,
07:13
who really would like to expand擴大 his business商業.
177
421200
3618
他很想擴展生意,
07:16
So I went with him to the cyber網絡 cafe咖啡店
178
424818
3195
於是我和他一起去了網咖,
07:20
and we checked檢查 out several一些 sites網站.
179
428013
2541
我們查了一些網站。
07:22
When I met會見 him next下一個, he was going to put a windmill風車
180
430554
2541
再次見到他時,
他準備在當地學校建一座風車。
07:25
at the local本地 school學校.
181
433095
2694
07:27
I felt proud驕傲 because
182
435789
1604
我感到很驕傲,
07:29
something that wasn't there before
183
437393
2028
因為一個以前沒有的東西,
07:31
was suddenly突然 there.
184
439421
1887
就這樣突然出現了。
07:33
I realized實現 that not everybody每個人
185
441308
2690
我意識到,
並不是所有人都能夠用
07:35
can be able能夠 to access訪問
186
443998
1534
07:37
what I was able能夠 to access訪問.
187
445532
1486
我能用的東西。
07:39
I thought that I need to have an Internet互聯網
188
447018
1838
我想我需要有種網路,
07:40
that my grandmother祖母 can use.
189
448856
1801
讓我奶奶也會用它。
07:42
So I thought about a notice注意 board.
190
450657
2457
所以我想到了一個公告欄,
07:45
A simple簡單 wooden notice注意 board.
191
453114
1916
一個簡單的木製公告欄。
07:47
When I get information信息 on my phone電話,
192
455030
2315
我從手機上得到資訊的時候,
07:49
I'm able能夠 to post崗位 the information信息
193
457345
2237
我就可以把它
07:51
on the notice注意 board.
194
459582
1722
公布在公告欄上。
07:53
So it's basically基本上 like a computer電腦.
195
461304
2858
所以,它有點像部電腦,
07:56
I use the Internet互聯網 to help people.
196
464162
3889
我用網際網路來幫助別人。
08:00
I think I am searching搜索 for
197
468051
3410
我認為我是在尋找
08:03
a better life
198
471461
1541
一個更好的生活,
08:05
for me and my neighbors鄰居.
199
473002
4114
為我,也為我的鄰居們。
08:09
So many許多 people have access訪問 to information信息,
200
477116
3984
這樣許多人都可以得到資訊,
08:13
but there's no follow-up跟進 to that.
201
481100
2581
但是在這之後就沒有後續了。
08:15
I think the follow-up跟進 to that is our knowledge知識.
202
483681
2508
我認為「後續」就是我們的知識。
08:18
When people have the knowledge知識,
203
486189
1606
人們有了知識,
08:19
they can find solutions解決方案
204
487795
1630
他們就能找到方法,
08:21
without having to helped幫助 out.
205
489425
1984
而不需要找人幫忙。
08:23
Information信息 is powerful強大,
206
491440
2121
資訊的力量很強大,
08:25
but it is how we use it that will define確定 us.
207
493561
4602
但是如何使用資訊
才決定我們的未來。
08:30
(Applause掌聲)
208
498163
4381
(掌聲)
08:34
LP唱片: Now, the amazing驚人 thing about that video視頻,
209
502544
2546
賴瑞.佩吉:
這段影片的精彩之處在於,
08:37
actually其實, was we just read about it in the news新聞,
210
505090
1466
我們是先從新聞看到,
08:38
and we found發現 this gentlemen紳士,
211
506556
2505
我們才找這位先生,
08:41
and made製作 that little clip.
212
509061
2315
錄了這段影片。
08:43
CRCR: When I talk to people about you,
213
511376
1391
查理.羅斯:當我和別人說起你,
08:44
they say to me, people who know you well, say,
214
512767
2605
這些很了解你的人,他們對我說,
賴瑞想要改變世界,
08:47
Larry拉里 wants to change更改 the world世界,
215
515372
1891
08:49
and he believes相信 technology技術 can show顯示 the way.
216
517263
4112
他相信科技可以指引方向,
08:53
And that means手段 access訪問 to the Internet互聯網.
217
521375
1858
而這需要有網路。
這也和語言有關。
08:55
It has to do with languages語言.
218
523233
1731
08:56
It also means手段 how people can get access訪問
219
524964
2829
這也意味著,
人們要如何存取網路
08:59
and do things that will affect影響 their community社區,
220
527793
2706
來做一些事情,
會影響到他所在的群體。
09:02
and this is an example.
221
530499
2493
這就是一個例子。
09:04
LP唱片: Yeah, that's right, and I think for me,
222
532992
3576
賴瑞.佩吉:是的,對我來說,
09:08
I have been focusing調焦 on access訪問 more,
223
536568
2382
我致力於更易用的網路,
09:10
if we're talking about the future未來.
224
538950
2198
如果我們說的是未來的話。
09:13
We recently最近 released發布 this Loon懶人 Project項目
225
541148
2674
我們最近推出了 Loon 專案,
09:15
which哪一個 is using運用 balloons氣球 to do it.
226
543822
2300
用熱氣球來存取網路,
09:18
It sounds聲音 totally完全 crazy.
227
546122
1660
聽起來很瘋狂。
09:19
We can show顯示 the video視頻 here.
228
547782
2539
我們可以在這裡播一下影片。
09:22
Actually其實, two out of three people in the world世界
229
550321
1480
世界上三分之二的人
09:23
don't have good Internet互聯網 access訪問 now.
230
551801
2386
沒好的網路可用。
09:26
We actually其實 think this can really help people
231
554187
2906
我們認為這個專案可以幫助人們,
09:29
sort分類 of cost-efficiently成本效益.
232
557093
2057
並且費用低廉。
09:31
CRCR: It's a balloon氣球.
LP唱片: Yeah, get access訪問 to the Internet互聯網.
233
559150
3371
查理.羅斯:這是一個氣球。
賴瑞.佩吉:是的,可以連網。
09:34
CRCR: And why does this balloon氣球 give you access訪問
234
562521
2143
查理.羅斯:為什麼可以透過這氣球連網?
09:36
to the Internet互聯網?
235
564664
1213
09:37
Because there was some interesting有趣 things
236
565877
1215
因為你得想出一些有趣的辦法,
09:39
you had to do to figure數字 out how
237
567092
1834
09:40
to make balloons氣球 possible可能,
238
568926
2131
來讓氣球連網成為可能,
09:43
they didn't have to be tethered.
239
571057
1749
還不用給氣球插上線。
09:44
LP唱片: Yeah, and this is a good example of innovation革新.
240
572806
2081
賴瑞.佩吉:
是的,這是個關於創新的好例子。
09:46
Like, we've我們已經 been thinking思維 about this idea理念
241
574887
2544
在我們在著手之前
09:49
for five years年份 or more
242
577431
1772
就已經在思考這想法了,
09:51
before we started開始 working加工 on it,
243
579203
1601
有五年甚至更久,
09:52
but it was just really,
244
580804
1319
但問題在於,
09:54
how do we get access訪問 points up high, cheaply廉價地?
245
582123
3520
如何才能便宜地
在天上設一個存取點?
09:57
You normally一般 have to use satellites衛星
246
585643
1792
傳統得用人造衛星,
09:59
and it takes a long time to launch發射 them.
247
587435
2939
但發射需要很長時間。
10:02
But you saw there how easy簡單 it is to launch發射 a balloon氣球
248
590374
2494
然後我們就想到,放個氣球到天上,
10:04
and get it up,
249
592868
1519
是多麼簡單的事,
10:06
and actually其實 again, it's the power功率 of the Internet互聯網,
250
594387
2001
這再次說明網路的力量。
10:08
I did a search搜索 on it,
251
596388
1780
我確實搜尋過這件事,
10:10
and I found發現, 30, 40 years年份 ago,
252
598168
2304
我發現三四十年前
10:12
someone有人 had put up a balloon氣球
253
600472
1889
就有人放出過一個氣球,
10:14
and it had gone走了 around the Earth地球 multiple times.
254
602361
2805
而這個氣球繞著地球轉了不少圈。
10:17
And I thought, why can't we do that today今天?
255
605166
2835
然後我想,我們如今
為何不這麼做呢?
10:20
And that's how this project項目 got going.
256
608001
2367
這個專案就這樣開始了。
10:22
CRCR: But are you at the mercy憐憫 of the wind?
257
610368
2330
查理.羅斯:
但是你受風的影響大嗎?
10:24
LP唱片: Yeah, but it turns out,
258
612698
2122
賴瑞.佩吉:是的,但實際上,
10:26
we did some weather天氣 simulations模擬
259
614820
1493
我們做了些氣象模擬,
10:28
which哪一個 probably大概 hadn't有沒有 really been doneDONE before,
260
616313
2547
很可能以前從來沒人做過,
10:30
and if you control控制 the altitude高度 of the balloons氣球,
261
618860
2110
如果控制氣球的高度,
10:32
which哪一個 you can do by pumping air空氣 into them
262
620970
2281
可以通過充氣或別的方法實現,
10:35
and other ways方法,
263
623251
1822
10:37
you can actually其實 control控制 roughly大致 where they go,
264
625073
2929
就可以大致控制氣球的動向,
10:40
and so I think we can build建立 a worldwide全世界 mesh網孔
265
628002
2205
因此,我想我們可以
建造一個世界性網路,
10:42
of these balloons氣球 that can cover the whole整個 planet行星.
266
630207
3339
用這些氣球來覆蓋全球。
10:45
CRCR: Before I talk about the future未來 and transportation運輸,
267
633546
2242
查理.羅斯:
在我們聊未來和運輸之前
10:47
where you've been a nerd書呆子 for a while,
268
635788
1895
──這兩樣你已浸淫了一段時間。
你對運輸、自動駕駛汽車和
自行車研究很深──
10:49
and this fascination魅力 you have with transportation運輸
269
637683
2424
10:52
and automated自動化 cars汽車 and bicycles自行車,
270
640107
2063
10:54
let me talk a bit about what's been the subject學科 here
271
642170
1737
我先提一下有關
愛德華.史諾登的話題,
10:55
earlier with Edward愛德華 Snowden斯諾登.
272
643907
2443
稍早前也是 TED 主題,
10:58
It is security安全 and privacy隱私.
273
646350
3106
事關安全與隱私。
11:01
You have to have been thinking思維 about that.
274
649456
2340
你一定一直有在思考這問題。
11:03
LP唱片: Yeah, absolutely絕對.
275
651796
1354
賴瑞.佩吉:是的,毫無疑問。
11:05
I saw the picture圖片 of Sergey謝爾蓋 with
Edward愛德華 Snowden斯諾登 yesterday昨天.
276
653150
2843
昨天我看到了謝爾蓋和
愛德華.史諾登的照片。
11:07
Some of you may可能 have seen看到 it.
277
655993
2870
在座的有些人應該也看到了。
11:10
But I think, for me, I guess猜測,
278
658863
3171
但我個人覺得,
11:14
privacy隱私 and security安全 are a really important重要 thing.
279
662034
3662
隱私和安全是非常重要的事情。
11:17
We think about it in terms條款 of both things,
280
665696
2245
我們在這兩方面都有所思考,
11:19
and I think you can't have privacy隱私 without security安全,
281
667941
2903
我認為沒有安全就不存在隱私,
11:22
so let me just talk about security安全 first,
282
670844
2371
所以我先談談安全,
11:25
because you asked about Snowden斯諾登 and all of that,
283
673215
2596
因為你問到了有關史諾登的事情,
11:27
and then I'll say a little bit about privacy隱私.
284
675811
2441
然後我會再講一點隱私。
11:30
I think for me, it's tremendously異常 disappointing令人失望
285
678252
3800
我個人感到極度失望,
政府偷偷做了這些事
沒有告訴我們。
11:34
that the government政府
286
682052
1439
11:35
secretly偷偷 did all this stuff東東 and didn't tell us.
287
683491
2330
11:37
I don't think we can have a democracy民主
288
685821
3303
我將不再擁有民主,
11:41
if we're having to protect保護 you and our users用戶
289
689124
3430
如果我們被迫由政府手中,
11:44
from the government政府
290
692554
1696
保護大家
不受未討論的事情侵害的話。
11:46
for stuff東東 that we've我們已經 never had a conversation會話 about.
291
694250
2803
11:49
And I don't mean we have to know
292
697053
1896
我倒不是說我們必須知道
11:50
what the particular特定 terrorist恐怖分子 attack攻擊 is they're worried擔心
293
698949
1695
政府所擔心的具體
恐怖襲擊是什麼,
11:52
about protecting保護 us from,
294
700644
1762
11:54
but we do need to know
295
702406
1798
而是我們需要知道
11:56
what the parameters參數 of it is,
296
704204
2410
在什麼樣的情況下,
11:58
what kind of surveillance監控 the government's政府的
297
706614
2044
政府要進行何種監控,
12:00
going to do and how and why,
298
708658
2168
打算怎麼做,為什麼這樣做,
12:02
and I think we haven't沒有 had that conversation會話.
299
710826
2277
我認為我們並沒有
討論過這些問題。
12:05
So I think the government's政府的 actually其實 doneDONE
300
713103
2567
我認為政府偷做這些事情,
這種失職造成了嚴重的傷害。
12:07
itself本身 a tremendous巨大 disservice幫倒忙
301
715670
2168
12:09
by doing all that in secret秘密.
302
717838
2161
12:11
CRCR: Never coming未來 to Google谷歌
303
719999
1615
查理.羅斯:
絕不要找 Google 要任何東西?
12:13
to ask for anything.
304
721614
1525
12:15
LP唱片: Not Google谷歌, but the public上市.
305
723139
2030
賴瑞.佩吉:不是 Google,而是大眾。
12:17
I think we need to
have a debate辯論 about that,
306
725169
3773
我認為我們需要討論一下這個問題,
12:20
or we can't have a functioning功能 democracy民主.
307
728942
2499
否則我們的民主就名不符實。
12:23
It's just not possible可能.
308
731441
1406
這不可能稱為民主。
12:24
So I'm sad傷心 that Google's谷歌的
309
732847
2244
對於 Google 處在一個,
12:27
in the position位置 of protecting保護 you and our users用戶
310
735091
2616
要防範政府偷雞摸狗的位置,
12:29
from the government政府
311
737707
1534
12:31
doing secret秘密 thing that nobody沒有人 knows知道 about.
312
739241
2244
我覺得很可悲。
12:33
It doesn't make any sense.
313
741485
1747
這毫無道理。
12:35
CRCR: Yeah. And then there's a privacy隱私 side of it.
314
743232
2990
查理.羅斯:沒錯,然後還有隱私方面的問題。
12:38
LP唱片: Yes. The privacy隱私 side,
315
746222
2427
賴瑞.佩吉:是的,還有隱私面,
12:40
I think it's -- the world世界 is changing改變.
316
748649
1969
我認為,世界在變。
12:42
You carry攜帶 a phone電話. It knows知道 where you are.
317
750618
3905
你帶著手機,它知道你在哪裡。
12:46
There's so much more information信息 about you,
318
754523
3085
還有許多你的個人資訊,
12:49
and that's an important重要 thing,
319
757608
2846
這是件非常重要的事情,
12:52
and it makes品牌 sense why people are asking
320
760454
2272
人們也合理地提出一些,
12:54
difficult questions問題.
321
762726
2036
難以回答的問題。
12:56
We spend a lot of time thinking思維 about this
322
764762
3367
我們花了很多時間去思考這一點,
13:00
and what the issues問題 are.
323
768129
2711
以及問題所在。
13:02
I'm a little bit --
324
770840
1729
我有一點……
13:04
I think the main主要 thing that we need to do
325
772569
1260
我認為我們需要做的事情裡最主要的一點,
13:05
is just provide提供 people choice選擇,
326
773829
2362
就是讓人們可以選擇,
13:08
show顯示 them what data's數據的 being存在 collected --
327
776191
2512
告訴他們什麼數據會被收集──
13:10
search搜索 history歷史, location位置 data數據.
328
778703
4751
搜尋記錄、位置資訊。
13:15
We're excited興奮 about incognito匿名 mode模式 in Chrome,
329
783454
2772
我們對於 Chrome 瀏覽器的
無痕模式感到很興奮,
13:18
and doing that in more ways方法,
330
786226
2249
將它應用到更多的方面,
13:20
just giving people more choice選擇
331
788475
1396
也就是給予人們更多選擇,
13:21
and more awareness意識 of what's going on.
332
789871
3293
讓他們更完整地
認識到發生了什麼事。
13:25
I also think it's very easy簡單.
333
793164
2393
我也認為這非常簡單。
13:27
What I'm worried擔心 is that we throw out
334
795557
1277
我所擔心的是,
13:28
the baby寶寶 with the bathwater洗澡水.
335
796834
2090
我們會因噎廢食。
13:30
And I look at, on your show顯示, actually其實,
336
798924
2914
我看到,在你的節目上,
13:33
I kind of lost丟失 my voice語音,
337
801838
1719
我嗓子有點啞了,
13:35
and I haven't沒有 gotten得到 it back.
338
803557
1331
我還沒有恢復。
13:36
I'm hoping希望 that by talking to you
339
804888
1644
我希望和你聊聊
13:38
I'm going to get it back.
340
806532
1653
能恢復得快一點。
13:40
CRCR: If I could do anything, I would do that.
341
808185
1732
查理.羅斯:
如果我能幫上什麼忙,我一定會幫。
13:41
LP唱片: All right. So get out your voodoo巫毒教 doll娃娃
342
809917
2180
賴瑞.佩吉:那好,拿出你的巫毒娃娃,
13:44
and whatever隨你 you need to do.
343
812097
2419
該做什麼儘管做。
13:46
But I think, you know what, I look at that,
344
814516
2328
但是我認為,我看著這件事,
13:48
I made製作 that public上市,
345
816844
1830
我把它公開化了,
13:50
and I got all this information信息.
346
818674
1217
我得到很多資訊。
13:51
We got a survey調查 doneDONE on medical conditions條件
347
819891
2729
我做了個關於身體狀況的調查,
13:54
with people who have similar類似 issues問題,
348
822620
3371
調查對象都有些類似的問題。
13:57
and I look at medical records記錄, and I say,
349
825991
4741
我一邊看著醫療記錄,一邊說,
14:02
wouldn't不會 it be amazing驚人
350
830732
1405
如果每個人的醫療記錄
14:04
if everyone's大家的 medical records記錄 were available可得到
351
832137
2050
都可以匿名地提供給
14:06
anonymously匿名
352
834187
1683
做研究的醫生,
14:07
to research研究 doctors醫生?
353
835870
2636
豈不是很好?
14:10
And when someone有人 accesses訪問 your medical record記錄,
354
838506
3041
當有人查看你的醫療記錄時,
14:13
a research研究 doctor醫生,
355
841547
1609
一個做研究的醫生,
14:15
they could see, you could see which哪一個 doctor醫生
356
843156
2634
他們可以看到,你也可以看到
14:17
accessed訪問 it and why,
357
845790
1860
是哪位醫生看了,為什麼,
14:19
and you could maybe learn學習 about
358
847650
1580
然後你也許可以了解到
14:21
what conditions條件 you have.
359
849230
1630
你的狀況如何。
14:22
I think if we just did that,
360
850860
1502
我想我們若做到這點,
14:24
we'd星期三 save保存 100,000 lives生活 this year.
361
852362
2165
一年就可以多救十萬人。
14:26
CRCR: Absolutely絕對. Let me go — (Applause掌聲)
362
854527
2948
查理.羅斯:毫無疑問。讓我……
(掌聲)
14:29
LP唱片: So I guess猜測 I'm just very worried擔心 that
363
857475
2762
賴瑞.佩吉:我想我就是非常擔心
14:32
with Internet互聯網 privacy隱私,
364
860237
1806
網路隱私的問題。
14:34
we're doing the same相同 thing we're
doing with medical records記錄,
365
862043
2300
我們的問題和醫療記錄一樣,
14:36
is we're throwing投擲 out the baby寶寶 with the bathwater洗澡水,
366
864347
2529
就是我們因噎廢食了,
14:38
and we're not really thinking思維
367
866876
1828
我們沒有真正地思考過
14:40
about the tremendous巨大 good that can come
368
868704
2210
資訊共享帶來的巨大益處,
14:42
from people sharing分享 information信息
369
870914
2191
人們分享資訊,
14:45
with the right people in the right ways方法.
370
873105
2577
與正確的人分享,用正確的方式。
14:47
CRCR: And the necessary必要 condition條件
371
875682
2237
查理.羅斯:還有一個必要條件,
14:49
that people have to have confidence置信度
372
877919
1702
就是人們得有信心,
14:51
that their information信息 will not be abused濫用.
373
879621
2455
相信他們的資訊不會被濫用。
14:54
LP唱片: Yeah, and I had this problem問題 with my voice語音 stuff東東.
374
882076
1777
賴瑞.佩吉:是的,
我在嗓音上有同樣的問題,
14:55
I was scared害怕 to share分享 it.
375
883853
1508
我害怕分享出來。
14:57
Sergey謝爾蓋 encouraged鼓勵 me to do that,
376
885361
1890
謝爾蓋鼓勵我這麼做,
14:59
and it was a great thing to do.
377
887251
1827
這件事非常值得做。
15:01
CRCR: And the response響應 has been overwhelming壓倒.
378
889078
1734
查理.羅斯:
而且大家的反應出奇地好。
15:02
LP唱片: Yeah, and people are super positive.
379
890812
1660
賴瑞.佩吉:
是的,而且人們的反應極為正面。
15:04
We got thousands數千 and thousands數千 of people
380
892472
2833
我們調查了成千上萬的人,
15:07
with similar類似 conditions條件,
381
895305
1288
都有類似狀況,
15:08
which哪一個 there's no data數據 on today今天.
382
896593
3028
而這些數據至今都是沒有的。
15:11
So it was a really good thing.
383
899621
1356
所以這是件非常好的事情。
15:12
CRCR: So talking about the future未來, what is it about you
384
900977
3019
查理.羅斯:
說到未來,你是怎麼
15:15
and transportation運輸 systems系統?
385
903996
3758
注意到運輸系統的?
15:19
LP唱片: Yeah. I guess猜測 I was just frustrated受挫
386
907754
2177
賴瑞.佩吉:
我在密西根州讀大學的時候,
15:21
with this when I was at college學院 in Michigan密歇根州.
387
909931
2539
我是感到非常沮喪的。
15:24
I had to get on the bus總線 and take it
388
912470
1450
我必須坐公共汽車,
15:25
and wait for it.
389
913920
1642
還要等它。
15:27
And it was cold and snowing下雪.
390
915562
2179
當時很冷,又在下雪。
15:29
I did some research研究 on how much it cost成本,
391
917741
2655
我做了點成本研究,
15:32
and I just became成為 a bit obsessed痴迷
with transportation運輸 systems系統.
392
920396
6425
然後我就有點迷上了運輸系統。
15:38
CRCR: And that began開始 the idea理念 of an automated自動化 car汽車.
393
926821
2370
查理.羅斯:
於是就有了自動駕駛汽車的想法。
15:41
LP唱片: Yeah, about 18 years年份 ago I learned學到了 about
394
929191
1694
賴瑞.佩吉:
是的,大約 18 年前我發現
15:42
people working加工 on automated自動化 cars汽車,
395
930885
3182
有人在研究自動駕駛,
15:46
and I became成為 fascinated入迷 by that,
396
934067
1623
我被深深吸引,
15:47
and it takes a while to
get these projects項目 going,
397
935690
2777
讓這些專案有所進展得花點時間,
15:50
but I'm super excited興奮 about the possibilities可能性 of that
398
938467
5097
但是想到有可能讓世界變得更好,
我感到無比興奮。
15:55
improving提高 the world世界.
399
943564
1668
15:57
There's 20 million百萬 people or more injured受傷 per year.
400
945232
4526
每年有超過兩千萬人受傷。
16:01
It's the leading領導 cause原因 of death死亡
401
949758
1986
這是美國 34 歲以下群體
16:03
for people under 34 in the U.S.
402
951744
2130
的主要死因。
16:05
CRCR: So you're talking about saving保存 lives生活.
403
953874
1551
查理.羅斯:這就是拯救生命了。
16:07
LP唱片: Yeah, and also saving保存 space空間
404
955425
2355
賴瑞.佩吉:是的,也是節省空間
16:09
and making製造 life better.
405
957780
3915
和讓生活更美好。
16:13
Los洛杉磯 Angeles洛杉磯 is half parking停車處 lots and roads道路,
406
961695
4245
在洛杉磯一半的土地
都是停車場和道路,
16:17
half of the area,
407
965940
1733
一半的土地,
16:19
and most cities城市 are not far behind背後, actually其實.
408
967673
2827
而且大部分城市其實也差不多了。
16:22
It's just crazy
409
970500
1564
這實在是太瘋狂了,
16:24
that that's what we use our space空間 for.
410
972064
1593
我們居然這樣利用空間。
16:25
CRCR: And how soon不久 will we be there?
411
973657
2343
查理.羅斯:我們什麼時候可以實現?
16:28
LP唱片: I think we can be there very, very soon不久.
412
976000
1926
賴瑞.佩吉:
我想非常、非常快就可以實現了。
16:29
We've我們已經 driven驅動 well over 100,000 miles英里
413
977926
3501
我們已正常行駛超過十萬英里,
16:33
now totally完全 automated自動化.
414
981427
4093
現在完全是自動行駛。
16:37
I'm super excited興奮 about getting得到 that out quickly很快.
415
985520
3652
能夠這麼快地實現它,讓我無比興奮。
16:41
CRCR: But it's not only you're
talking about automated自動化 cars汽車.
416
989172
2405
查理.羅斯:但你考慮的
不只是自動駕駛汽車,
16:43
You also have this idea理念 for bicycles自行車.
417
991577
2386
你對自行車也有這樣的想法。
16:45
LP唱片: Well at Google谷歌, we got this idea理念
418
993963
2246
賴瑞.佩吉:
在 Google,我們有個想法,
16:48
that we should just provide提供 free自由 bikes自行車 to everyone大家,
419
996209
3451
我們應該向每一個人
提供免費自行車,
16:51
and that's been amazing驚人, most of the trips旅行.
420
999660
2768
這非常棒,對大多數旅行都是。
16:54
You see bikes自行車 going everywhere到處,
421
1002428
1586
自行車哪都能去,
16:56
and the bikes自行車 wear穿 out.
422
1004014
1566
而自行車會磨損,
16:57
They're getting得到 used 24 hours小時 a day.
423
1005580
1454
一天 24 小時都在用。
16:59
CRCR: But you want to put them above以上 the street, too.
424
1007034
2160
查理.羅斯:但你也想把自行車放到街道上。
17:01
LP唱片: Well I said, how do we get people
425
1009194
1575
賴瑞.佩吉:我就說,怎樣才能
17:02
using運用 bikes自行車 more?
426
1010769
1527
讓人們多騎自行車呢?
17:04
CRCR: We may可能 have a video視頻 here.
427
1012296
1625
查理.羅斯:我們這有一段影片。
17:05
LP唱片: Yeah, let's show顯示 the video視頻.
428
1013921
1278
賴瑞.佩吉:
好,我們來播一下影片,
17:07
I just got excited興奮 about this.
429
1015199
3092
這個讓我非常興奮。
17:10
(Music音樂)
430
1018291
4042
(音樂)
其實這就是把自行車與
汽車分離的最經濟方法,
17:16
So this is actually其實 how you might威力 separate分離
431
1024213
2425
17:18
bikes自行車 from cars汽車 with minimal最小 cost成本.
432
1026638
3629
17:26
Anyway無論如何, it looks容貌 totally完全 crazy,
433
1034711
1755
這看起來很瘋狂,
但實際上我考慮的是我們的校園,
17:28
but I was actually其實 thinking思維 about our campus校園,
434
1036466
2327
和許多城市等等一起合作,
17:30
working加工 with the ZippiesZippies and stuff東東,
435
1038793
2060
17:32
and just trying to get a lot more bike自行車 usage用法,
436
1040853
2298
就是想大大提高自行車使用率,
17:35
and I was thinking思維 about,
437
1043151
1548
我還在想,
17:36
how do you cost-effectively成本效益 separate分離
438
1044699
2831
我們怎樣才能有效並且廉價地
把自行車從車流中分離?
17:39
the bikes自行車 from traffic交通?
439
1047530
1414
17:40
And I went and searched搜索,
440
1048944
1150
我做了研究,
17:42
and this is what I found發現.
441
1050094
1371
這就是我所得到的。
17:43
And we're not actually其實 working加工 on this,
442
1051465
1845
我們其實沒有研究這個,
17:45
that particular特定 thing,
443
1053310
1292
我是說這個具體方案,
17:46
but it gets得到 your imagination想像力 going.
444
1054602
2054
但它擴展了想像力。
17:48
CRCR: Let me close with this.
445
1056656
1764
查理.羅斯:
我們把這個話題先告一段落,
17:50
Give me a sense of the philosophy哲學
of your own擁有 mind心神.
446
1058420
2345
說一下你內心的哲學。
17:52
You have this idea理念 of [Google谷歌 X].
447
1060765
2488
你有了 Google X 這個想法,
17:55
You don't simply只是 want
448
1063253
2996
你想要的不只是一些
17:58
to go in some small, measurable可測量 arena競技場 of progress進展.
449
1066249
5596
小的,規模有限的舞臺。
18:03
LP唱片: Yeah, I think
450
1071845
1713
賴瑞.佩吉:是的,我認為
18:05
many許多 of the things we just
talked about are like that,
451
1073558
2131
我們剛討論過的許多事情就是這樣,
18:07
where they're really --
452
1075689
2952
它們真是……
18:10
I almost幾乎 use the economic經濟 concept概念 of additionality額外,
453
1078641
3630
我差點要用經濟學
概念上的額外性了,
18:14
which哪一個 means手段 that you're doing something
454
1082271
2190
就是說,你要做的事情
本來並不會發生,
18:16
that wouldn't不會 happen發生 unless除非
you were actually其實 doing it.
455
1084461
2948
除非你真的動手做。
18:19
And I think the more you can do things like that,
456
1087409
3140
我認為這樣的事情你做得越多,
18:22
the bigger impact碰撞 you have,
457
1090549
2071
你的影響力就越大,
18:24
and that's about doing things
458
1092620
2990
重點在於
18:27
that people might威力 not think are possible可能.
459
1095610
3607
去做人們認為不可能的事。
18:31
And I've been amazed吃驚,
460
1099217
1829
我驚訝地發現,
18:33
the more I learn學習 about technology技術,
461
1101046
2229
我懂的技術越多,
18:35
the more I realize實現 I don't know,
462
1103275
2196
就越意識到自己的不足。
18:37
and that's because this technological技術性 horizon地平線,
463
1105471
3337
這是因為技術的眼界提高了,
18:40
the thing that you can see to do next下一個,
464
1108808
2897
也就是預見下一步
該怎麼做的能力。
18:43
the more you learn學習 about technology技術,
465
1111705
1840
你懂的技術越多,
18:45
the more you learn學習 what's possible可能.
466
1113545
2602
你就越知道什麼是可能的。
18:48
You learn學習 that the balloons氣球 are possible可能
467
1116147
2246
你知道氣球專案是可能的,
18:50
because there's some material材料
that will work for them.
468
1118393
2337
因為有合適的材料可用。
18:52
CRCR: What's interesting有趣 about
you too, though雖然, for me,
469
1120730
2379
查理.羅斯:不過在我看來,
你的有趣之處在於,
18:55
is that, we have lots of people
470
1123109
1711
有很多的人在思考未來,
18:56
who are thinking思維 about the future未來,
471
1124820
2142
有很多的人在思考未來,
18:58
and they are going and looking
and they're coming未來 back,
472
1126962
3268
他們去看了看,又回來了,
19:02
but we never see the implementation履行.
473
1130230
2127
而我們卻沒有看到最終實現。
19:04
I think of somebody you knew知道
474
1132357
1605
我想到了一個人,你一定知道,
19:05
and read about, Tesla特斯拉.
475
1133962
2907
特斯拉。
19:08
The principle原理 of that for you is what?
476
1136869
3804
你在這方面的原則是怎樣的?
19:12
LP唱片: Well, I think invention發明 is not enough足夠.
477
1140673
1785
賴瑞.佩吉:
我認為僅僅有發明是不夠的。
19:14
If you invent發明 something,
478
1142458
1221
如果你發明一樣東西,
19:15
Tesla特斯拉 invented發明 electric電動 power功率 that we use,
479
1143679
3195
特斯拉發明了
我們用的電力系統,
19:18
but he struggled掙扎 to get it out to people.
480
1146874
2661
但是他推廣起來就非常困難,
19:21
That had to be doneDONE by other people.
481
1149535
1684
普及是由別人實現的,
19:23
It took a long time.
482
1151219
1626
花費了很長時間。
19:24
And I think if we can actually其實 combine結合 both things,
483
1152845
3867
我認為,如果我們能將
二者真正結合起來,
19:28
where we have an innovation革新 and invention發明 focus焦點,
484
1156712
3531
同時著眼於創新與發明,
19:32
plus the ability能力 to really -- a company公司
485
1160243
2972
再加上一家公司,
19:35
that can really commercialize商業化 things
486
1163215
1998
可以使成果真正商業化,
19:37
and get them to people
487
1165213
1630
讓人們接觸到它,
19:38
in a way that's positive for the world世界
488
1166843
2075
讓它對世界有積極的影響,
19:40
and to give people hope希望.
489
1168918
2056
並給人們帶來希望。
19:42
You know, I'm amazed吃驚 with the Loon懶人 Project項目
490
1170974
2774
你知道,大家對氣球專案的關注程度
19:45
just how excited興奮 people were about that,
491
1173748
2786
讓我很是吃驚,
19:48
because it gave them hope希望
492
1176534
1814
因為它帶來了希望,
19:50
for the two thirds三分之二 of the world世界
493
1178348
1621
尤其是對世界上無法
上網的三分之二來說,
19:51
that doesn't have Internet互聯網 right now that's any good.
494
1179969
2726
19:54
CRCR: Which哪一個 is a second第二 thing about corporations公司.
495
1182695
2122
查理.羅斯:
這就是關於公司的第二件事。
19:56
You are one of those people who believe
496
1184817
2476
有些人,包括你,認為,
19:59
that corporations公司 are an agent代理人 of change更改
497
1187293
2317
公司可以成為帶來改變的媒介,
20:01
if they are run well.
498
1189610
1471
如果好好經營的話。
20:03
LP唱片: Yeah. I'm really dismayed沮喪
499
1191081
1821
賴瑞.佩吉:是的,
多數人認為企業是邪惡的,
20:04
most people think companies公司 are basically基本上 evil邪惡.
500
1192902
3294
這讓我很是沮喪,
20:08
They get a bad rap敲擊.
501
1196196
1766
這麼說並不公正,
20:09
And I think that's somewhat有些 correct正確.
502
1197962
2241
但我認為在某程度上又是正確的。
20:12
Companies公司 are doing the same相同 incremental增加的 thing
503
1200203
2870
公司做的事情就是漸進發展,
20:15
that they did 50 years年份 ago
504
1203073
1763
五十年前的公司就這樣做,
20:16
or 20 years年份 ago.
505
1204836
1631
或者說二十年前,
20:18
That's not really what we need.
506
1206467
1370
這也並非是我們真正需要的。
20:19
We need, especially特別 in technology技術,
507
1207837
2218
我們需要的是,特別是在科技上,
20:22
we need revolutionary革命的 change更改,
508
1210055
2117
是革命性改變,
20:24
not incremental增加的 change更改.
509
1212172
1413
而不是漸進式改變。
20:25
CRCR: You once一旦 said, actually其實,
510
1213585
1169
查理.羅斯:你曾說過,
20:26
as I think I've got this about right,
511
1214754
1818
我希望我的理解是對的,
20:28
that you might威力 consider考慮,
512
1216572
1645
就是,你可能考慮,
20:30
rather than giving your money,
513
1218217
1753
相較於直接捐出你的錢,
20:31
if you were leaving離開 it to some cause原因,
514
1219970
3320
你更願意用於某些事業,
20:35
just simply只是 giving it to Elon伊隆 Musk,
515
1223290
2006
給伊隆.馬斯克就好了,
20:37
because you had confidence置信度
516
1225296
1163
因為你相信
20:38
that he would change更改 the future未來,
517
1226459
1842
他會改變未來,
20:40
and that you would therefore因此
518
1228301
1777
因此你就會……
20:42
LP唱片: Yeah, if you want to go Mars火星,
519
1230078
1584
賴瑞.佩吉:是的,如果你想去火星,
20:43
he wants to go to Mars火星,
520
1231662
1721
他想去火星,
20:45
to back up humanity人性,
521
1233383
1971
來為人類尋找後備方案,
這目標很有價值,
但對公司來說是慈善事業。
20:47
that's a worthy值得 goal目標, but it's a company公司,
522
1235354
1672
20:49
and it's philanthropical慈善.
523
1237026
2555
20:51
So I think we aim目標 to do kind of similar類似 things.
524
1239581
2952
所以我覺得我們的目標
是做些類似的事情。
20:54
And I think, you ask, we have a lot of employees僱員
525
1242533
2987
你問過,我們在 Google 有許多員工,
20:57
at Google谷歌 who have become成為 pretty漂亮 wealthy富裕.
526
1245520
3315
他們非常富有,
21:00
People make a lot of money in technology技術.
527
1248835
2520
通過技術賺了很多錢,
21:03
A lot of people in the room房間 are pretty漂亮 wealthy富裕.
528
1251355
2156
很多人都非常富有。
21:05
You're working加工 because you
want to change更改 the world世界.
529
1253511
2314
你工作的目的是改變世界,
21:07
You want to make it better.
530
1255825
1762
你想讓世界變得更好。
21:09
Why isn't the company公司 that you work for
531
1257587
3445
為什麼你工作的這家公司,
21:13
worthy值得 not just of your time
532
1261032
1943
值得你投入時間,
21:14
but your money as well?
533
1262975
2151
卻不值得你投入金錢呢?
21:17
I mean, but we don't have a concept概念 of that.
534
1265126
1722
我的意思是,我們並不這樣認為,
21:18
That's not how we think about companies公司,
535
1266848
2304
我們也不是這樣看待公司的。
21:21
and I think it's sad傷心,
536
1269152
1467
我也覺得很傷感,
21:22
because companies公司 are most of our effort功夫.
537
1270619
3767
因為我們所付出的努力
絕大部分都花在了公司上。
21:26
They're where most of people's人們 time is,
538
1274386
2515
人們在這裡付出了最多的時間,
21:28
where a lot of the money is,
539
1276901
1854
也花費了許多金錢,
21:30
and so I think I'd like for us to help out
540
1278755
2352
所以我想我要幫助大家,
21:33
more than we are.
541
1281107
1126
而非只顧自己。
21:34
CRCR: When I close conversations對話 with lots of people,
542
1282233
1721
查理.羅斯:
我跟許多人的談話結束時,
21:35
I always ask this question:
543
1283954
1779
我總是問這樣的一個問題:
21:37
What state of mind心神,
544
1285733
1515
怎樣的心態,
21:39
what quality質量 of mind心神 is it
545
1287248
1809
怎樣的心靈特質,
21:41
that has served提供服務 you best最好?
546
1289057
1767
讓你最有收穫?
21:42
People like Rupert魯珀特 Murdoch默多克 have said curiosity好奇心,
547
1290824
2521
像魯柏.梅鐸這樣的人
說是好奇心,
21:45
and other people in the media媒體 have said that.
548
1293345
2628
別的媒體人士也這樣說。
21:47
Bill法案 Gates蓋茨 and Warren養兔場 Buffett巴菲特 have said focus焦點.
549
1295973
3024
比爾.蓋茲和華倫.巴菲特
說是專注,
21:50
What quality質量 of mind心神,
550
1298997
1427
什麼樣的心靈特質
21:52
as I leave離開 this audience聽眾,
551
1300424
1374
──在與觀眾說再見前──
21:53
has enabled啟用 you to think about the future未來
552
1301798
3530
使得你能夠思考未來,
21:57
and at the same相同 time
553
1305328
1647
而且與此同時,
21:58
change更改 the present當下?
554
1306975
2205
改變現在?
22:01
LP唱片: You know, I think the most important重要 thing --
555
1309180
1670
賴瑞.佩吉:
我認為最重要的事情,
22:02
I looked看著 at lots of companies公司
556
1310850
1612
我見過很多公司,
22:04
and why I thought they don't succeed成功 over time.
557
1312462
3303
為什麼我認為它們
沒能經受時間的考驗。
22:07
We've我們已經 had a more rapid快速 turnover周轉 of companies公司.
558
1315765
2833
如今公司的人員流動更快,
22:10
And I said, what did they fundamentally從根本上 do wrong錯誤?
559
1318598
2769
我問,他們出錯的根源是什麼?
22:13
What did those companies公司 all do wrong錯誤?
560
1321367
2167
這些公司都錯在了哪裡?
22:15
And usually平時 it's just that they missed錯過 the future未來.
561
1323534
3272
通常就是因為他們錯失了未來。
22:18
And so I think, for me,
562
1326806
2444
所以在我看來,
22:21
I just try to focus焦點 on that and say,
563
1329250
2424
我就是專注於這一點,並且在想,
22:23
what is that future未來 really going to be
564
1331674
2184
未來將真正走向何方,
22:25
and how do we create創建 it,
565
1333858
1787
我們要如何創造未來,
22:27
and how do we cause原因 our organization組織,
566
1335645
4667
我們怎樣才能讓我們的組織
22:32
to really focus焦點 on that
567
1340312
2440
真正專注於它,
22:34
and drive駕駛 that at a really high rate?
568
1342752
3325
並且帶領組織快速行動呢?
22:38
And so that's been curiosity好奇心,
569
1346077
1360
所以那就是好奇心,
22:39
it's been looking at things
570
1347437
1733
去尋找人們
22:41
people might威力 not think about,
571
1349170
1718
可能沒有想過的東西,
22:42
working加工 on things that no one else其他 is working加工 on,
572
1350888
3105
研究別人所沒有研究過的東西,
22:45
because that's where the additionality額外 really is,
573
1353993
3306
因為那才是真正的額外性,
22:49
and be willing願意 to do that,
574
1357299
1551
同時樂於去做,
22:50
to take that risk風險.
575
1358850
1382
樂於承擔風險。
22:52
Look at AndroidAndroid的.
576
1360232
1065
看看 Android,
22:53
I felt guilty有罪 about working加工 on AndroidAndroid的
577
1361297
2785
為 Android 花心力曾讓我感到內疚,
22:56
when it was starting開始.
578
1364082
1316
在它剛起步時,
22:57
It was a little startup啟動 we bought.
579
1365398
1958
我們併購它時,
它只是個小公司。
22:59
It wasn't really what we were really working加工 on.
580
1367356
2670
它當時也不是我們
真正努力的方向。
23:02
And I felt guilty有罪 about spending開支 time on that.
581
1370026
2495
為它花時間讓我感到內疚,
23:04
That was stupid.
582
1372521
1454
那真是非常傻。
23:05
That was the future未來, right?
583
1373975
1051
但那就是未來,對吧?
23:07
That was a good thing to be working加工 on.
584
1375026
2285
那是個很棒的東西,
值得為之努力。
23:09
CRCR: It is great to see you here.
585
1377311
1417
查理.羅斯:
很高興在這裡見到你,
23:10
It's great to hear from you,
586
1378728
1460
很高興聽到你的講述,
23:12
and a pleasure樂趣 to sit at this table with you.
587
1380188
2297
和你一起坐在這也是我的榮幸。
23:14
Thanks謝謝, Larry拉里.
588
1382485
928
謝謝賴瑞。
23:15
LP唱片: Thank you.
589
1383413
2103
賴瑞.佩吉:謝謝你。
23:17
(Applause掌聲)
590
1385516
3932
(掌聲)
23:21
CRCR: Larry拉里 Page.
591
1389448
3311
查理.羅斯:賴瑞.佩吉。
Translated by Kuan-Yi Li
Reviewed by Ana Choi

▲Back to top

ABOUT THE SPEAKER
Larry Page - CEO of Google
Larry Page is the CEO and cofounder of Google, making him one of the ruling minds of the web.

Why you should listen

Larry Page and Sergey Brin met in grad school at Stanford in the mid-'90s, and in 1996 started working on a search technology based on a new idea: that relevant results come from context. Their technology analyzed the number of times a given website was linked to by other sites — assuming that the more links, the more relevant the site — and ranked sites accordingly. In 1998, they opened Google in a garage-office in Menlo Park. In 1999 their software left beta and started its steady rise to web domination.

Beyond the company's ubiquitous search, including AdSense/AdWords, Google Maps, Google Earth and the mighty Gmail. In 2011, Page stepped back into his original role of chief executive officer. He now leads Google with high aims and big thinking, and finds time to devote to his projects like Google X, the idea lab for the out-there experiments that keep Google pushing the limits.

More profile about the speaker
Larry Page | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee