ABOUT THE SPEAKER
Joe DeRisi - Biochemist
Joe DeRisi hunts for the genes that make us sick. At his lab, he works to understand the genome of Plasmodium falciparum, the deadliest form of malaria.

Why you should listen

Joseph DeRisi is a molecular biologist and biochemist, on the hunt for the genomic basis of illness. His lab at UCSF is focused on the cause of malaria, and he's also poked into SARS, avian flu and other new diseases as they crop up. His approach combines scientific rigor with a nerd's boundary-breaking enthusiasm for new techniques -- one of the qualities that helped him win a MacArthur "genius" grant in 2004. A self-confessed computer geek, DeRisi designed and programmed a groundbreaking tool for finding (and fighting) viruses -- the ViroChip, a DNA microarray that test for the presence of all known viruses in one step.

In 2008, DeRisi won the Heinz Award for Technology, the Economy and Employment.

More profile about the speaker
Joe DeRisi | Speaker | TED.com
TED2006

Joe DeRisi: Solving medical mysteries

Joe DeRisi:利用病毒篩檢解決醫學謎團

Filmed:
474,538 views

生化學家Joe DeRiSi提出利用病毒DNA來診斷病毒(及其造成的疾病)的新方法。他的工作或許能幫助我們了解瘧疾、SARS、禽流感,和每天約六成未能被診斷出的病毒感染。
- Biochemist
Joe DeRisi hunts for the genes that make us sick. At his lab, he works to understand the genome of Plasmodium falciparum, the deadliest form of malaria. Full bio

Double-click the English transcript below to play the video.

00:12
How can we investigate調查
0
0
3000
我們該如何研究
00:15
this flora植物群 of viruses病毒 that surround環繞 us, and aid援助 medicine醫學?
1
3000
5000
這些在我們四周的病毒,以解決它們造成的健康問題?
00:20
How can we turn our cumulative累積的 knowledge知識 of virology病毒學
2
8000
4000
我們要如何將累積許久的病毒學知識
00:24
into a simple簡單, hand-held手持式, single diagnostic診斷 assay化驗?
3
12000
4000
轉化成簡單的掌上型單一檢驗法?
00:28
I want to turn everything we know right now about detecting檢測 viruses病毒
4
16000
3000
我希望能將我們現在對檢驗病毒
00:31
and the spectrum光譜 of viruses病毒 that are out there
5
19000
2000
及生活中各種病毒基因的所有了解
00:33
into, let's say, a small chip芯片.
6
21000
3000
轉變成一個小小的晶片。
00:36
When we started開始 thinking思維 about this project項目 --
7
24000
2000
當我們開始思索這個計畫─
00:38
how we would make a single diagnostic診斷 assay化驗
8
26000
3000
也就是我們要發展能同時偵測
00:41
to screen屏幕 for all pathogens病原體 simultaneously同時 --
9
29000
3000
所有病原體的單一檢驗法─
00:44
well, there's some problems問題 with this idea理念.
10
32000
2000
這個想法遇到了一些問題。
00:46
First of all, viruses病毒 are pretty漂亮 complex複雜,
11
34000
4000
首先,病毒很複雜,
00:50
but they're also evolving進化 very fast快速.
12
38000
4000
但他們卻也進化得非常快速。
00:54
This is a picornavirus小核糖核酸病毒.
13
42000
1000
這是小核醣酸病毒。
00:55
Picornaviruses小核糖核酸病毒 -- these are things that include包括
14
43000
2000
它們會造成
00:57
the common共同 cold and polio脊髓灰質炎, things like this.
15
45000
3000
感冒、小兒麻痺這類傳染病。
01:00
You're looking at the outside shell貝殼 of the virus病毒,
16
48000
2000
你現在看到的是病毒的外鞘,
01:02
and the yellow黃色 color顏色 here are those parts部分 of the virus病毒
17
50000
3000
黃色區域演化得
01:05
that are evolving進化 very, very fast快速,
18
53000
2000
非常、非常快,
01:07
and the blue藍色 parts部分 are not evolving進化 very fast快速.
19
55000
2000
而藍色區域則沒有那麼快。
01:09
When people think about making製造 pan-viral泛病毒 detection發現 reagents試劑,
20
57000
3000
當我們想製造全病毒偵測試劑時,
01:12
usually平時 it's the fast-evolving快速發展的 problem問題 that's an issue問題,
21
60000
4000
病毒的快速演化是一個棘手問題,
01:16
because how can we detect檢測 things if they're always changing改變?
22
64000
2000
原因是我們要怎麼檢驗一個不斷在改變的東西呢?
01:18
But evolution演化 is a balance平衡:
23
66000
2000
但是演化是一種平衡:
01:20
where you have fast快速 change更改, you also have ultra-conservation超節能 --
24
68000
4000
在某段基因序列快速改變的同時,也有序列超級保守─
01:24
things that almost幾乎 never change更改.
25
72000
2000
幾乎不怎麼改變。
01:26
And so we looked看著 into this a little more carefully小心,
26
74000
3000
我將提供各位一些數據,
01:29
and I'm going to show顯示 you data數據 now.
27
77000
1000
讓大家再仔細研究一下。
01:30
This is just some stuff東東 you can do on the computer電腦 from the desktop桌面.
28
78000
3000
結果都是各位可以利用桌上型電腦自行計算得來。
01:33
I took a bunch of these small picornaviruses小核糖核酸病毒,
29
81000
2000
我分析了幾種小核醣酸病毒的基因,
01:35
like the common共同 cold, like polio脊髓灰質炎 and so on,
30
83000
2000
像是感冒病毒、小兒麻痺病毒之類的,
01:37
and I just broke打破 them down into small segments.
31
85000
4000
將它們分割成小片段,
01:41
And so took this first example, which哪一個 is called coxsackievirus柯薩奇病毒,
32
89000
3000
這是第一個例子:克沙奇病毒
01:44
and just break打破 it into small windows視窗.
33
92000
2000
將其基因分割成幾個小片段。
01:46
And I'm coloring染色 these small windows視窗 blue藍色
34
94000
2000
如果別種病毒跟克沙奇的
01:48
if another另一個 virus病毒 shares分享 an identical相同 sequence序列 in its genome基因組
35
96000
5000
某段基因序列一樣的話我就把這段基因
01:53
to that virus病毒.
36
101000
1000
染成藍色。
01:54
These sequences序列 right up here --
37
102000
2000
像這邊這個序列─
01:56
which哪一個 don't even code for protein蛋白, by the way --
38
104000
2000
這序列並不會轉譯成蛋白質喔─
01:58
are almost幾乎 absolutely絕對 identical相同 across橫過 all of these,
39
106000
3000
在所有病毒裡幾乎都是一樣的,
02:01
so I could use this sequence序列 as a marker標記
40
109000
4000
所以,我可以將這個序列當成標記
02:05
to detect檢測 a wide spectrum光譜 of viruses病毒,
41
113000
2000
用來偵測許多不同的病毒,
02:07
without having to make something individual個人.
42
115000
3000
而不需要製造一些個別的序列。
02:10
Now, over here there's great diversity多樣:
43
118000
2000
這裡,是歧異度高的序列:
02:12
that's where things are evolving進化 fast快速.
44
120000
2000
也就是快速演化的序列。
02:14
Down here you can see slower比較慢 evolution演化: less diversity多樣.
45
122000
4000
這裡,則是演化較慢的序列,歧異度較低。
02:18
Now, by the time we get out here to, let's say,
46
126000
2000
現在,我們來看看
02:20
acute急性 bee蜜蜂 paralysis麻痺 virus病毒 --
47
128000
2000
急性蜜蜂麻痺病毒─
02:22
probably大概 a bad one to have if you're a bee蜜蜂 ---
48
130000
2000
如果你是一隻蜜蜂你應該不想得到─
02:24
this virus病毒 shares分享 almost幾乎 no similarity相似 to coxsackievirus柯薩奇病毒,
49
132000
5000
這種病毒一點也不像克沙奇病毒,
02:29
but I can guarantee保證 you that the sequences序列 that are most conserved保守
50
137000
4000
但我跟妳保證,這隻病毒基因序列的
02:33
among其中 these viruses病毒 on the right-hand右手 of the screen屏幕
51
141000
2000
保留區段,也就是螢幕右端這邊
02:35
are in identical相同 regions地區 right up here.
52
143000
3000
跟這裡的克沙奇病毒基因序列一樣。
02:38
And so we can encapsulate封裝 these regions地區 of ultra-conservation超節能
53
146000
3000
所以,我們可以擷取這些在演化時不變動的
02:41
through通過 evolution演化 -- how these viruses病毒 evolved進化 --
54
149000
3000
超級保守區段 ─ 這些病毒如何演化 ─
02:44
by just choosing選擇 DNA脫氧核糖核酸 elements分子 or RNARNA elements分子
55
152000
3000
將其中的DNA或RNA片段
02:47
in these regions地區 to represent代表 on our chip芯片 as detection發現 reagents試劑.
56
155000
4000
放在我們的晶片上當作檢驗試劑。
02:51
OK, so that's what we did, but how are we going to do that?
57
159000
3000
好,這就是我們的成果,可是我們下一步該怎麼做呢?
02:54
Well, for a long time, since以來 I was in graduate畢業 school學校,
58
162000
2000
很久以前,當我還在念研究所時,
02:56
I've been messing搞亂 around making製造 DNA脫氧核糖核酸 chips芯片 --
59
164000
3000
曾有一段時間忙亂地製作DNA晶片─
02:59
that is, printing印花 DNA脫氧核糖核酸 on glass玻璃.
60
167000
2000
也就是,把DNA印在玻璃上。
03:01
And that's what you see here:
61
169000
1000
就像你見到的這樣:
03:02
These little salt spots斑點 are just DNA脫氧核糖核酸 tacked上漲 onto glass玻璃,
62
170000
3000
這些似鹽的小顆粒,就是印在玻璃上的DNA,
03:05
and so I can put thousands數千 of these on our glass玻璃 chip芯片
63
173000
3000
我可以將數以千計的DNA碎片印上去
03:08
and use them as a detection發現 reagent試劑.
64
176000
2000
用來當作檢驗試劑。
03:10
We took our chip芯片 over to Hewlett-Packard惠普
65
178000
2000
把我們的晶片拿到HP去
03:12
and used their atomic原子 force microscope顯微鏡 on one of these spots斑點,
66
180000
2000
用他們的原子力顯微鏡觀察晶片上的一點,
03:14
and this is what you see:
67
182000
2000
你會看到:
03:16
you can actually其實 see the strands of DNA脫氧核糖核酸 lying說謊 flat平面 on the glass玻璃 here.
68
184000
3000
在玻璃上見到一層薄薄鍍上的DNA部分。
03:19
So, what we're doing is just printing印花 DNA脫氧核糖核酸 on glass玻璃 --
69
187000
3000
我們所做的就是,把DNA印到玻璃上 --
03:22
little flat平面 things -- and these are going to be markers標記 for pathogens病原體.
70
190000
4000
而病原體的標記,就會是這薄薄一層DNA。
03:26
OK, I make little robots機器人 in lab實驗室 to make these chips芯片,
71
194000
3000
我在實驗室做了一個小機器人來製造這些晶片,
03:29
and I'm really big on disseminating傳播 technology技術.
72
197000
3000
我實在太喜歡散播科技新知了。
03:32
If you've got enough足夠 money to buy購買 just a Camry凱美瑞,
73
200000
3000
如果你有錢買Toyota Camry,
03:35
you can build建立 one of these too,
74
203000
2000
你也能做一台DNA印表機,
03:37
and so we put a deep how-to如何 guide指南 on the Web捲筒紙, totally完全 free自由,
75
205000
4000
我們把機器人的製作詳解放上網路,完全免費,
03:41
with basically基本上 order-off-the-shelf為了關斷的,現成的 parts部分.
76
209000
2000
零件都是些市面上買的東西 --
03:43
You can build建立 a DNA脫氧核糖核酸 array排列 machine in your garage車庫.
77
211000
3000
你可以在自家車庫做一個DNA印表機。
03:46
Here's這裡的 the section部分 on the all-important所有重要的 emergency stop switch開關.
78
214000
3000
這是最重要的緊急停止開關。
03:49
(Laughter笑聲)
79
217000
2000
(笑)
03:51
Every一切 important重要 machine's got to have a big red button按鍵.
80
219000
3000
每一台重要的機器都得有個大紅按鈕。
03:54
But really, it's pretty漂亮 robust強大的.
81
222000
2000
說真的,這是一台美麗的機器。
03:56
You can actually其實 be making製造 DNA脫氧核糖核酸 chips芯片 in your garage車庫
82
224000
3000
你也可以在自家車庫製造DNA晶片,
03:59
and decoding解碼 some genetic遺傳 programs程式 pretty漂亮 rapidly急速. It's a lot of fun開玩笑.
83
227000
4000
快速的執行一些基因解碼計畫。這個很好玩。
04:03
(Laughter笑聲)
84
231000
1000
(笑)
04:04
And so what we did -- and this is a really cool project項目 --
85
232000
4000
我們所做的 -- 這是個很酷的計畫 --
04:08
we just started開始 by making製造 a respiratory呼吸 virus病毒 chip芯片.
86
236000
2000
我們才剛剛開始製造呼吸道疾病相關病毒的晶片。
04:10
I talked about that --
87
238000
2000
我說就是為了那些,
04:12
you know, that situation情況 where you go into the clinic診所
88
240000
2000
當你上診所看醫生,
04:14
and you don't get diagnosed確診?
89
242000
2000
卻沒有確切診斷的情況。
04:16
Well, we just put basically基本上 all the human人的 respiratory呼吸 viruses病毒
90
244000
2000
所以我們把所有人類呼吸道疾病相關病毒的序列
04:18
on one chip芯片, and we threw in herpes泡疹 virus病毒 for good measure測量 --
91
246000
3000
放上晶片,然後用單純皰疹病毒測試 --
04:21
I mean, why not?
92
249000
1000
為何不呢?
04:22
The first thing you do as a scientist科學家 is,
93
250000
2000
當科學家,首先要做的是,
04:24
you make sure stuff東東 works作品.
94
252000
1000
確定主意行得通。
04:25
And so what we did is, we take tissue組織 culture文化 cells細胞
95
253000
3000
所以我們培養了一些細胞
04:28
and infect感染 them with various各個 viruses病毒,
96
256000
2000
以各種病毒感染,
04:30
and we take the stuff東東 and fluorescently熒光 label標籤 the nucleic核酸 acid,
97
258000
4000
再用螢光標定核酸,
04:34
the genetic遺傳 material材料 that comes out of these tissue組織 culture文化 cells細胞 --
98
262000
3000
也就是那些培養的細胞釋出的基因物質 --
04:37
mostly大多 viral病毒 stuff東東 -- and stick it on the array排列 to see where it sticks.
99
265000
4000
其中大部分的是病毒 -- 將這些核酸片段放上晶片。
04:41
Now, if the DNA脫氧核糖核酸 sequences序列 match比賽, they'll他們會 stick together一起,
100
269000
2000
如果DNA序列相合,兩者就會相黏,
04:43
and so we can look at spots斑點.
101
271000
2000
這時我們可以觀察螢光分布。
04:45
And if spots斑點 light up, we know there's a certain某些 virus病毒 in there.
102
273000
2000
晶片上的螢光點,就代表某病毒的存在。
04:47
That's what one of these chips芯片 really looks容貌 like,
103
275000
2000
這是晶片實際的樣子,
04:49
and these red spots斑點 are, in fact事實, signals信號 coming未來 from the virus病毒.
104
277000
3000
這些紅點實際上就代表病毒訊號。
04:52
And each spot represents代表 a different不同 family家庭 of virus病毒
105
280000
3000
每一個點是不同的病毒家族
04:55
or species種類 of virus病毒.
106
283000
1000
或是病毒種類。
04:56
And so, that's a hard way to look at things,
107
284000
2000
因為這樣不太容易觀察,
04:58
so I'm just going to encode編碼 things as a little barcode條碼,
108
286000
2000
所以我將結果用小條碼表示,
05:00
grouped分組 by family家庭, so you can see the results結果 in a very intuitive直觀的 way.
109
288000
4000
將病毒各家族分類,以較直觀的方式呈現。
05:04
What we did is, we took tissue組織 culture文化 cells細胞
110
292000
2000
我們把培養的細胞
05:06
and infected感染 them with adenovirus腺病毒,
111
294000
2000
以腺病毒感染,
05:08
and you can see this little yellow黃色 barcode條碼 next下一個 to adenovirus腺病毒.
112
296000
4000
你就會在腺病毒旁看到黃色小條碼。
05:12
And, likewise同樣, we infected感染 them with parainfluenza-parainfluenza-3 --
113
300000
3000
同理,我們以副流感病毒三型感染細胞 --
05:15
that's a paramyxovirus副粘病毒 -- and you see a little barcode條碼 here.
114
303000
2000
這是一種副黏液病毒 -- 小條碼在這裡。
05:17
And then we did respiratory呼吸 syncytial合胞體 virus病毒.
115
305000
3000
我們也試過呼吸道融合瘤病毒。
05:20
That's the scourge災害 of daycare日托 centers中心 everywhere到處 --
116
308000
2000
這種病毒在養護中心大規模傳染 --
05:22
it's like boogeremiaboogeremia, basically基本上.
117
310000
2000
它就像是充斥於血液中的鼻屎一般。
05:24
(Laughter笑聲)
118
312000
1000
(笑)
05:25
You can see that this barcode條碼 is the same相同 family家庭,
119
313000
4000
你可能注意到,這個條碼跟造成嚴重感冒的
05:29
but it's distinct不同 from parainfluenza-parainfluenza-3,
120
317000
2000
副流感病毒三型屬同一家族,
05:31
which哪一個 gives you a very bad cold.
121
319000
2000
但兩者不太一樣。
05:33
And so we're getting得到 unique獨特 signatures簽名, a fingerprint指紋 for each virus病毒.
122
321000
3000
這讓我們有每一種病毒的獨特標識,就像指紋一般。
05:36
Polio脊髓灰質炎 and rhino犀牛: they're in the same相同 family家庭, very close to each other.
123
324000
3000
小兒麻痺病毒跟鼻病毒同屬一個家族,非常接近。
05:39
Rhino's犀牛 the common共同 cold, and you all know what polio脊髓灰質炎 is,
124
327000
2000
後者造成感冒,而你們都知道小兒麻痺是甚麼,
05:41
and you can see that these signatures簽名 are distinct不同.
125
329000
3000
你可以看到,它們的標識不太一樣。
05:44
And Kaposi's卡波西 sarcoma-associated肉瘤相關 herpes泡疹 virus病毒
126
332000
3000
這是卡波西氏肉瘤病毒
05:47
gives a nice不錯 signature簽名 down here.
127
335000
2000
它們提供了清晰的標識。
05:49
And so it is not any one stripe條紋 or something
128
337000
2000
所以,這不是一個只會告訴我
05:51
that tells告訴 me I have a virus病毒 of a particular特定 type類型 here;
129
339000
2000
這是哪一種病毒的條紋;
05:53
it's the barcode條碼 that in bulk represents代表 the whole整個 thing.
130
341000
4000
而是一個可以表達病毒全貌的條碼。
05:57
All right, I can see a rhinovirus鼻病毒 --
131
345000
2000
好吧,我看到鼻病毒 --
05:59
and here's這裡的 the blow-up爆炸 of the rhinovirus's鼻病毒的 little barcode條碼 --
132
347000
2000
這裡是鼻病毒的小條碼 --
06:01
but what about different不同 rhinoviruses鼻病毒?
133
349000
2000
但是鼻病毒有許多亞型
06:03
How do I know which哪一個 rhinovirus鼻病毒 I have?
134
351000
2000
我怎麼知道我得了哪一種?
06:05
There're有很 102 known已知 variants變種 of the common共同 cold,
135
353000
3000
以知約有102種病毒會造成普通感冒,
06:08
and there're有很 only 102 because people got bored無聊 collecting蒐集 them:
136
356000
3000
只有102種是因為人們懶得再增加感冒病毒的名單長度了:
06:11
there are just new ones那些 every一切 year.
137
359000
2000
每一年我們都會發現新種感冒病毒。
06:13
And so, here are four different不同 rhinoviruses鼻病毒,
138
361000
2000
這裡有四種不同的鼻病毒,
06:15
and you can see, even with your eye,
139
363000
2000
你看,單純只靠肉眼,
06:17
without any fancy幻想 computer電腦 pattern-matching模式匹配
140
365000
2000
即使沒有高科技的電腦軟體
06:19
recognition承認 software軟件 algorithms算法,
141
367000
2000
計算模式跟配對,
06:21
that you can distinguish區分 each one of these barcodes條形碼 from each other.
142
369000
3000
你也可以分辨出每一組條碼。
06:24
Now, this is kind of a cheap低廉 shot射擊,
143
372000
2000
現在,這是個便宜的診斷方法,
06:26
because I know what the genetic遺傳 sequence序列 of all these rhinoviruses鼻病毒 is,
144
374000
3000
因為我知道所有鼻病毒的基因序列,
06:29
and I in fact事實 designed設計 the chip芯片
145
377000
1000
所以我設計了可以分辨
06:30
expressly明確地 to be able能夠 to tell them apart距離,
146
378000
2000
這些不同鼻病毒的晶片,
06:32
but what about rhinoviruses鼻病毒 that have never seen看到 a genetic遺傳 sequencer?
147
380000
4000
但那些不知道序列的鼻病毒該怎麼辦呢?
06:36
We don't know what the sequence序列 is; just pull them out of the field領域.
148
384000
2000
我們不知道它們的序列,就先擱置它們。
06:38
So, here are four rhinoviruses鼻病毒
149
386000
2000
這是四種鼻病毒
06:40
we never knew知道 anything about --
150
388000
2000
我們對它們一無所知 --
06:42
no one's那些 ever sequenced測序 them -- and you can also see
151
390000
3000
沒人知道它們的序列 -- 而你可見
06:45
that you get unique獨特 and distinguishable可分辨 patterns模式.
152
393000
2000
它們的樣本仍獨特可辨。
06:47
You can imagine想像 building建造 up some library圖書館, whether是否 real真實 or virtual虛擬,
153
395000
3000
你或許想到了,我們可以設個資料庫,
06:50
of fingerprints指紋 of essentially實質上 every一切 virus病毒.
154
398000
2000
包含絕大多數病毒的實際或虛擬指紋。
06:52
But that's, again, shooting射擊 fish in a barrel, you know, right?
155
400000
3000
這就跟囊中取物一樣容易,對吧?
06:55
You have tissue組織 culture文化 cells細胞. There are a ton of viruses病毒.
156
403000
2000
你培植的細胞裡頭有一大堆病毒。
06:57
What about real真實 people?
157
405000
2000
但在人身上的真實情況呢?
06:59
You can't control控制 real真實 people, as you probably大概 know.
158
407000
2000
你大概已經知道,我們不能控制真人。
07:01
You have no idea理念 what someone's誰家 going to cough咳嗽 into a cup杯子,
159
409000
4000
我們不知道人們會把甚麼咳進樣本杯裡,
07:05
and it's probably大概 really complex複雜, right?
160
413000
3000
情況大概會很複雜吧?
07:08
It could have lots of bacteria, it could have more than one virus病毒,
161
416000
3000
可能會有很多細菌,或超過一種以上的病毒,
07:11
and it certainly當然 has host主辦 genetic遺傳 material材料.
162
419000
2000
當然還會有宿主的基因物質,
07:13
So how do we deal合同 with this?
163
421000
1000
我們該怎樣處理這樣的情況?
07:14
And how do we do the positive control控制 here?
164
422000
2000
這時該怎麼設計陽性對照組?
07:16
Well, it's pretty漂亮 simple簡單.
165
424000
2000
這個頗容易。
07:18
That's me, getting得到 a nasal鼻音 lavage灌洗.
166
426000
2000
這是我,在接受鼻灌洗。
07:20
And the idea理念 is, let's experimentally實驗 inoculate接種 people with virus病毒.
167
428000
5000
這個概念是,我們在人體接種病毒,
07:25
This is all IRB-approvedIRB批准, by the way; they got paid支付.
168
433000
5000
這個實驗是醫學研究倫理委員會核准的;岔題一下,他們有領薪水。
07:30
And basically基本上 we experimentally實驗 inoculate接種 people
169
438000
3000
這個實驗是:我們實驗在人體接種
07:33
with the common共同 cold virus病毒.
170
441000
1000
一般感冒病毒。
07:34
Or, even better, let's just take people
171
442000
2000
但,更好的方法是,我們從
07:36
right out of the emergency room房間 --
172
444000
1000
急診室收集病人 --
07:37
undefined未定義, community-acquired社區獲得 respiratory呼吸 tract管道 infections感染.
173
445000
4000
那些病原不明,社區型呼吸道感染的病人。
07:41
You have no idea理念 what walks散步 in through通過 the door.
174
449000
2000
你不知道誰會走過急診室那扇門。
07:43
So, let's start開始 off with the positive control控制 first,
175
451000
3000
從陽性對照組開始,
07:46
where we know the person was healthy健康.
176
454000
2000
我們知道他們原本是健康的。
07:48
They got a shot射擊 of virus病毒 up the nose鼻子,
177
456000
2000
我們把病毒打進鼻子裡,
07:50
let's see what happens發生.
178
458000
1000
看看會如何。
07:51
Day zero: nothing happening事件.
179
459000
2000
實驗剛開始:甚麼都沒發生。
07:53
They're healthy健康; they're clean清潔 -- it's amazing驚人.
180
461000
2000
受試者很健康,沒有受感染 -- 這真是神奇。
07:55
Actually其實, we thought the nasal鼻音 tract管道 might威力 be full充分 of viruses病毒
181
463000
2000
其實,我們以為這時鼻腔應該充滿病毒了
07:57
even when you're walking步行 around healthy健康.
182
465000
1000
即使你是健步如飛的健康人士。
07:58
It's pretty漂亮 clean清潔. If you're healthy健康, you're pretty漂亮 healthy健康.
183
466000
2000
鼻腔很乾淨。如果你是健康的,實際上也相當健康。
08:00
Day two: we get a very robust強大的 rhinovirus鼻病毒 pattern模式,
184
468000
4000
第二天:樣本出現大量鼻病毒的指紋,
08:04
and it's very similar類似 to what we get in the lab實驗室
185
472000
2000
跟我們在實驗室裡收集的
08:06
doing our tissue組織 culture文化 experiment實驗.
186
474000
1000
含病毒的細胞一樣。
08:07
So that's great, but again, cheap低廉 shot射擊, right?
187
475000
3000
真好,正如我們說過,是個便宜的解法,對吧?
08:10
We put a ton of virus病毒 up this guy's傢伙 nose鼻子. So --
188
478000
2000
我們讓這傢伙的鼻腔裡都是病毒了。所以 --
08:12
(Laughter笑聲)
189
480000
1000
(笑)
08:13
-- I mean, we wanted it to work. He really had a cold.
190
481000
4000
我是說,我們希望實驗成功。我是說,這傢伙感冒了。
08:17
So, how about the people who walk步行 in off the street?
191
485000
4000
那麼,那些從大街上進來的人呢?
08:21
Here are two individuals個人 represented代表 by their anonymous匿名 IDID codes代碼.
192
489000
2000
這是兩位不知名實驗者的病毒指紋。
08:23
They both have rhinoviruses鼻病毒; we've我們已經 never seen看到 this pattern模式 in lab實驗室.
193
491000
4000
他們都有鼻病毒,其指紋卻跟實驗室的病毒株不同。
08:27
We sequenced測序 part部分 of their viruses病毒;
194
495000
2000
我們分析了病毒的基因序列;
08:29
they're new rhinoviruses鼻病毒 no one's那些 actually其實 even seen看到.
195
497000
3000
發現他們身上的病毒是新品種。
08:32
Remember記得, our evolutionary-conserved進化保守 sequences序列
196
500000
2000
記住,我們使用在演化過程中恆定的保留序列
08:34
we're using運用 on this array排列 allow允許 us to detect檢測
197
502000
2000
來進行檢測,這讓我們得以
08:36
even novel小說 or uncharacterized未鑑定 viruses病毒,
198
504000
2000
找到新種或未分析過的病毒,
08:38
because we pick what is conserved保守 throughout始終 evolution演化.
199
506000
4000
這都是因為我們選擇保留序列的緣故。
08:42
Here's這裡的 another另一個 guy. You can play the diagnosis診斷 game遊戲 yourself你自己 here.
200
510000
3000
這是另一個受試者。你也可以自己玩檢驗遊戲。
08:45
These different不同 blocks represent代表
201
513000
2000
這些不同的指紋群代表
08:47
the different不同 viruses病毒 in this paramyxovirus副粘病毒 family家庭,
202
515000
2000
副黏膜病毒家族裡不同的病毒株,
08:49
so you can kind of go down the blocks
203
517000
1000
你可以分析這些指紋組
08:50
and see where the signal信號 is.
204
518000
2000
看看是哪些你認識的病毒。
08:52
Well, doesn't have canine distemper犬瘟熱; that's probably大概 good.
205
520000
3000
嗯,沒有犬瘟熱,還不錯。
08:55
(Laughter笑聲)
206
523000
2000
(笑)
08:57
But by the time you get to block nine,
207
525000
2000
但是當你分析到第九組,
08:59
you see that respiratory呼吸 syncytial合胞體 virus病毒.
208
527000
2000
你看到呼吸道融合瘤病毒。
09:01
Maybe they have kids孩子. And then you can see, also,
209
529000
3000
這表示病人可能有小孩。同時你得知,
09:04
the family家庭 member會員 that's related有關: RSVBRSVB is showing展示 up here.
210
532000
2000
病原是呼吸道融合瘤病毒B亞群。
09:06
So, that's great.
211
534000
1000
所以,這個很不錯。
09:07
Here's這裡的 another另一個 individual個人, sampled取樣 on two separate分離 days --
212
535000
3000
這是另一個病人,在兩個不同的診次 --
09:10
repeat重複 visits訪問 to the clinic診所.
213
538000
2000
收集了兩次樣本。
09:12
This individual個人 has parainfluenza-parainfluenza-1,
214
540000
3000
他感染了副流感病毒第一型,
09:15
and you can see that there's a little stripe條紋 over here
215
543000
2000
樣本中也有微量仙台病毒的指紋:
09:17
for Sendai仙台 virus病毒: that's mouse老鼠 parainfluenza副流感病毒.
216
545000
3000
這是老鼠身上的副流感病毒。
09:20
The genetic遺傳 relationships關係 are very close there. That's a lot of fun開玩笑.
217
548000
4000
這兩種病毒的基因很接近。很有趣吧!
09:24
So, we built內置 out the chip芯片.
218
552000
1000
於是,我們製造了晶片。
09:25
We made製作 a chip芯片 that has every一切 known已知 virus病毒 ever discovered發現 on it.
219
553000
4000
晶片上有所有已經被發現的病毒基因片斷。
09:29
Why not? Every一切 plant virus病毒, every一切 insect昆蟲 virus病毒, every一切 marine海洋 virus病毒.
220
557000
3000
那麼,何不也來做所有的植物病毒、昆蟲病毒、海水病毒的晶片。
09:32
Everything that we could get out of GenBank基因庫 --
221
560000
2000
反正相關資訊都在GenBank --
09:34
that is, the national國民 repository知識庫 of sequences序列.
222
562000
2000
也就是基因序列的國家型資料庫裡頭了。
09:36
Now we're using運用 this chip芯片. And what are we using運用 it for?
223
564000
3000
既然我們手上有晶片,能用它來幹嘛?
09:39
Well, first of all, when you have a big chip芯片 like this,
224
567000
2000
首先,當我們有像這樣的大晶片時,
09:41
you need a little bit more informatics信息學,
225
569000
2000
還需要一些其他的資訊,
09:43
so we designed設計 the system系統 to do automatic自動 diagnosis診斷.
226
571000
2000
來設計能夠進行自動診斷的系統。
09:45
And the idea理念 is that we simply只是 have virtual虛擬 patterns模式,
227
573000
3000
我們只有虛擬的樣本 --
09:48
because we're never going to get samples樣本 of every一切 virus病毒 --
228
576000
2000
因為我們從來就無法收集所有病毒的樣本;
09:50
it would be virtually實質上 impossible不可能. But we can get virtual虛擬 patterns模式,
229
578000
3000
就算如此,我們還是能得到虛擬的樣本,
09:53
and compare比較 them to our observed觀察到的 result結果 --
230
581000
2000
將之與觀察到的結果比較,
09:55
which哪一個 is a very complex複雜 mixture混合物 -- and come up with some sort分類 of score得分了
231
583000
4000
因為是複雜的混合物,我們能計算出
09:59
of how likely容易 it is this is a rhinovirus鼻病毒 or something.
232
587000
3000
代表樣本含鼻病毒或是其他病毒可能性的分數。
10:02
And this is what this looks容貌 like.
233
590000
2000
看起來就像這樣。
10:04
If, for example, you used a cell細胞 culture文化
234
592000
2000
舉例來說,你用被
10:06
that's chronically長期地 infected感染 with papilloma乳頭狀瘤,
235
594000
2000
乳突病毒感染的細胞,
10:08
you get a little computer電腦 readout讀出 here,
236
596000
2000
得到這樣的數據,
10:10
and our algorithm算法 says it's probably大概 papilloma乳頭狀瘤 type類型 18.
237
598000
4000
而我們的程式說它可能是第十八型。
10:14
And that is, in fact事實, what these particular特定 cell細胞 cultures文化
238
602000
2000
這也的確是實驗室裡的細胞
10:16
are chronically長期地 infected感染 with.
239
604000
2000
感染的病毒亞型。
10:18
So let's do something a little bit harder更難.
240
606000
2000
我們來做個難一點的實驗
10:20
We put the beeper呼叫器 in the clinic診所.
241
608000
1000
在診間裡放個傳呼機。
10:21
When somebody shows節目 up, and the hospital醫院 doesn't know what to do
242
609000
3000
在醫院無法做出診斷,不知道要對病人
10:24
because they can't diagnose診斷 it, they call us.
243
612000
2000
做甚麼處置時,他們會聯繫我們。
10:26
That's the idea理念, and we're setting設置 this up in the Bay Area.
244
614000
2000
計畫是:我們在灣區設置這個系統。
10:28
And so, this case案件 report報告 happened發生 three weeks ago.
245
616000
2000
這是三周前的病例。
10:30
We have a 28-year-old-歲 healthy健康 woman女人, no travel旅行 history歷史,
246
618000
3000
有個28歲的健康女性,
10:33
[unclear不明], doesn't smoke抽煙, doesn't drink.
247
621000
3000
【不清楚】,無外出旅遊記錄,不菸,不酒。
10:36
10-day-天 history歷史 of fevers發燒, night sweats盜汗, bloody血腥 sputum --
248
624000
4000
發燒、夜間盜汗、痰中有血,也就是咳血、
10:40
she's coughing咳嗽 up blood血液 -- muscle肌肉 pain疼痛.
249
628000
2000
肌肉痛,長達十天。
10:42
She went to the clinic診所, and they gave her antibiotics抗生素
250
630000
4000
她就醫求助,拿了抗生素,
10:46
and then sent發送 her home.
251
634000
1000
然後回家。
10:47
She came來了 back after ten days of fever發熱, right? Still has the fever發熱,
252
635000
4000
十天後她又回來,仍在發燒 --
10:51
and she's hypoxic缺氧 -- she doesn't have much oxygen in her lungs.
253
639000
3000
而且缺氧 -- 她的肺部含氧量低。
10:54
They did a CTCT scan掃描.
254
642000
1000
他們為她照了電腦斷層掃描。
10:55
A normal正常 lung is all sort分類 of dark黑暗 and black黑色 here.
255
643000
4000
正常的肺應該略為色暗或呈黑色。
10:59
All this white白色 stuff東東 -- it's not good.
256
647000
2000
但是她的卻是白色,狀況不妙。
11:01
This sort分類 of tree and bud formation編隊 indicates指示 there's inflammation;
257
649000
3000
影像中的枝狀和芽狀散佈表示肺部發炎;
11:04
there's likely容易 to be infection感染.
258
652000
2000
有可能是感染。
11:06
OK. So, the patient患者 was treated治療 then
259
654000
3000
於是,病人開始接受抗生素治療
11:09
with a third-generation第三代 cephalosporin頭孢菌素 antibiotic抗生素 and doxycycline多西環素,
260
657000
4000
包括第三代頭孢霉素,還有多西環素,
11:13
and on day three, it didn't help: she had progressed進展 to acute急性 failure失敗.
261
661000
4000
到第三天仍沒有起色,她出現急性呼吸衰竭的症狀。
11:17
They had to intubate插管 her, so they put a tube down her throat
262
665000
3000
醫生得為她插管,
11:20
and they began開始 to mechanically機械 ventilate通風 her.
263
668000
1000
接上呼吸器。
11:21
She could no longer breathe呼吸 for herself她自己.
264
669000
2000
她無法自主呼吸。
11:23
What to do next下一個? Don't know.
265
671000
2000
然後呢?不知道。
11:25
Switch開關 antibiotics抗生素: so they switched交換的 to another另一個 antibiotic抗生素,
266
673000
3000
改抗生素,於是醫生改用其他抗生素,
11:28
Tamiflu達菲.
267
676000
2000
用特敏福,而 --
11:30
It's not clear明確 why they thought she had the flu流感,
268
678000
2000
他們卻不太清楚為什麼醫生認為她得了感冒 --
11:32
but they switched交換的 to Tamiflu達菲.
269
680000
2000
但仍使轉用特敏福。
11:34
And on day six, they basically基本上 threw in the towel毛巾.
270
682000
2000
第六天,他們認輸。
11:36
You do an open打開 lung biopsy活檢 when you've got no other options選項.
271
684000
4000
在別無選擇的狀況下,開胸取活組織组樣本檢查。
11:40
There's an eight percent百分 mortality死亡 rate with just doing this procedure程序,
272
688000
2000
手術的致命率為百分之八,
11:42
and so basically基本上 -- and what do they learn學習 from it?
273
690000
3000
大體上,他們因此得到什麼?
11:45
You're looking at her open打開 lung biopsy活檢.
274
693000
2000
你們看到的是她的開胸活組織樣本。
11:47
And I'm no pathologist病理學家, but you can't tell much from this.
275
695000
2000
我不是病理學家,但從這個你也看不出來甚麼。
11:49
All you can tell is, there's a lot of swelling腫脹: bronchiolitis細支氣管炎.
276
697000
3000
唯一能辨別的就是:有很多腫脹、支氣管炎。
11:52
It was "unrevealingunrevealing": that's the pathologist's病理學家 report報告.
277
700000
3000
病理學家的報告沒甚麼新發現。
11:55
And so, what did they test測試 her for?
278
703000
3000
既然如此,他們檢驗了她什麼?
11:58
They have their own擁有 tests測試, of course課程,
279
706000
1000
當然,他們有自己的檢查,
11:59
and so they tested測試 her for over 70 different不同 assays試驗,
280
707000
3000
超過七十種不同的方法,
12:02
for every一切 sort分類 of bacteria and fungus and viral病毒 assay化驗
281
710000
3000
所有能在市面上找到的
12:05
you can buy購買 off the shelf:
282
713000
2000
細菌、黴菌、病毒測試:
12:07
SARSSARS, metapneumovirus偏肺病毒, HIVHIV, RSVRSV -- all these.
283
715000
3000
包括非典型病毒、間質肺炎病毒、愛滋病毒、呼吸融合瘤病毒 -- 等等。
12:10
Everything came來了 back negative, over 100,000 dollars美元 worth價值 of tests測試.
284
718000
4000
檢查結果都是陰性,花了十萬多美金。
12:14
I mean, they went to the max最大 for this woman女人.
285
722000
3000
我是說,醫生為了她已經盡了一切努力。
12:17
And basically基本上 on hospital醫院 day eight, that's when they called us.
286
725000
3000
直到第八天,院方連繫我們。
12:20
They gave us endotracheal氣管 aspirate吸氣 --
287
728000
2000
給我們病人氣管內的抽取物 --
12:22
you know, a little fluid流體 from the throat,
288
730000
2000
也就是在喉嚨裡放根管子,
12:24
from this tube that they got down there -- and they gave us this.
289
732000
2000
抽取喉嚨裡少少的液體。
12:26
We put it on the chip芯片; what do we see? Well, we saw parainfluenza-parainfluenza-4.
290
734000
5000
我們將樣本放上晶片,觀察到的是:副流感病毒第四型。
12:31
Well, what the hell's地獄 parainfluenza-parainfluenza-4?
291
739000
2000
這個副流感病毒第四型是甚麼鬼東西?
12:33
No one tests測試 for parainfluenza-parainfluenza-4. No one cares管它 about it.
292
741000
3000
沒有人測過這隻病毒,沒人想到過它。
12:36
In fact事實, it's not even really sequenced測序 that much.
293
744000
3000
事實上,我們甚至連病毒的完整序都沒有。
12:39
There's just a little bit of it sequenced測序.
294
747000
2000
只有一小段序列。
12:41
There's almost幾乎 no epidemiology流行病學 or studies學習 on it.
295
749000
2000
也沒甚麼流行病學研究過它。
12:43
No one would even consider考慮 it,
296
751000
2000
沒有人想過它,
12:45
because no one had a clue線索 that it could cause原因 respiratory呼吸 failure失敗.
297
753000
3000
因為沒人有證據證明,這病毒會造成呼吸衰竭。
12:48
And why is that? Just lore知識. There's no data數據 --
298
756000
3000
為什麼?只有口頭知識,卻沒有數據 --
12:51
no data數據 to support支持 whether是否 it causes原因 severe嚴重 or mild溫和 disease疾病.
299
759000
4000
沒有數據證明這種病毒會造成嚴重或輕微的疾病。
12:55
Clearly明確地, we have a case案件 of a healthy健康 person that's going down.
300
763000
3000
顯然,我們手上有個正在失去生命的健康人。
12:58
OK, that's one case案件 report報告.
301
766000
3000
這是個病例報告。
13:01
I'm going to tell you one last thing in the last two minutes分鐘
302
769000
2000
最後兩分鐘,告訴大家一個
13:03
that's unpublished未公佈 -- it's going to come out tomorrow明天 --
303
771000
3000
還沒有發表的研究:論文明天才會出來 --
13:06
and it's an interesting有趣 case案件 of how you might威力 use this chip芯片
304
774000
3000
這個有趣例子告訴我們,我們可以如何使用晶片
13:09
to find something new and open打開 a new door.
305
777000
2000
來發現新事物、打開新知之門。
13:11
Prostate前列腺 cancer癌症. I don't need to give you many許多 statistics統計
306
779000
4000
攝護腺癌 / 前列腺癌。我不需要報告太多關於
13:15
about prostate前列腺 cancer癌症. Most of you already已經 know it:
307
783000
3000
攝護腺癌的統計,你們大部分都很清楚:
13:18
third第三 leading領導 cause原因 of cancer癌症 deaths死亡 in the U.S.
308
786000
2000
(攝護腺癌)在美國癌症死亡率中排名第三。
13:20
Lots of risk風險 factors因素,
309
788000
2000
有許多致病風險,
13:22
but there is a genetic遺傳 predisposition傾向 to prostate前列腺 cancer癌症.
310
790000
4000
其中一項引致攝護腺癌的成因為基因傾向。
13:26
For maybe about 10 percent百分 of prostate前列腺 cancer癌症,
311
794000
2000
大概有一成的攝護腺癌病人,
13:28
there are folks鄉親 that are predisposed易患 to it.
312
796000
2000
帶著這種傾向的基因。
13:30
And the first gene基因 that was mapped映射 in association協會 studies學習
313
798000
4000
相關研究中找到的第一個早期攝護腺癌
13:34
for this, early-onset早發 prostate前列腺 cancer癌症, was this gene基因 called RNASELRNASEL.
314
802000
4000
致癌基因,叫做RNASEL。
13:38
What is that? It's an antiviral抗病毒 defense防禦 enzyme.
315
806000
3000
這是甚麼?是一種對抗病毒感染的酵素。
13:41
So, we're sitting坐在 around and thinking思維,
316
809000
2000
於是我們坐下思考,
13:43
"Why would men男人 who have the mutation突變 --
317
811000
2000
為什麼一個人,帶著有缺陷的
13:45
a defect缺陷 in an antiviral抗病毒 defense防禦 system系統 -- get prostate前列腺 cancer癌症?
318
813000
5000
抗病毒感染系統,會得攝護腺癌?
13:50
It doesn't make sense -- unless除非, maybe, there's a virus病毒?"
319
818000
3000
這一點道理也沒有。除非,可能,病毒會造成攝護腺癌。
13:53
So, we put tumors腫瘤 --- and now we have over 100 tumors腫瘤 -- on our array排列.
320
821000
6000
於是,我們把腫瘤 -- 現在我們有至少一百個腫瘤 -- 的基因放到晶片上。
13:59
And we know who's誰是 got defects缺陷 in RNASELRNASEL and who doesn't.
321
827000
3000
我們知道誰有RNASEL缺陷,誰沒有。
14:02
And I'm showing展示 you the signal信號 from the chip芯片 here,
322
830000
3000
我現在把晶片所傳達的訊息展示出來,
14:05
and I'm showing展示 you for the block of retroviral逆轉錄病毒 oligos寡核苷酸.
323
833000
4000
還有這個代表反轉錄病毒引子的區塊。
14:09
And what I'm telling告訴 you here from the signal信號, is
324
837000
2000
而這個訊息告訴我們,
14:11
that men男人 who have a mutation突變 in this antiviral抗病毒 defense防禦 enzyme,
325
839000
4000
帶著抗病毒系統變異、
14:15
and have a tumor, often經常 have -- 40 percent百分 of the time --
326
843000
4000
具攝護腺癌的男性,通常 -- 其中四成 --
14:19
a signature簽名 which哪一個 reveals揭示 a new retrovirus逆轉錄病毒.
327
847000
4000
帶有新種逆轉濾過性病毒特徵。
14:23
OK, that's pretty漂亮 wild野生. What is it?
328
851000
3000
很出乎意料吧?這到底是什麼?
14:26
So, we clone克隆 the whole整個 virus病毒.
329
854000
1000
於是,我們複製了整個病毒。
14:27
First of all, I'll tell you that a little automated自動化 prediction預測 told us
330
855000
4000
首先,一個小小的自動預測告訴我們
14:31
it was very similar類似 to a mouse老鼠 virus病毒.
331
859000
2000
這隻病毒非常接近老鼠病毒。
14:33
But that doesn't tell us too much,
332
861000
1000
但這不能告訴我們甚麼,
14:34
so we actually其實 clone克隆 the whole整個 thing.
333
862000
2000
所以我們實質上複製了整個病毒。
14:36
And the viral病毒 genome基因組 I'm showing展示 you right here?
334
864000
2000
而我在這裡展出的病毒染色體序列
14:38
It's a classic經典 gamma伽馬 retrovirus逆轉錄病毒, but it's totally完全 new;
335
866000
3000
是典型的γ逆轉錄病毒屬,但它是全新的,
14:41
no one's那些 ever seen看到 it before.
336
869000
1000
從來沒有人發現過它。
14:42
Its closest最近的 relative相對的 is, in fact事實, from mice老鼠,
337
870000
3000
事實上,最接近的親屬是,老鼠的逆轉錄病毒,
14:45
and so we would call this a xenotropic retrovirus逆轉錄病毒,
338
873000
4000
所以我們將之命名為異嗜性逆轉錄病毒,
14:49
because it's infecting感染 a species種類 other than mice老鼠.
339
877000
3000
因為它感染了除老鼠以外的物種。
14:52
And this is a little phylogenetic進化 tree
340
880000
2000
這是它的小演化樹,
14:54
to see how it's related有關 to other viruses病毒.
341
882000
2000
可見這隻新病毒跟其他病毒的親緣關係。
14:56
We've我們已經 doneDONE it for many許多 patients耐心 now,
342
884000
3000
我們已經分析過許多病人,
14:59
and we can say that they're all independent獨立 infections感染.
343
887000
3000
發現這些全部都是獨立感染。
15:02
They all have the same相同 virus病毒,
344
890000
1000
他們都被同一種病毒感染,
15:03
but they're different不同 enough足夠 that there's reason原因 to believe
345
891000
3000
但他們不同處多到我們有理由相信
15:06
that they've他們已經 been independently獨立地 acquired後天.
346
894000
2000
他們都是獨立感染。
15:08
Is it really in the tissue組織? And I'll end結束 up with this: yes.
347
896000
2000
病毒真的存在於組織中嗎?我以此作結。是的。
15:10
We take slices of these biopsies活檢 of tumor tissue組織
348
898000
3000
我們切片了許多腫瘤活組織
15:13
and use material材料 to actually其實 locate定位 the virus病毒,
349
901000
2000
利用試劑來找出病毒的位置,
15:15
and we find cells細胞 here with viral病毒 particles粒子 in them.
350
903000
4000
而我們發現這裡的細胞帶有病毒顆粒。
15:19
These guys really do have this virus病毒.
351
907000
2000
這些病人身上的確有這種病毒。
15:21
Does this virus病毒 cause原因 prostate前列腺 cancer癌症?
352
909000
2000
病毒會引致攝護腺癌嗎?
15:23
Nothing I'm saying here implies暗示 causality因果關係. I don't know.
353
911000
4000
我手上的資料並沒有顯示其中的因果關係。我不知道。
15:27
Is it a link鏈接 to oncogenesis腫瘤發生? I don't know.
354
915000
2000
它們跟癌變有關嗎?我不知道。
15:29
Is it the case案件 that these guys are just more susceptible易感 to viruses病毒?
355
917000
4000
還是只是這些病人容易被病毒感染?
15:33
Could be. And it might威力 have nothing to do with cancer癌症.
356
921000
3000
可能吧。病毒也可能跟癌症一點關係都沒有。
15:36
But now it's a door.
357
924000
1000
但這是一扇門。
15:37
We have a strong強大 association協會 between之間 the presence存在 of this virus病毒
358
925000
3000
我們找到病毒表現和基因突變
15:40
and a genetic遺傳 mutation突變 that's been linked關聯 to cancer癌症.
359
928000
3000
跟癌症間的強烈關聯性。
15:43
That's where we're at.
360
931000
1000
這就是我們目前的研究進度。
15:44
So, it opens打開 up more questions問題 than it answers答案, I'm afraid害怕,
361
932000
4000
不過,我恐怕,研究提供的問題比解答還多,
15:48
but that's what, you know, science科學 is really good at.
362
936000
2000
但,這也是科學擅長的東西。
15:50
This was all doneDONE by folks鄉親 in the lab實驗室 --
363
938000
2000
這些研究是實驗室同仁共同努力的結果,
15:52
I cannot不能 take credit信用 for most of this.
364
940000
1000
我無法獨享榮耀。
15:53
This is a collaboration合作 between之間 myself and Don.
365
941000
1000
這是我跟Don合作的研究成果。
15:54
This is the guy who started開始 the project項目 in my lab實驗室,
366
942000
3000
這位在我的實驗室開始這個計畫,
15:57
and this is the guy who's誰是 been doing prostate前列腺 stuff東東.
367
945000
2000
而這位一直進行攝護腺癌的研究。
15:59
Thank you very much. (Applause掌聲)
368
947000
3000
非常謝謝各位。
Translated by Ching-Yi Wu
Reviewed by Shelley Krishna TSANG

▲Back to top

ABOUT THE SPEAKER
Joe DeRisi - Biochemist
Joe DeRisi hunts for the genes that make us sick. At his lab, he works to understand the genome of Plasmodium falciparum, the deadliest form of malaria.

Why you should listen

Joseph DeRisi is a molecular biologist and biochemist, on the hunt for the genomic basis of illness. His lab at UCSF is focused on the cause of malaria, and he's also poked into SARS, avian flu and other new diseases as they crop up. His approach combines scientific rigor with a nerd's boundary-breaking enthusiasm for new techniques -- one of the qualities that helped him win a MacArthur "genius" grant in 2004. A self-confessed computer geek, DeRisi designed and programmed a groundbreaking tool for finding (and fighting) viruses -- the ViroChip, a DNA microarray that test for the presence of all known viruses in one step.

In 2008, DeRisi won the Heinz Award for Technology, the Economy and Employment.

More profile about the speaker
Joe DeRisi | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee