ABOUT THE SPEAKER
Tim Berners-Lee - Inventor
Tim Berners-Lee invented the World Wide Web. He leads the World Wide Web Consortium (W3C), overseeing the Web's standards and development.

Why you should listen

In the 1980s, scientists at CERN were asking themselves how massive, complex, collaborative projects -- like the fledgling LHC -- could be orchestrated and tracked. Tim Berners-Lee, then a contractor, answered by inventing the World Wide Web. This global system of hypertext documents, linked through the Internet, brought about a massive cultural shift ushered in by the new tech and content it made possible: AOL, eBay, Wikipedia, TED.com...

Berners-Lee is now director of the World Wide Web Consortium (W3C), which maintains standards for the Web and continues to refine its design. Recently he has envisioned a "Semantic Web" -- an evolved version of the same system that recognizes the meaning of the information it carries. He's the 3Com Founders Professor of Engineering in the School of Engineering with a joint appointment in the Department of Electrical Engineering and Computer Science at the Laboratory for Computer Science and Artificial Intelligence (CSAIL) at the MIT, where he also heads the Decentralized Information Group (DIG). He is also a Professor in the Electronics and Computer Science Department at the University of Southampton, UK.

More profile about the speaker
Tim Berners-Lee | Speaker | TED.com
TED2009

Tim Berners-Lee: The next web

Tim Berners-Lee 談網絡的未來

Filmed:
1,638,798 views

二十年前,Tim Berners-Lee 發明了網際網路,而他接下來的計劃是,建立一個開放的連結數據庫,使它得以處理數據,如同網絡處理文字、圖像、影片一般: 解開數據,並且重新塑造我們對它的共同使用模式。
- Inventor
Tim Berners-Lee invented the World Wide Web. He leads the World Wide Web Consortium (W3C), overseeing the Web's standards and development. Full bio

Double-click the English transcript below to play the video.

00:18
Time flies蒼蠅.
0
0
2000
光陰似箭
00:20
It's actually其實 almost幾乎 20 years年份 ago
1
2000
2000
差不多是20年前
00:22
when I wanted to reframe重構 the way we use information信息,
2
4000
4000
當我想重新構造我們使用資訊
00:26
the way we work together一起: I invented發明 the World世界 Wide Web捲筒紙.
3
8000
3000
共同工作方式的時候 - 我發明了網際網路
00:29
Now, 20 years年份 on, at TEDTED,
4
11000
3000
20年過去了,現在,在TED
00:32
I want to ask your help in a new reframing重新定義.
5
14000
4000
我請求你們幫助建立一個新的架構
00:37
So going back to 1989,
6
19000
4000
回到1989年
00:41
I wrote a memo備忘錄 suggesting提示 the global全球 hypertext超文本 system系統.
7
23000
3000
我在備忘錄中建議,使用一種全球的超連結系統
00:44
Nobody沒有人 really did anything with it, pretty漂亮 much.
8
26000
3000
幾乎沒有什麼人在真正用它
00:47
But 18 months個月 later後來 -- this is how innovation革新 happens發生 --
9
29000
4000
但是,18個月後 - 革新就是這麼開始的
00:51
18 months個月 later後來, my boss老闆 said I could do it on the side,
10
33000
4000
18個月後,老闆說,我可以兼職做這件事
00:55
as a sort分類 of a play project項目,
11
37000
2000
做一種遊戲性的計劃
00:57
kick the tires輪胎 of a new computer電腦 we'd星期三 got.
12
39000
2000
就當試用我們新買來的電腦
00:59
And so he gave me the time to code it up.
13
41000
3000
他給了我些時間寫代碼
01:02
So I basically基本上 roughed粗暴對待 out what HTMLHTML should look like:
14
44000
5000
我草擬了下HTML應該是什麼樣子
01:07
hypertext超文本 protocol協議, HTTPHTTP;
15
49000
3000
超文件傳輸協定 - HTTP -
01:10
the idea理念 of URLs網址, these names for things
16
52000
3000
關於URLs 的想法 - 這些事物的名稱
01:13
which哪一個 started開始 with HTTPHTTP.
17
55000
2000
都是以HTTP開頭命名的
01:15
I wrote the code and put it out there.
18
57000
2000
我完成了代碼並發佈出來。
01:17
Why did I do it?
19
59000
2000
我為什麼要這麼做?
01:19
Well, it was basically基本上 frustration挫折.
20
61000
2000
這是一個充滿挫敗感的過程
01:21
I was frustrated受挫 -- I was working加工 as a software軟件 engineer工程師
21
63000
4000
我感到很挫敗 - 因為我作為一個軟體工程師
01:25
in this huge巨大, very exciting扣人心弦 lab實驗室,
22
67000
2000
在這個令人興奮的超大實驗室中工作
01:27
lots of people coming未來 from all over the world世界.
23
69000
2000
很多人從世界各地來到這裡
01:29
They brought all sorts排序 of different不同 computers電腦 with them.
24
71000
3000
他們的電腦各不相同
01:32
They had all sorts排序 of different不同 data數據 formats格式,
25
74000
3000
資料格式各不相同
01:35
all sorts排序, all kinds of documentation文件 systems系統.
26
77000
2000
檔案系統各不相同
01:37
So that, in all that diversity多樣,
27
79000
3000
所以,這其中有很大的差異性
01:40
if I wanted to figure數字 out how to build建立 something
28
82000
2000
如果我想建立一點點東西
01:42
out of a bit of this and a bit of this,
29
84000
2000
在這些差異性很大的電腦上
01:44
everything I looked看著 into, I had to connect to some new machine,
30
86000
4000
每一項我找到的資料,我不得不連接到一些新的機器
01:48
I had to learn學習 to run some new program程序,
31
90000
2000
運行一些新的程式
01:50
I would find the information信息 I wanted in some new data數據 format格式.
32
92000
5000
以便我能在新的資料格式中找到我需要的資訊
01:55
And these were all incompatible不相容.
33
97000
2000
而這些都是不相容的
01:57
It was just very frustrating洩氣.
34
99000
2000
這非常令人沮喪
01:59
The frustration挫折 was all this unlocked解鎖 potential潛在.
35
101000
2000
這種挫敗感卻正顯示出這個專案的潛力所在
02:01
In fact事實, on all these discs光盤 there were documents文件.
36
103000
3000
事實上,過去這些磁片裡全都是檔案
02:04
So if you just imagined想像 them all
37
106000
3000
所以如果你僅僅把他們
02:07
being存在 part部分 of some big, virtual虛擬 documentation文件 system系統 in the sky天空,
38
109000
5000
想像成天空中某些大型虛擬檔案系統的一部分
02:12
say on the Internet互聯網,
39
114000
2000
比如在網際網路上
02:14
then life would be so much easier更輕鬆.
40
116000
2000
生活就會簡單得多
02:16
Well, once一旦 you've had an idea理念 like that it kind of gets得到 under your skin皮膚
41
118000
4000
這樣,一旦你有了這樣的想法
02:20
and even if people don't read your memo備忘錄 --
42
122000
2000
即使人們並沒有讀到你的備忘錄
02:22
actually其實 he did, it was found發現 after he died死亡, his copy複製.
43
124000
3000
事實上他讀到了,因為在他死後,在他的備份草稿中
02:25
He had written書面, "Vague模糊, but exciting扣人心弦," in pencil鉛筆, in the corner.
44
127000
3000
他用鉛筆在角落寫到“模糊,但是令人興奮”。
02:28
(Laughter笑聲)
45
130000
2000
(笑聲)
02:30
But in general一般 it was difficult -- it was really difficult to explain說明
46
132000
4000
但一般情況下,很難有這樣的想法 – 的確很難解釋
02:34
what the web捲筒紙 was like.
47
136000
2000
網路是什麼樣的
02:36
It's difficult to explain說明 to people now that it was difficult then.
48
138000
2000
現在都很難向人們解釋,更別提當初了
02:38
But then -- OK, when TEDTED started開始, there was no web捲筒紙
49
140000
3000
但是,當 TED 開始時,那時沒有網路
02:41
so things like "click點擊" didn't have the same相同 meaning含義.
50
143000
3000
所以像“點選”這樣的事情含義是不同的
02:44
I can show顯示 somebody a piece of hypertext超文本,
51
146000
2000
我現在可以向某人展示一大堆超連結
02:46
a page which哪一個 has got links鏈接,
52
148000
2000
某個包含連結的網頁
02:48
and we click點擊 on the link鏈接 and bing -- there'll有會 be another另一個 hypertext超文本 page.
53
150000
4000
我們點選一個連結,然後叮 -- 就會轉到另一個超連結的頁面
02:52
Not impressive有聲有色.
54
154000
2000
沒什麼令人印象深刻的
02:54
You know, we've我們已經 seen看到 that -- we've我們已經 got things on hypertext超文本 on CD-ROMs光盤.
55
156000
3000
我們已經見到,通過超連結找到CD-ROMs中的內容
02:57
What was difficult was to get them to imagine想像:
56
159000
3000
困難的是把它們想像出來
03:00
so, imagine想像 that that link鏈接 could have gone走了
57
162000
4000
所以,想像那個連結可以到
03:04
to virtually實質上 any document文件 you could imagine想像.
58
166000
2000
任何實際的你能想像得到的文件
03:07
Alright好的, that is the leap飛躍 that was very difficult for people to make.
59
169000
4000
好的,這個跳躍對於人們是很難做到的
03:11
Well, some people did.
60
173000
2000
然而,一些人做到了
03:13
So yeah, it was difficult to explain說明, but there was a grassroots基層 movement運動.
61
175000
3000
儘管很難解釋,但是這是一場草根運動
03:17
And that is what has made製作 it most fun開玩笑.
62
179000
4000
這正是使它好玩的地方
03:21
That has been the most exciting扣人心弦 thing,
63
183000
2000
也是最令人激動人心的事情
03:23
not the technology技術, not the things people have doneDONE with it,
64
185000
2000
不是技術,不是人們用它所做的東西
03:25
but actually其實 the community社區, the spirit精神 of all these people
65
187000
2000
而是實際的交流,所有這些人的思想彙聚
03:27
getting得到 together一起, sending發出 the emails電子郵件.
66
189000
2000
在一起,發送電子郵件
03:29
That's what it was like then.
67
191000
2000
這是那時的情況
03:31
Do you know what? It's funny滑稽, but right now it's kind of like that again.
68
193000
3000
你知道嗎?有趣的是,現在跟那時候又有點像了
03:34
I asked everybody每個人, more or less, to put their documents文件 --
69
196000
2000
我問每一個人,他們或多或少都發佈過文檔
03:36
I said, "Could you put your documents文件 on this web捲筒紙 thing?"
70
198000
3000
我說“你能把你的文檔放到網路上嗎?”
03:39
And you did.
71
201000
3000
然後,你做了
03:42
Thanks謝謝.
72
204000
1000
謝謝
03:43
It's been a blast爆破, hasn't有沒有 it?
73
205000
2000
這已經是一種風潮,不是嗎?
03:45
I mean, it has been quite相當 interesting有趣
74
207000
2000
我的意思是,它已經非常有趣
03:47
because we've我們已經 found發現 out that the things that happen發生 with the web捲筒紙
75
209000
2000
因為我們發現,網路上發生的事情似乎
03:49
really sort分類 of blow打擊 us away.
76
211000
2000
已經把我們吹到了一邊
03:51
They're much more than we'd星期三 originally本來 imagined想像
77
213000
2000
現在它的功能得比我們想像的還多
03:53
when we put together一起 the little, initial初始 website網站
78
215000
2000
最初的設計只是想把檔案湊在一起
03:55
that we started開始 off with.
79
217000
2000
在我們最初開始使用網路時
03:57
Now, I want you to put your data數據 on the web捲筒紙.
80
219000
3000
現在我想讓你把你的資料放在網上
04:00
Turns out that there is still huge巨大 unlocked解鎖 potential潛在.
81
222000
4000
原來這還是有許多未釋放的潛力
04:04
There is still a huge巨大 frustration挫折
82
226000
2000
也有很大的挫敗感
04:06
that people have because we haven't沒有 got data數據 on the web捲筒紙 as data數據.
83
228000
4000
因為我們從網上得到的資料不是我們想要的資料
04:10
What do you mean, "data數據"? What's the difference區別 -- documents文件, data數據?
84
232000
2000
你說的數據是什麼?數據和文件之間有什麼區別?
04:12
Well, documents文件 you read, OK?
85
234000
3000
文件檔是你閱讀的東西
04:15
More or less, you read them, you can follow跟隨 links鏈接 from them, and that's it.
86
237000
3000
或多或少,你都讀過,你可以追蹤他們的連結,就是這樣
04:18
Data數據 -- you can do all kinds of stuff東東 with a computer電腦.
87
240000
2000
數據—你可以通過一台電腦使用各種資料
04:20
Who was here or has otherwise除此以外 seen看到 Hans漢斯 Rosling's羅斯林的 talk?
88
242000
6000
誰在這裡或者其他地方聽過漢斯羅素令的演講?
04:26
One of the great -- yes a lot of people have seen看到 it --
89
248000
4000
一個偉大的 – 很多人已經看過了 –
04:30
one of the great TEDTED Talks會談.
90
252000
2000
一個偉大的TED演講
04:32
Hans漢斯 put up this presentation介紹
91
254000
2000
漢斯在他的演說中
04:34
in which哪一個 he showed顯示, for various各個 different不同 countries國家, in various各個 different不同 colors顏色 --
92
256000
5000
使用不同的顏色表示不同的國家
04:39
he showed顯示 income收入 levels水平 on one axis
93
261000
3000
他在一個軸上顯示收入水準
04:42
and he showed顯示 infant嬰兒 mortality死亡, and he shot射擊 this thing animated動畫 through通過 time.
94
264000
3000
同時他用動畫按年份顯示嬰兒死亡率
04:45
So, he'd他會 taken採取 this data數據 and made製作 a presentation介紹
95
267000
4000
他使用這些資料完成了一場演講,
04:49
which哪一個 just shattered破滅 a lot of myths神話 that people had
96
271000
3000
這個演講打破了很多人
04:52
about the economics經濟學 in the developing發展 world世界.
97
274000
4000
對發展中國家經濟的神話
04:56
He put up a slide滑動 a little bit like this.
98
278000
2000
他展示了一個類似的幻燈片
04:58
It had underground地下 all the data數據
99
280000
2000
數據都被埋在地下
05:00
OK, data數據 is brown棕色 and boxy四四方方 and boring無聊,
100
282000
3000
對,資料是這些棕色的、無趣的四方盒子
05:03
and that's how we think of it, isn't it?
101
285000
2000
我們就是這樣看待資料的,不是嗎?
05:05
Because data數據 you can't naturally自然 use by itself本身
102
287000
3000
因為,你不能漫無目的地使用資料
05:08
But in fact事實, data數據 drives驅動器 a huge巨大 amount of what happens發生 in our lives生活
103
290000
4000
但事實上,資料驅動了我們的生活
05:12
and it happens發生 because somebody takes that data數據 and does something with it.
104
294000
3000
因為某些人使用了資料並且做了些事情
05:15
In this case案件, Hans漢斯 had put the data數據 together一起
105
297000
2000
在這個例子中,漢斯將資料放到了一起
05:17
he had found發現 from all kinds of United聯合的 Nations國家 websites網站 and things.
106
299000
5000
漢斯在聯合國網站找到各種資料和事物
05:22
He had put it together一起,
107
304000
2000
他把資料放到了一起
05:24
combined結合 it into something more interesting有趣 than the original原版的 pieces
108
306000
3000
將它們組合起來使之比原始資料有趣得多
05:27
and then he'd他會 put it into this software軟件,
109
309000
5000
然後把資料放到這個軟體中
05:32
which哪一個 I think his son兒子 developed發達, originally本來,
110
314000
2000
這個軟體好像原本是他兒子開發的
05:34
and produces產生 this wonderful精彩 presentation介紹.
111
316000
3000
最終他做出了這個美妙的簡報
05:37
And Hans漢斯 made製作 a point
112
319000
2000
最後漢斯說道
05:39
of saying, "Look, it's really important重要 to have a lot of data數據."
113
321000
4000
“瞧,有大量的資料是非常重要的”
05:43
And I was happy快樂 to see that at the party派對 last night
114
325000
3000
我高興地看到在昨天的晚會上
05:46
that he was still saying, very forcibly強制, "It's really important重要 to have a lot of data數據."
115
328000
4000
他仍然強烈地表示“有大量資料是非常重要的”
05:50
So I want us now to think about
116
332000
2000
現在我想讓大家想的是
05:52
not just two pieces of data數據 being存在 connected連接的, or six like he did,
117
334000
4000
不僅僅是兩條資料間的連接,或者像他所說的那樣六條資料
05:56
but I want to think about a world世界 where everybody每個人 has put data數據 on the web捲筒紙
118
338000
5000
而是這個世界上任何人
06:01
and so virtually實質上 everything you can imagine想像 is on the web捲筒紙
119
343000
2000
都把資料和可以虛擬化的一切內容放到網路上
06:03
and then calling調用 that linked關聯 data數據.
120
345000
2000
然後把它們稱為關聯資料
06:05
The technology技術 is linked關聯 data數據, and it's extremely非常 simple簡單.
121
347000
2000
這個技術就是關聯資料,它是極其簡單的
06:07
If you want to put something on the web捲筒紙 there are three rules規則:
122
349000
4000
如果你想把什麼東西放在網路,有三條規則
06:11
first thing is that those HTTPHTTP names --
123
353000
3000
第一條規則是,需要有HTTP的名字
06:14
those things that start開始 with "httpHTTP:" --
124
356000
2000
那些東西要以http:開頭
06:16
we're using運用 them not just for documents文件 now,
125
358000
4000
我們現在不僅對文件檔這樣用
06:20
we're using運用 them for things that the documents文件 are about.
126
362000
2000
對文件檔描述的事物也這樣用
06:22
We're using運用 them for people, we're using運用 them for places地方,
127
364000
2000
我們對人物、地點
06:24
we're using運用 them for your products製品, we're using運用 them for events事件.
128
366000
4000
產品,事件等都這樣用
06:28
All kinds of conceptual概念上的 things, they have names now that start開始 with HTTPHTTP.
129
370000
4000
所有概念化的東西現在都以HTTP開頭命名
06:32
Second第二 rule規則, if I take one of these HTTPHTTP names and I look it up
130
374000
5000
第二條規則,如果我有一個HTTP名稱,然後我根據它在網路上進行查找
06:37
and I do the web捲筒紙 thing with it and I fetch the data數據
131
379000
2000
我可以從網上獲取資料
06:39
using運用 the HTTPHTTP protocol協議 from the web捲筒紙,
132
381000
2000
通過HTTP協議
06:41
I will get back some data數據 in a standard標準 format格式
133
383000
3000
我將得到一些標準的格式化資料
06:44
which哪一個 is kind of useful有用 data數據 that somebody might威力 like to know
134
386000
5000
這些有用資料或許是關於人們希望瞭解
06:49
about that thing, about that event事件.
135
391000
2000
某個事物或者事件的
06:51
Who's誰是 at the event事件? Whatever隨你 it is about that person,
136
393000
2000
事件的主人公是誰?關於這個人的所有資訊
06:53
where they were born天生, things like that.
137
395000
2000
他們什麼時候出生的,等等
06:55
So the second第二 rule規則 is I get important重要 information信息 back.
138
397000
2000
所以,第二條規則就是我通過HTTP獲得了重要的資料
06:57
Third第三 rule規則 is that when I get back that information信息
139
399000
4000
第三條規則是,我得到的資訊
07:01
it's not just got somebody's某人的 height高度 and weight重量 and when they were born天生,
140
403000
3000
不僅僅是某人的身高、體重和出生日期
07:04
it's got relationships關係.
141
406000
2000
還有資料間的關係
07:06
Data數據 is relationships關係.
142
408000
2000
數據是有關聯的
07:08
Interestingly有趣的是, data數據 is relationships關係.
143
410000
2000
很有趣,數據是有關聯的
07:10
This person was born天生 in Berlin柏林; Berlin柏林 is in Germany德國.
144
412000
4000
這個人出生在柏林,柏林在德國
07:14
And when it has relationships關係, whenever每當 it expresses表達 a relationship關係
145
416000
3000
當數據是有關聯時,無論何時它表現出這種關聯
07:17
then the other thing that it's related有關 to
146
419000
3000
另一件與之有關聯的事物
07:20
is given特定 one of those names that starts啟動 HTTPHTTP.
147
422000
4000
就以HTTP開頭命名
07:24
So, I can go ahead and look that thing up.
148
426000
2000
所以,我可以直接去找那件事
07:26
So I look up a person -- I can look up then the city where they were born天生; then
149
428000
3000
比如,我查一個人 -- 我查他出生的城市
07:29
I can look up the region地區 it's in, and the town it's in,
150
431000
3000
這個城市的所在區域,城市的城鎮
07:32
and the population人口 of it, and so on.
151
434000
3000
人口等等
07:35
So I can browse瀏覽 this stuff東東.
152
437000
2000
這樣我就能流覽這些資訊
07:37
So that's it, really.
153
439000
2000
真的,就是這樣
07:39
That is linked關聯 data數據.
154
441000
2000
這就是關聯資料
07:41
I wrote an article文章 entitled標題 "Linked關聯 Data數據" a couple一對 of years年份 ago
155
443000
3000
我多年前在一篇文章中給它命名為“關聯資料”
07:44
and soon不久 after that, things started開始 to happen發生.
156
446000
4000
之後不久,有些事開始發生了
07:48
The idea理念 of linked關聯 data數據 is that we get lots and lots and lots
157
450000
4000
關聯資料的想法就像我們得到了很多很多
07:52
of these boxes盒子 that Hans漢斯 had,
158
454000
2000
就像漢斯的那些盒子
07:54
and we get lots and lots and lots of things sprouting發芽.
159
456000
2000
很多很多的事物開始發芽生長
07:56
It's not just a whole整個 lot of other plants植物.
160
458000
3000
它帶給我們相當多的植物
07:59
It's not just a root supplying供應 a plant,
161
461000
2000
不僅僅是一個根供給一個植物
08:01
but for each of those plants植物, whatever隨你 it is --
162
463000
3000
對於這的每一個植物,無論它是什麼
08:04
a presentation介紹, an analysis分析, somebody's某人的 looking for patterns模式 in the data數據 --
163
466000
3000
一場演說,一個分析,某些人查看數據資料的樣式
08:07
they get to look at all the data數據
164
469000
3000
它們都著眼於所有的數據
08:10
and they get it connected連接的 together一起,
165
472000
2000
並且它們把數據聯繫起來
08:12
and the really important重要 thing about data數據
166
474000
2000
關於數據真正重要的是
08:14
is the more things you have to connect together一起, the more powerful強大 it is.
167
476000
2000
你把很多東西聯繫起來,數據就更加有價值
08:16
So, linked關聯 data數據.
168
478000
2000
所以,關聯資料
08:18
The meme米姆 went out there.
169
480000
2000
由此而來
08:20
And, pretty漂亮 soon不久 Chris克里斯 BizerBizer at the Freie柏林自由 UniversitatUniversität大學 in Berlin柏林
170
482000
4000
很快,來自柏林自由大學的克里斯拜澤
08:24
who was one of the first people to put interesting有趣 things up,
171
486000
2000
做為第一人把有趣的東西放在一起
08:26
he noticed注意到 that Wikipedia維基百科 --
172
488000
2000
他注意到維琪百科
08:28
you know Wikipedia維基百科, the online線上 encyclopedia百科全書
173
490000
3000
一部線上百科全書
08:31
with lots and lots of interesting有趣 documents文件 in it.
174
493000
2000
有很多有趣的文檔
08:33
Well, in those documents文件, there are little squares廣場, little boxes盒子.
175
495000
4000
在這些文檔中,有些小方格子和小盒子
08:37
And in most information信息 boxes盒子, there's data數據.
176
499000
3000
在多數的資訊方格中,就有資料
08:40
So he wrote a program程序 to take the data數據, extract提取 it from Wikipedia維基百科,
177
502000
4000
他寫了 一個程式將資料從維琪百科中提取出來
08:44
and put it into a blobBLOB of linked關聯 data數據
178
506000
2000
然後將它放到關聯資料的組別中
08:46
on the web捲筒紙, which哪一個 he called dbpediaDBpedia中.
179
508000
3000
在網路上,被他稱之為dbpedia(資料庫百科)
08:49
DbpediaDBpedia中 is represented代表 by the blue藍色 blobBLOB in the middle中間 of this slide滑動
180
511000
4000
這張幻燈片中部藍色的blob表示Dbpedia
08:53
and if you actually其實 go and look up Berlin柏林,
181
515000
2000
如果你去查詢柏林
08:55
you'll你會 find that there are other blobs斑點 of data數據
182
517000
2000
你會發現還有其他的資料
08:57
which哪一個 also have stuff東東 about Berlin柏林, and they're linked關聯 together一起.
183
519000
3000
也有柏林的資訊,它們被聯繫到了一起
09:00
So if you pull the data數據 from dbpediaDBpedia中 about Berlin柏林,
184
522000
3000
所以,如果你要從dbpedia中摘出關於柏林的資料
09:03
you'll你會 end結束 up pulling up these other things as well.
185
525000
2000
你也最終會摘出其他內容
09:05
And the exciting扣人心弦 thing is it's starting開始 to grow增長.
186
527000
3000
令人興奮的事情是它正在成長
09:08
This is just the grassroots基層 stuff東東 again, OK?
187
530000
2000
這又是一個草根做的事情,對嗎?
09:10
Let's think about data數據 for a bit.
188
532000
3000
讓我們多想想資料
09:13
Data數據 comes in fact事實 in lots and lots of different不同 forms形式.
189
535000
3000
資料實際上來源於很多很多不同的形式
09:16
Think of the diversity多樣 of the web捲筒紙. It's a really important重要 thing
190
538000
3000
想想網路的多樣性,很重要的一點
09:19
that the web捲筒紙 allows允許 you to put all kinds of data數據 up there.
191
541000
3000
網路允許你將各式各樣的資料放在一起
09:22
So it is with data數據. I could talk about all kinds of data數據.
192
544000
2000
說到資料,我能說出各種各樣的數據
09:25
We could talk about government政府 data數據, enterprise企業 data數據 is really important重要,
193
547000
4000
我們可以說政府資料,企業資料真的很重要
09:29
there's scientific科學 data數據, there's personal個人 data數據,
194
551000
3000
還有科學資料,個人資料
09:32
there's weather天氣 data數據, there's data數據 about events事件,
195
554000
2000
天氣資料,關於事件的資料
09:34
there's data數據 about talks會談, and there's news新聞 and there's all kinds of stuff東東.
196
556000
4000
關於談話的資料,還有新聞和各種類似的東西
09:38
I'm just going to mention提到 a few少數 of them
197
560000
3000
我只提到了一小部分資料
09:41
so that you get the idea理念 of the diversity多樣 of it,
198
563000
2000
你們就可以看出其多樣性
09:43
so that you also see how much unlocked解鎖 potential潛在.
199
565000
4000
所以你可以看到其中的潛力
09:47
Let's start開始 with government政府 data數據.
200
569000
2000
讓我們從政府資料說起
09:49
Barack巴拉克 Obama奧巴馬 said in a speech言語,
201
571000
2000
美國總統巴拉克歐巴馬在一場演講上表示
09:51
that he -- American美國 government政府 data數據 would be available可得到 on the Internet互聯網
202
573000
5000
美國政府的資料將在互聯網上被應用
09:56
in accessible無障礙 formats格式.
203
578000
2000
以一種可訪問的形式
09:58
And I hope希望 that they will put it up as linked關聯 data數據.
204
580000
2000
而我希望他們會將這些訊息以關聯資料放上去
10:00
That's important重要. Why is it important重要?
205
582000
2000
這非常重要,難道不是嗎?
10:02
Not just for transparency透明度, yeah transparency透明度 in government政府 is important重要,
206
584000
3000
不僅僅是為了透明性,透明性對政府很重要
10:05
but that data數據 -- this is the data數據 from all the government政府 departments部門
207
587000
3000
尤其是從政府部門出來的資料更重要
10:08
Think about how much of that data數據 is about how life is lived生活 in America美國.
208
590000
5000
想想有多少關係到在美國如何生活的資料
10:13
It's actual實際 useful有用. It's got value.
209
595000
2000
它的確很有用,很有價值
10:15
I can use it in my company公司.
210
597000
2000
我可以把它用在我的公司
10:17
I could use it as a kid孩子 to do my homework家庭作業.
211
599000
2000
我可以像個小孩子般把它用在我的家庭作業中
10:19
So we're talking about making製造 the place地點, making製造 the world世界 run better
212
601000
3000
所以,我們談論的是讓世界變得更好
10:22
by making製造 this data數據 available可得到.
213
604000
2000
通過將這些資料變得更有用
10:24
In fact事實 if you're responsible主管 -- if you know about some data數據
214
606000
4000
事實上,如果你們在負責 - 如果你知道一些資料
10:28
in a government政府 department, often經常 you find that
215
610000
2000
關於政府的, 你經常會發現
10:30
these people, they're very tempted動心 to keep it --
216
612000
3000
有些人,他們會被這些資料所吸引
10:33
Hans漢斯 calls電話 it database數據庫 hugging擁抱.
217
615000
3000
漢斯稱之為資料庫擁抱
10:36
You hug擁抱 your database數據庫, you don't want to let it go
218
618000
2000
你擁抱你的資料庫,你不會放它走
10:38
until直到 you've made製作 a beautiful美麗 website網站 for it.
219
620000
2000
直到你為它建立了一個漂亮的網站
10:40
Well, I'd like to suggest建議 that rather --
220
622000
2000
嗯,我想建議的是,除了建一個漂亮的網站
10:42
yes, make a beautiful美麗 website網站,
221
624000
2000
是的,建一個漂亮的網站
10:44
who am I to say don't make a beautiful美麗 website網站?
222
626000
2000
我沒說不要建一個漂亮的網站
10:46
Make a beautiful美麗 website網站, but first
223
628000
3000
建一個漂亮的網站,但是首先
10:49
give us the unadulterated純正 data數據,
224
631000
3000
要給我們純粹的數據
10:52
we want the data數據.
225
634000
2000
我們要的是數據
10:54
We want unadulterated純正 data數據.
226
636000
2000
我們要純粹的數據
10:56
OK, we have to ask for raw生的 data數據 now.
227
638000
3000
好,現在我們不得不要求原始數據了
10:59
And I'm going to ask you to practice實踐 that, OK?
228
641000
2000
我要請你們練習一下,好嗎?
11:01
Can you say "raw生的"?
229
643000
1000
請說“原始”
11:02
Audience聽眾: Raw生的.
230
644000
1000
原始
11:03
Tim蒂姆 Berners-Lee伯納斯 - 李: Can you say "data數據"?
231
645000
1000
請說“數據”
11:04
Audience聽眾: Data數據.
232
646000
1000
數據
11:05
TBLTBL: Can you say "now"?
233
647000
1000
請說‘現在“
11:06
Audience聽眾: Now!
234
648000
1000
現在
11:07
TBLTBL: Alright好的, "raw生的 data數據 now"!
235
649000
2000
好,原始數據現在!
11:09
Audience聽眾: Raw生的 data數據 now!
236
651000
2000
原始數據現在!
11:11
Practice實踐 that. It's important重要 because you have no idea理念 the number of excuses藉口
237
653000
4000
這樣練習是非常重要的
11:15
people come up with to hang onto their data數據
238
657000
2000
因為你不知道那些擁有數據的人
11:17
and not give it to you, even though雖然 you've paid支付 for it as a taxpayer納稅人.
239
659000
4000
有多少理由拒絕將數據給你,甚至你作為一個納稅人是為此付了錢的
11:21
And it's not just America美國. It's all over the world世界.
240
663000
2000
這不僅僅存在於美國,全世界都一樣
11:23
And it's not just governments政府, of course課程 -- it's enterprises企業 as well.
241
665000
3000
也不僅僅在政府,當然也存在於企業。
11:26
So I'm just going to mention提到 a few少數 other thoughts思念 on data數據.
242
668000
3000
我還想再談談關於數據的其他想法
11:29
Here we are at TEDTED, and all the time we are very conscious意識
243
671000
5000
在TED,我們一直關注於
11:34
of the huge巨大 challenges挑戰 that human人的 society社會 has right now --
244
676000
5000
人類社會目前所面臨的巨大問題
11:39
curing養護 cancer癌症, understanding理解 the brain for Alzheimer's老年癡呆症,
245
681000
3000
癌症治療,瞭解阿爾茨海默病
11:42
understanding理解 the economy經濟 to make it a little bit more stable穩定,
246
684000
3000
瞭解經濟好讓它穩定點
11:45
understanding理解 how the world世界 works作品.
247
687000
2000
瞭解世界是如何運轉的
11:47
The people who are going to solve解決 those -- the scientists科學家們 --
248
689000
2000
那些致力於解決這些問題的科學家
11:49
they have half-formed半形成 ideas思路 in their head,
249
691000
2000
他們腦海中有些還不成熟的想法
11:51
they try to communicate通信 those over the web捲筒紙.
250
693000
3000
他們試圖在網路上與他人交流
11:54
But a lot of the state of knowledge知識 of the human人的 race種族 at the moment時刻
251
696000
3000
但是現狀是很多人類的知識
11:57
is on databases數據庫, often經常 sitting坐在 in their computers電腦,
252
699000
3000
現在都在資料庫中,放在他們的電腦裡
12:00
and actually其實, currently目前 not shared共享.
253
702000
3000
現在實際上也沒被共用
12:03
In fact事實, I'll just go into one area --
254
705000
3000
事實上,我就從一個方面來說明 -
12:06
if you're looking at Alzheimer's老年癡呆症, for example,
255
708000
2000
如果你在研究阿爾茨海默病,以此為例,
12:08
drug藥物 discovery發現 -- there is a whole整個 lot of linked關聯 data數據 which哪一個 is just coming未來 out
256
710000
3000
以藥物發現為例 -- 這個領域具有相當多的剛剛出現的關聯資料
12:11
because scientists科學家們 in that field領域 realize實現
257
713000
2000
因為這個領域的科學家們意識到
12:13
this is a great way of getting得到 out of those silos筒倉,
258
715000
3000
關聯資料是一種很好的方法,可以説明他們擺脫資料孤島
12:16
because they had their genomics基因組學 data數據 in one database數據庫
259
718000
4000
因為他們在一個資料庫中建立了基因圖組
12:20
in one building建造, and they had their protein蛋白 data數據 in another另一個.
260
722000
3000
他們在另一個資料庫中建立蛋白質數據
12:23
Now, they are sticking癥結 it onto -- linked關聯 data數據 --
261
725000
3000
現在,他們將基因圖組和蛋白質數據形成了關聯資料
12:26
and now they can ask the sort分類 of question, that you probably大概 wouldn't不會 ask,
262
728000
3000
然後他們現在可以問一些特定的問題,也許你不會問
12:29
I wouldn't不會 ask -- they would.
263
731000
2000
我也不會問,但是他們會
12:31
What proteins蛋白質 are involved參與 in signal信號 transduction轉導
264
733000
2000
哪些蛋白質參與信號轉導
12:33
and also related有關 to pyramidal金字塔 neurons神經元?
265
735000
2000
並且也和錐體神經元相關?
12:35
Well, you take that mouthful一口 and you put it into Google谷歌.
266
737000
3000
當你將這個問題放到Google上搜索
12:38
Of course課程, there's no page on the web捲筒紙 which哪一個 has answered回答 that question
267
740000
3000
自然沒有回答結果的頁面
12:41
because nobody沒有人 has asked that question before.
268
743000
2000
因為之前沒有人問過這樣的問題
12:43
You get 223,000 hits點擊 --
269
745000
2000
雖然你得到了223,000個結果
12:45
no results結果 you can use.
270
747000
2000
但是沒有一個你用得上
12:47
You ask the linked關聯 data數據 -- which哪一個 they've他們已經 now put together一起 --
271
749000
3000
當你查詢關聯資料 -- 現在他們已經被放到了一起
12:50
32 hits點擊, each of which哪一個 is a protein蛋白 which哪一個 has those properties性能
272
752000
4000
命中32個結果,每一個結果都是與特性相關的蛋白質
12:54
and you can look at.
273
756000
2000
並且你可以查看
12:56
The power功率 of being存在 able能夠 to ask those questions問題, as a scientist科學家 --
274
758000
3000
做為一個科學家, 詢問那些問題的能力
12:59
questions問題 which哪一個 actually其實 bridge across橫過 different不同 disciplines學科 --
275
761000
2000
那些問題基本上都是跨學科的問題
13:01
is really a complete完成 sea change更改.
276
763000
3000
是非常徹底的重大改變
13:04
It's very very important重要.
277
766000
2000
這是非常非常重要的
13:06
Scientists科學家們 are totally完全 stymied陷入困境 at the moment時刻 --
278
768000
2000
科學家們那時完全陷入了困境
13:08
the power功率 of the data數據 that other scientists科學家們 have collected is locked鎖定 up
279
770000
5000
因為其他科學家搜集的資料,其價值被鎖起來了
13:13
and we need to get it unlocked解鎖 so we can tackle滑車 those huge巨大 problems問題.
280
775000
3000
我們需要將之解鎖,以便處理那些重大問題
13:16
Now if I go on like this, you'll你會 think that all the data數據 comes from huge巨大 institutions機構
281
778000
4000
現在,如果我繼續像這樣講,你們會覺得這些數據都是從大機構得來的
13:20
and has nothing to do with you.
282
782000
3000
和你沒有一點關係
13:23
But, that's not true真正.
283
785000
2000
但是,這種想法並不對
13:25
In fact事實, data數據 is about our lives生活.
284
787000
2000
事實上,數據關乎我們的生活
13:27
You just -- you log日誌 on to your social社會 networking聯網 site現場,
285
789000
3000
你剛剛登陸了你的社交網站
13:30
your favorite喜愛 one, you say, "This is my friend朋友."
286
792000
2000
你最喜歡的一個,你說“這是我朋友”
13:32
Bing! Relationship關係. Data數據.
287
794000
3000
叮!關聯,資料
13:35
You say, "This photograph照片, it's about -- it depicts描繪 this person. "
288
797000
3000
你說“這副照片,是這個人的”
13:38
Bing! That's data數據. Data數據, data數據, data數據.
289
800000
3000
叮!那是數據。數據,數據,數據
13:41
Every一切 time you do things on the social社會 networking聯網 site現場,
290
803000
2000
每次你在社交網站上做的事
13:43
the social社會 networking聯網 site現場 is taking服用 data數據 and using運用 it -- re-purposing再重新考慮 it --
291
805000
4000
社交網站就獲取資料並利用它
13:47
and using運用 it to make other people's人們 lives生活 more interesting有趣 on the site現場.
292
809000
4000
重新設計資料的目的是為了讓這個網站的其他人過得更有趣
13:51
But, when you go to another另一個 linked關聯 data數據 site現場 --
293
813000
2000
但是,當你上另一個關聯資料網站
13:53
and let's say this is one about travel旅行,
294
815000
3000
假設是一個旅遊網站
13:56
and you say, "I want to send發送 this photo照片 to all the people in that group,"
295
818000
3000
你說“我想把這張照片發給那個組裡的所有人”
13:59
you can't get over the walls牆壁.
296
821000
2000
但你卻無法翻過這些牆
14:01
The Economist經濟學家 wrote an article文章 about it, and lots of people have blogged博客 about it --
297
823000
2000
經濟學家曾經寫了一篇關於這個問題的文章,並且許多人也發了相關部落格表示出
14:03
tremendous巨大 frustration挫折.
298
825000
1000
巨大的挫敗感
14:04
The way to break打破 down the silos筒倉 is to get inter-operability互操作性
299
826000
2000
打破孤島的方式是實現交互操作
14:06
between之間 social社會 networking聯網 sites網站.
300
828000
2000
在這些社交網站之間
14:08
We need to do that with linked關聯 data數據.
301
830000
2000
我們需要通過關聯資料做這件事
14:10
One last type類型 of data數據 I'll talk about, maybe it's the most exciting扣人心弦.
302
832000
3000
最後一種我將要談到的資料,也許是最令人激動的
14:13
Before I came來了 down here, I looked看著 it up on OpenStreetMapOpenStreetMap的
303
835000
3000
在我來這之前,我通過OpenStreetMap查找了一下
14:16
The OpenStreetMap'sOpenStreetMap的 a map地圖, but it's also a Wiki維基.
304
838000
2000
OpenStreetMap是一個地圖,但同樣也是一個維琪
14:18
Zoom放大 in and that square廣場 thing is a theater劇院 -- which哪一個 we're in right now --
305
840000
3000
放大這個方塊,這是一個劇場 -- 就是我們現在所處的地方 --
14:21
The Terrace陽台 Theater劇院. It didn't have a name名稱 on it.
306
843000
2000
特羅斯劇場(位於加州長灘市)。它現在還沒有被標上名字
14:23
So I could go into edit編輯 mode模式, I could select選擇 the theater劇院,
307
845000
2000
所以我可以到編輯模式,選擇劇場
14:25
I could add down at the bottom底部 the name名稱, and I could save保存 it back.
308
847000
5000
然後在底下填上名字,然後保存它
14:30
And now if you go back to the OpenStreetMapOpenStreetMap的. org組織,
309
852000
3000
現在你再去訪問OpenStreetMap.org
14:33
and you find this place地點, you will find that The Terrace陽台 Theater劇院 has got a name名稱.
310
855000
3000
你找到這個地方,你會發現它現在有名字了
14:36
I did that. Me!
311
858000
2000
是我做的,是我!
14:38
I did that to the map地圖. I just did that!
312
860000
2000
我在地圖上標的,剛剛做的
14:40
I put that up on there. Hey, you know what?
313
862000
2000
我把它標注在那裡。嗨,你知道嗎
14:42
If I -- that street map地圖 is all about everybody每個人 doing their bit
314
864000
3000
如果除了我,每個人都在這個地圖上標注一點
14:45
and it creates創建 an incredible難以置信 resource資源
315
867000
3000
將會產生難以置信的資源
14:48
because everybody每個人 else其他 does theirs他們的.
316
870000
3000
因為其他每個人都做了
14:51
And that is what linked關聯 data數據 is all about.
317
873000
3000
這就是關聯資料
14:54
It's about people doing their bit
318
876000
3000
每個人都做一點
14:57
to produce生產 a little bit, and it all connecting.
319
879000
3000
生成一點內容,然後把它們連接起來
15:00
That's how linked關聯 data數據 works作品.
320
882000
3000
關聯資料就是這樣工作的
15:03
You do your bit. Everybody每個人 else其他 does theirs他們的.
321
885000
4000
你做一些,每個人都做一些
15:07
You may可能 not have lots of data數據 which哪一個 you have yourself你自己 to put on there
322
889000
4000
也許你的資料在關聯資料中只是很小一部分
15:11
but you know to demand需求 it.
323
893000
3000
但你知道你需要它
15:14
And we've我們已經 practiced that.
324
896000
2000
我們已經在實踐了
15:16
So, linked關聯 data數據 -- it's huge巨大.
325
898000
4000
關聯資料 -- 是非常巨大的
15:20
I've only told you a very small number of things
326
902000
3000
我只能告訴你很小一部分
15:23
There are data數據 in every一切 aspect方面 of our lives生活,
327
905000
2000
我們生活的每個方面
15:25
every一切 aspect方面 of work and pleasure樂趣,
328
907000
3000
工作和快樂的每個方面
15:28
and it's not just about the number of places地方 where data數據 comes,
329
910000
3000
不管是資料出處的有多少
15:31
it's about connecting it together一起.
330
913000
3000
關鍵是把它聯繫起來
15:34
And when you connect data數據 together一起, you get power功率
331
916000
3000
當你把數據聯繫起來
15:37
in a way that doesn't happen發生 just with the web捲筒紙, with documents文件.
332
919000
3000
你能從這樣的方式中獲取在網路或文檔中無法獲取的力量
15:40
You get this really huge巨大 power功率 out of it.
333
922000
4000
你能從中得到巨大的力量
15:44
So, we're at the stage階段 now
334
926000
3000
現在我們處在一個階段
15:47
where we have to do this -- the people who think it's a great idea理念.
335
929000
4000
我們必須要做的階段 -- 那些認為這是個偉大想法的人們
15:51
And all the people -- and I think there's a lot of people at TEDTED who do things because --
336
933000
3000
而且所有人 -- 我想在 TED 的大部分人
15:54
even though雖然 there's not an immediate即時 return返回 on the investment投資
337
936000
2000
他們做事情並不是為了要使投資得到立即的回報
15:56
because it will only really pay工資 off when everybody每個人 else其他 has doneDONE it --
338
938000
3000
因為只有當每個人都這麼做了才會有所回報
15:59
they'll他們會 do it because they're the sort分類 of person who just does things
339
941000
4000
他們將會這麼做,因為他們是那類人
16:03
which哪一個 would be good if everybody每個人 else其他 did them.
340
945000
3000
那類希望每個人都參與進來而讓事情變好的人
16:06
OK, so it's called linked關聯 data數據.
341
948000
2000
OK,這就是關聯資料
16:08
I want you to make it.
342
950000
2000
我希望你參與
16:10
I want you to demand需求 it.
343
952000
2000
我希望你需要它
16:12
And I think it's an idea理念 worth價值 spreading傳播.
344
954000
2000
我也認為這個想法值得宣揚
16:14
Thanks謝謝.
345
956000
1000
謝謝
16:15
(Applause掌聲)
346
957000
3000
(掌聲)
Translated by Geoff Chen
Reviewed by Annie Ke

▲Back to top

ABOUT THE SPEAKER
Tim Berners-Lee - Inventor
Tim Berners-Lee invented the World Wide Web. He leads the World Wide Web Consortium (W3C), overseeing the Web's standards and development.

Why you should listen

In the 1980s, scientists at CERN were asking themselves how massive, complex, collaborative projects -- like the fledgling LHC -- could be orchestrated and tracked. Tim Berners-Lee, then a contractor, answered by inventing the World Wide Web. This global system of hypertext documents, linked through the Internet, brought about a massive cultural shift ushered in by the new tech and content it made possible: AOL, eBay, Wikipedia, TED.com...

Berners-Lee is now director of the World Wide Web Consortium (W3C), which maintains standards for the Web and continues to refine its design. Recently he has envisioned a "Semantic Web" -- an evolved version of the same system that recognizes the meaning of the information it carries. He's the 3Com Founders Professor of Engineering in the School of Engineering with a joint appointment in the Department of Electrical Engineering and Computer Science at the Laboratory for Computer Science and Artificial Intelligence (CSAIL) at the MIT, where he also heads the Decentralized Information Group (DIG). He is also a Professor in the Electronics and Computer Science Department at the University of Southampton, UK.

More profile about the speaker
Tim Berners-Lee | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee