ABOUT THE SPEAKER
Lux Narayan - Entrepreneur
Lux Narayan is a perpetual learner of various things -- from origami and molecular gastronomy to stand-up and improv comedy.

Why you should listen

Lakshmanan aka Lux Narayan mans the helm of Unmetric, a social media intelligence company that helps digital marketers, social media analysts, and content creators harness social signals to track and analyze competitive content and campaigns, and to create better content and campaigns of their own.

Prior to founding Unmetric, Narayan was a co-founder at Vembu Technologies, an online data backup company. He also helped found and volunteered at ShareMyCake, a non-profit started by his wife that focuses on encouraging children to use their birthdays to channel monetary support towards a cause of their choosing.

As Unmetric's CEO, he leads a team of 70 people distributed across the company's operations in Chennai and New York City.

Outside of work, he is a perpetual learner of various things -- from origami and molecular gastronomy to stand-up and improv comedy. He enjoys reading obituaries and other non-fiction and watching documentaries with bad ratings. Narayan makes time every year for trekking in the Himalayas or scuba diving in tropical waters, and once he learns to fly, he hopes to spend more time off land than on it.

More profile about the speaker
Lux Narayan | Speaker | TED.com
TEDNYC

Lux Narayan: What I learned from 2,000 obituaries

拉克斯.納拉揚: 我們從 2000 則訃聞中,學到什麼?

Filmed:
1,705,669 views

納拉揚在每天的早上,都是一邊吃著炒蛋,一邊問:「誰在今天過世了?」為什麼他會這麼做?納拉揚分析了 20 個月當中,2000 篇紐約時報的訃聞。納拉揚認為,從這些簡單的文字當中,可以看到亡者一輩子的成就。在這裡他分享了,在報紙上這些令我們緬懷的事蹟,教導我們如何好好活著我們的人生。
- Entrepreneur
Lux Narayan is a perpetual learner of various things -- from origami and molecular gastronomy to stand-up and improv comedy. Full bio

Double-click the English transcript below to play the video.

00:12
Joseph約瑟夫 Keller凱勒 used to jog慢跑
around the Stanford斯坦福 campus校園,
0
879
4072
約瑟夫·凱勒習慣在
史丹福大學校園周圍慢跑,
00:16
and he was struck來襲 by all the women婦女
jogging跑步 there as well.
1
4975
4717
在那裡慢跑的其他女性,
引發了他的好奇:
00:21
Why did their ponytails馬尾辮 swing搖擺
from side to side like that?
2
9716
3589
為什麼她們的馬尾總是左右晃動著?
00:25
Being存在 a mathematician數學家,
he set out to understand理解 why.
3
13867
3138
身為一名數學家,
他決定要弄清楚原因。
00:29
(Laughter笑聲)
4
17029
1151
(笑聲)
00:30
Professor教授 Keller凱勒 was curious好奇
about many許多 things:
5
18204
2306
凱勒教授對許多事情都很好奇:
00:32
why teapots茶壺 dribble運球
6
20534
1967
為什麼茶水會順著壺嘴滴下來,
00:34
or how earthworms蚯蚓 wriggle蠢動.
7
22525
1830
或是蚯蚓如何蠕動。
00:36
Until直到 a few少數 months個月 ago,
I hadn't有沒有 heard聽說 of Joseph約瑟夫 Keller凱勒.
8
24847
3048
幾個月之前,
我還不知道約瑟夫·凱勒是誰。
00:40
I read about him in the New York紐約 Times,
9
28581
2852
我在紐約時報看到他的消息,
00:43
in the obituaries訃告.
10
31457
1432
在訃聞版。
00:44
The Times had half a page
of editorial社論 dedicated專用 to him,
11
32913
3772
紐約時報的編輯
用了半個版面來向他致敬。
00:48
which哪一個 you can imagine想像 is premium額外費用 space空間
for a newspaper報紙 of their stature身材.
12
36709
3922
你可以想像得到,
對一家大報社來說,
這代表著極高的尊崇。
00:53
I read the obituaries訃告 almost幾乎 every一切 day.
13
41368
2342
我幾乎每天都會閱讀訃聞版。
00:56
My wife妻子 understandably可以理解的 thinks
I'm rather morbid病態
14
44690
3022
我的妻子曉得我這個
有點病態的習慣:
00:59
to begin開始 my day with scrambled eggs
and a "Let's see who died死亡 today今天."
15
47736
4400
每天早晨,我會一邊吃著炒蛋,
一邊閱讀訃聞版:
「我們來看看今天有誰去世了」。
01:04
(Laughter笑聲)
16
52160
1150
(笑聲)
01:06
But if you think about it,
17
54025
1292
但是如果你仔細想想,
01:07
the front面前 page of the newspaper報紙
is usually平時 bad news新聞,
18
55341
3413
報紙的頭版通常刊登壞消息,
01:10
and cues線索 man's男人的 failures故障.
19
58778
1975
這暗示我們某人失敗了。
01:12
An instance where bad news新聞
cues線索 accomplishment成就
20
60777
2666
然而有一種情況:
壞消息卻暗示了某人的成就,
01:15
is at the end結束 of the paper,
in the obituaries訃告.
21
63467
3235
那就是在報紙的最後一版,
在訃聞版。
01:19
In my day job工作,
22
67405
1364
我平常的工作,
01:20
I run a company公司 that focuses重點
on future未來 insights見解
23
68793
2476
是經營一間企管顧問公司,
我們關注未來的發展趨勢,
01:23
that marketers營銷 can derive派生
from past過去 data數據 --
24
71293
2420
並分析過去所累積的數據──
01:25
a kind of rearview-mirror後視鏡 analysis分析.
25
73737
2944
這是一種稱為「回顧分析」的技術。
01:29
And we began開始 to think:
26
77092
1155
我們開始思考:
01:30
What if we held保持 a rearview後視鏡 mirror鏡子
to obituaries訃告 from the New York紐約 Times?
27
78271
5118
如果我們對紐約時報的訃聞版,
進行回顧分析?
01:36
Were there lessons教訓 on how you could get
your obituary訃告 featured精選 --
28
84514
3468
能否從裡面學到
「如何讓訃聞變得更為獨特」──
01:40
even if you aren't around to enjoy請享用 it?
29
88006
1977
即使你以後也看不到自己的訃聞?
01:42
(Laughter笑聲)
30
90007
1484
(笑聲)
01:43
Would this go better with scrambled eggs?
31
91515
2628
這樣做能讓訃聞更適合搭配炒蛋嗎?
01:46
(Laughter笑聲)
32
94167
1150
(笑聲)
01:48
And so, we looked看著 at the data數據.
33
96163
2998
所以,我們檢視了數據。
01:51
2,000 editorial社論, non-paid非支付 obituaries訃告
34
99869
4494
我們分析了總共 2000 篇
由編輯部刊登,非付費的訃聞,
01:56
over a 20-month-月 period
between之間 2015 and 2016.
35
104387
3642
範圍是 2015 到 2016 年的
20 個月之間。
02:00
What did these 2,000 deaths死亡 --
rather, lives生活 -- teach us?
36
108053
4824
究竟這 2000 個死亡
──應該說是生命──
教導了我們什麼?
02:04
Well, first we looked看著 at words.
37
112901
2033
好,首先來看訃聞的用字。
02:06
This here is an obituary訃告 headline標題.
38
114958
1761
這是一篇訃聞的標題。
02:08
This one is of the amazing驚人 Lee背風處 Kuan Yew紅豆杉.
39
116743
2296
這一位是傳奇人物李光耀。
02:11
If you remove去掉 the beginning開始 and the end結束,
40
119063
2522
移除開頭和結尾後的內容,
02:13
you're left with a beautifully精美
worded措辭 descriptor描述
41
121609
3334
只剩短短的幾句話,
一些優美的描述辭彙,
02:16
that tries嘗試 to, in just a few少數 words,
capture捕獲 an achievement成就 or a lifetime一生.
42
124967
4675
能讓你捕捉到亡者的成就,
或是他的一生。
02:21
Just looking at these is fascinating迷人.
43
129666
2161
看著這些詞彙就夠令人著迷了。
02:24
Here are a few少數 famous著名 ones那些,
people who died死亡 in the last two years年份.
44
132301
3295
這裡有幾位,
在這兩年內過世的名人。
02:27
Try and guess猜測 who they are.
45
135620
1319
試著猜猜看他們是誰。
02:28
[An Artist藝術家 who Defied笑傲 Genre類型]
46
136963
1440
「一位顛覆形式的藝術家」
02:30
That's Prince王子.
47
138427
1185
這是王子。
02:32
[Titan泰坦 of Boxing拳擊 and the 20th Century世紀]
48
140497
1837
「二十世紀的拳擊巨星」
02:34
Oh, yes.
49
142358
1160
是的,
02:35
[Muhammad穆罕默德 Ali阿里]
50
143542
1224
拳王阿里。
02:36
[Groundbreaking奠基 Architect建築師]
51
144790
1546
「開創未來的建築師」
02:38
Zaha扎哈 Hadid哈迪德.
52
146360
1251
札哈.哈蒂。
02:40
So we took these descriptors描述
53
148843
1748
因此,我們找出這些描述詞,
02:42
and did what's called
natural自然 language語言 processing處理,
54
150615
2524
進行所謂的自然語言處理。
02:45
where you feed飼料 these into a program程序,
55
153163
1771
也就是你將文字輸入程式,
02:46
it throws out the superfluous多餘 words --
56
154958
1865
它能剔除不必要的文字,
例如 「the」--
02:48
"the," "and," -- the kind of words
you can mime啞劇 easily容易 in "Charades啞謎," --
57
156847
4223
並且剔除在玩「比手畫腳」遊戲時,
很容易以手勢表示的文字,
02:53
and leaves樹葉 you with the most
significant重大 words.
58
161094
2193
最後留下最重要的詞彙。
02:55
And we did it not just for these four,
59
163311
1821
我們不只分析上面這四則,
02:57
but for all 2,000 descriptors描述.
60
165156
2519
而是分析了所有 2000 則
訃聞的描述詞彙。
02:59
And this is what it looks容貌 like.
61
167699
1743
我們來看看結果是什麼樣子。
03:03
Film電影, theatre劇院, music音樂, dance舞蹈
and of course課程, art藝術, are huge巨大.
62
171004
4827
電影,戲劇,音樂,舞蹈。
當然「藝術」是最明顯的。
03:08
Over 40 percent百分.
63
176485
1946
出現的頻率多出 40%。
03:10
You have to wonder奇蹟
why in so many許多 societies社會
64
178455
2528
你不得不驚訝的是,
為什麼在大多數的社會中,
03:13
we insist咬定 that our kids孩子 pursue追求
engineering工程 or medicine醫學 or business商業 or law
65
181007
4435
我們一直認為讓孩子讀工程、
醫學、商業或法律科系,
03:17
to be construed解釋 as successful成功.
66
185466
1587
才是所謂的成功。
03:19
And while we're talking profession職業,
67
187871
1693
當我們關注職業時,
03:21
let's look at age年齡 --
68
189588
1151
也來看看年齡──
03:22
the average平均 age年齡 at which哪一個
they achieved實現 things.
69
190763
2510
這些人功成名就的平均年齡。
03:25
That number is 37.
70
193297
1846
這個數字是37年。
03:28
What that means手段 is,
you've got to wait 37 years年份 ...
71
196274
3656
這意味著什麼?
就是你平均必須等待 37 年……
03:31
before your first significant重大 achievement成就
that you're remembered記得 for --
72
199954
3395
才能獲得第一個成就,
03:35
on average平均 --
73
203373
1151
44 年後,
03:36
44 years年份 later後來, when you
die at the age年齡 of 81 --
74
204548
2478
當你過世時才會被紀念,
03:39
on average平均.
75
207050
1168
平均年齡是 81 歲。
03:40
(Laughter笑聲)
76
208242
1001
(笑聲)
03:41
Talk about having to be patient患者.
77
209267
1684
這告訴我們要有耐心。
03:42
(Laughter笑聲)
78
210975
1057
(笑聲)
03:44
Of course課程, it varies變化 by profession職業.
79
212056
2089
當然,這會因職業而異。
03:46
If you're a sports體育 star,
80
214566
1193
如果你是體育明星,
03:47
you'll你會 probably大概 hit擊中
your stride in your 20s.
81
215783
2127
你可能會在 20 多歲打破紀錄。
03:49
And if you're in your 40s like me,
82
217934
2645
如果你和我一樣已經 40 多歲了,
03:52
you can join加入 the fun開玩笑 world世界 of politics政治.
83
220603
1991
你可以加入有趣的政治圈。
03:54
(Laughter笑聲)
84
222618
1056
(笑聲)
03:55
Politicians政治家 do their first and sometimes有時
only commendable值得稱道 act法案 in their mid-中-40s.
85
223698
3915
政治家完成他們的第一項成就,
可能也是唯一的一次,
大約是在45歲左右。
03:59
(Laughter笑聲)
86
227637
1257
(笑聲)
04:00
If you're wondering想知道 what "others其他" are,
87
228918
1937
如果你想知道「其他職業」是什麼,
04:02
here are some examples例子.
88
230879
1476
這裡有一些例子。
04:04
Isn't it fascinating迷人, the things people do
89
232821
2116
這些人所做的,
04:06
and the things they're remembered記得 for?
90
234961
1882
和他們被紀念的事蹟,
是不是很令人著迷?
04:08
(Laughter笑聲)
91
236867
1752
(笑聲)
04:12
Our curiosity好奇心 was in overdrive疲勞過度,
92
240136
1844
我們的好奇心被點燃了,
04:14
and we desired期望 to analyze分析
more than just a descriptor描述.
93
242004
3788
我們不只想要分析描述詞。
04:18
So, we ingested攝入 the entire整個
first paragraph of all 2,000 obituaries訃告,
94
246998
4946
所以,我們輸入了 2000 則
訃聞的第一段全文,
04:23
but we did this separately分別
for two groups of people:
95
251968
2774
但是將亡者分為兩群:
04:26
people that are famous著名
and people that are not famous著名.
96
254766
2777
知名人士,以及非知名人士。
04:29
Famous著名 people -- Prince王子,
Ali阿里, Zaha扎哈 Hadid哈迪德 --
97
257567
2689
知名人士例如:王子、
阿里、札哈.哈蒂。
04:32
people who are not famous著名
are people like Jocelyn喬斯林 Cooper庫珀,
98
260280
4235
非知名人士例如:喬斯林庫柏、
04:36
Reverend牧師 Curry咖哩
99
264539
1154
嘉里牧師
04:37
or Lorna羅娜 Kelly黃綠色.
100
265717
1169
或羅娜.凱利。
04:38
I'm willing願意 to bet賭注 you haven't沒有 heard聽說
of most of their names.
101
266910
3188
我敢打賭,你絕對沒聽過
大多數這些人的名字。
04:42
Amazing驚人 people, fantastic奇妙 achievements成就,
but they're not famous著名.
102
270122
3812
這些人有著令人驚訝,稀奇古怪的成就,
但是他們並不出名。
04:46
So what if we analyze分析
these two groups separately分別 --
103
274720
2788
因此,如果我們分析一下這兩群人,
04:49
the famous著名 and the non-famous非著名?
104
277532
1525
知名和非知名人士,
04:51
What might威力 that tell us?
105
279081
1419
可能得到什麼結果?
04:52
Take a look.
106
280524
1240
我們來看一下。
04:56
Two things leap飛躍 out at me.
107
284556
1469
有兩個結果讓我驚訝。
04:58
First:
108
286569
1170
第一個:
05:00
"John約翰."
109
288106
1198
「約翰」。
05:01
(Laughter笑聲)
110
289328
1300
(笑聲)
05:03
Anyone任何人 here named命名 John約翰
should thank your parents父母 --
111
291914
3388
如果這裡有人也叫約翰的,
應該感謝你的父母──
05:07
(Laughter笑聲)
112
295326
1329
(笑聲)
05:08
and remind提醒 your kids孩子 to cut out
your obituary訃告 when you're gone走了.
113
296679
3082
而且記得提醒你的孩子,
當你過世時要把訃聞剪下來。
05:13
And second第二:
114
301061
1356
另一個結果是:
05:15
"help."
115
303849
1154
「幫助」。
05:18
We uncovered裸露, many許多 lessons教訓
from lives生活 well-led領導有方,
116
306524
3465
我們發現了,這些已經逝去,
在報紙上令我們緬懷的事蹟,
05:22
and what those people immortalized永生
in print打印 could teach us.
117
310013
2836
教導我們許多事情,
教導我們如何好好活著。
05:24
The exercise行使 was a fascinating迷人 testament遺囑
to the kaleidoscope萬花筒 that is life,
118
312873
4738
這次的實驗就是
萬花筒般生命的迷人見證。
05:29
and even more fascinating迷人
119
317635
2715
甚至更迷人的是,
05:32
was the fact事實 that the overwhelming壓倒
majority多數 of obituaries訃告
120
320374
3068
在大多數的訃聞中,
05:35
featured精選 people famous著名 and non-famous非著名,
121
323466
2998
無論是知名或非知名人士,
05:38
who did seemingly似乎 extraordinary非凡 things.
122
326488
2433
他們所做的不平凡事蹟。
05:41
They made製作 a positive dent凹痕
in the fabric of life.
123
329574
3110
他們在不停編織的人生中,
留下了有意義的印記。
05:44
They helped幫助.
124
332708
1237
他們幫助他人。
05:46
So ask yourselves你自己 as you go
back to your daily日常 lives生活:
125
334772
2591
所以問問自己,
當你回到日常生活中:
05:49
How am I using運用 my talents人才 to help society社會?
126
337387
2920
我如何運用我的才華,
幫助這個社會?
05:52
Because the most powerful強大 lesson here is,
127
340331
2973
因為在這裡,最重要的一課是:
05:55
if more people lived生活 their lives生活
trying to be famous著名 in death死亡,
128
343328
4336
如果有更多的人,
在活著時努力過著自己的人生,
而能在過世時變得知名,
05:59
the world世界 would be a much better place地點.
129
347688
2605
這個世界將會變得更加美好。
06:03
Thank you.
130
351062
1169
謝謝大家。
06:04
(Applause掌聲)
131
352255
2848
(掌聲)
Translated by Ting-Chih Liang
Reviewed by ZHENG Shu

▲Back to top

ABOUT THE SPEAKER
Lux Narayan - Entrepreneur
Lux Narayan is a perpetual learner of various things -- from origami and molecular gastronomy to stand-up and improv comedy.

Why you should listen

Lakshmanan aka Lux Narayan mans the helm of Unmetric, a social media intelligence company that helps digital marketers, social media analysts, and content creators harness social signals to track and analyze competitive content and campaigns, and to create better content and campaigns of their own.

Prior to founding Unmetric, Narayan was a co-founder at Vembu Technologies, an online data backup company. He also helped found and volunteered at ShareMyCake, a non-profit started by his wife that focuses on encouraging children to use their birthdays to channel monetary support towards a cause of their choosing.

As Unmetric's CEO, he leads a team of 70 people distributed across the company's operations in Chennai and New York City.

Outside of work, he is a perpetual learner of various things -- from origami and molecular gastronomy to stand-up and improv comedy. He enjoys reading obituaries and other non-fiction and watching documentaries with bad ratings. Narayan makes time every year for trekking in the Himalayas or scuba diving in tropical waters, and once he learns to fly, he hopes to spend more time off land than on it.

More profile about the speaker
Lux Narayan | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee