sponsored links
TEDxBrussels

Laura Robinson: The secrets I find on the mysterious ocean floor

ローラ・ロビンソン: 神秘的な海底で私が出会う秘密

December 1, 2014

海面下数百メートルで、ローラ・ロビンソンは巨大な海山の急斜面を徹底的に調査しています。長い時を経て海がどのように変化したのかを突き止めるため、千年の時を経たサンゴの化石を探し求め、原子炉で分析するのです。彼女は地球の歴史の研究から地球の未来はどうなるのか、手がかりを得ようとしています。

Laura Robinson - Ocean scientist
Dr. Laura Robinson's scientific mission is to document and understand the processes that govern climate. Full bio

sponsored links
Double-click the English subtitles below to play the video.
私は海洋化学者です
00:12
Well, I'm an ocean chemist.
現在の海洋の化学を調査し
00:14
I look at the chemistry
of the ocean today.
過去の海洋の化学を考察します
00:16
I look at the chemistry
of the ocean in the past.
過去の考察には
00:19
The way I look back in the past
深海にある
サンゴの化石を使います
00:21
is by using the fossilized remains
of deepwater corals.
これはサンゴの写真です
00:24
You can see an image of one
of these corals behind me.
南極付近の水深数千メートルの
深海で採取されたもので
00:27
It was collected from close to Antarctica,
thousands of meters below the sea,
南国に行ったことがあれば
00:31
so, very different
than the kinds of corals
運良く見ることもある
サンゴとはかなり違います
00:33
you may have been lucky enough to see
if you've had a tropical holiday.
00:37
So I'm hoping that this talk will give you
この話で海洋の4次元的な見方を
示したいと思います
00:39
a four-dimensional view of the ocean.
例えばこの美しい
海面水温の平面画像は
00:41
Two dimensions, such as this
beautiful two-dimensional image
2次元になります
00:45
of the sea surface temperature.
これは驚異的な空間解像度を備えた
人工衛星で撮影されました
00:47
This was taken using satellite,
so it's got tremendous spatial resolution.
全体的な特徴は
実にわかりやすいものです
00:51
The overall features are extremely
easy to understand.
赤道地域は
日射量が多いため温暖で
00:54
The equatorial regions are warm
because there's more sunlight.
極地は日射量が少ないため
寒冷です
00:58
The polar regions are cold
because there's less sunlight.
これにより南極大陸と北極圏で
01:01
And that allows big icecaps
to build up on Antarctica
氷冠が発達します
01:04
and up in the Northern Hemisphere.
もし皆さんが海に深く飛び込むか
つま先を入れるだけでも
01:06
If you plunge deep into the sea,
or even put your toes in the sea,
深くなるにつれて
冷たくなるのが分かります
01:09
you know it gets colder as you go down,
その主な理由は
深海に広がる底層水は
01:11
and that's mostly because the deep waters
that fill the abyss of the ocean
極地の冷たい高密度水が
循環したものだからです
01:15
come from the cold polar regions
where the waters are dense.
2万年前にさかのぼると
01:19
If we travel back in time
20,000 years ago,
地球は今と随分違って見えます
01:22
the earth looked very much different.
大昔に時間を巻き戻すと
目にするであろう
01:24
And I've just given you a cartoon version
of one of the major differences
主な違いの一つをご覧に入れます
01:28
you would have seen
if you went back that long.
氷冠はずっと広大でした
01:30
The icecaps were much bigger.
氷の塊が多くの大陸を覆い
海上まで広がっていました
01:32
They covered lots of the continent,
and they extended out over the ocean.
海面は今より120メートル低く
01:35
Sea level was 120 meters lower.
二酸化炭素の量は
今よりずっと低レベルでした
01:38
Carbon dioxide [levels] were very
much lower than they are today.
故に当時の地球の気温は
全体的に3~5度低く
01:42
So the earth was probably about three
to five degrees colder overall,
極地の気温は
更にずっと低かったと考えられます
01:45
and much, much colder
in the polar regions.
私と同僚たちが
01:49
What I'm trying to understand,
理解に努めているのは
01:51
and what other colleagues of mine
are trying to understand,
どのようにして
昔の寒冷な気候から
01:54
is how we moved from that
cold climate condition
現在の温暖な気候へと
移り変わったのかです
01:56
to the warm climate condition
that we enjoy today.
氷床コアの研究から
01:59
We know from ice core research
寒冷期から温暖期への移行は
太陽放射量の緩やかな増加をもとに
02:01
that the transition from these
cold conditions to warm conditions
皆さんが予想するほど
安定的ではなかったことが分かります
02:04
wasn't smooth, as you might predict
from the slow increase in solar radiation.
氷床コアからこれらが分かるのは
氷を下に掘り進めて行くと
02:10
And we know this from ice cores,
because if you drill down into ice,
年毎の層が見られるからです
氷山にもあります
02:13
you find annual bands of ice,
and you can see this in the iceberg.
このような青と白の層です
02:16
You can see those blue-white layers.
氷床コアにはガスが閉じ込められており
二酸化炭素濃度の測定が可能で
02:18
Gases are trapped in the ice cores,
so we can measure CO2 --
昔は二酸化炭素濃度が
低かったと知ることができます
02:22
that's why we know CO2
was lower in the past --
また 氷の化学的性質から
極地の気温の情報も得られます
02:24
and the chemistry of the ice
also tells us about temperature
02:27
in the polar regions.
皆さんがもしも
2万年前から現代に来れば
02:29
And if you move in time
from 20,000 years ago to the modern day,
気温の上昇に気付きます
02:32
you see that temperature increased.
気温の上昇は不安定でした
02:34
It didn't increase smoothly.
急激に上昇することもあれば
02:36
Sometimes it increased very rapidly,
停滞期に入ったり
02:38
then there was a plateau,
また急上昇したりしました
02:39
then it increased rapidly.
これは南北の極地で異なり
02:40
It was different in the two polar regions,
二酸化炭素濃度も急上昇しました
02:42
and CO2 also increased in jumps.
私たちは海との大きな関連を
確信しています
02:46
So we're pretty sure the ocean
has a lot to do with this.
海は大量の炭素を貯えていて
02:49
The ocean stores huge amounts of carbon,
その量は大気中の約60倍です
02:52
about 60 times more
than is in the atmosphere.
それは同じく赤道を越えて
熱を運ぶように作用し
02:54
It also acts to transport heat
across the equator,
海は栄養豊富で
これが基礎生産力を左右します
02:58
and the ocean is full of nutrients
and it controls primary productivity.
深海で何が起きているかを
知るには
03:02
So if we want to find out
what's going on down in the deep sea,
実際に深海に潜り
03:05
we really need to get down there,
何があるかを見て
03:06
see what's there
調査することが不可欠です
03:07
and start to explore.
この見事な映像は
陸地から遠く離れた
03:09
This is some spectacular footage
coming from a seamount
大西洋赤道域の国際水域にある
03:12
about a kilometer deep
in international waters
水深約1キロの海山で撮影しました
03:14
in the equatorial Atlantic, far from land.
我々研究チームを含めて
このような海底の映像を見たことある人は
03:17
You're amongst the first people
to see this bit of the seafloor,
ほとんどいません
03:20
along with my research team.
皆さんはおそらく私たちも知らない
新種の生物を見ています
03:23
You're probably seeing new species.
03:25
We don't know.
サンプルを収集し
一心不乱に分類するだけです
03:26
You'd have to collect the samples
and do some very intense taxonomy.
バブルガムサンゴがいます
03:29
You can see beautiful bubblegum corals.
サンゴに潜んで成長する
クモヒトデもいます
03:31
There are brittle stars
growing on these corals.
サンゴから伸びている
触手のようなものです
03:34
Those are things that look
like tentacles coming out of corals.
様々な形態の
炭酸カルシウムから成るサンゴが
03:37
There are corals made of different forms
of calcium carbonate
巨大な海山の玄武岩の上に
成長しています
03:40
growing off the basalt of this
massive undersea mountain,
この黒っぽい物体は
化石化したサンゴです
03:43
and the dark sort of stuff,
those are fossilized corals,
後で昔の話をするので
これについてもう少し説明します
03:46
and we're going to talk
a little more about those
後で昔の話をするので
これについてもう少し説明します
03:49
as we travel back in time.
まず私たちは調査用ボートを借ります
03:51
To do that, we need
to charter a research boat.
テネリフェ島に停泊する海洋調査船
ジェームズ・クック号です
03:53
This is the James Cook,
an ocean-class research vessel
03:56
moored up in Tenerife.
美しいですね
03:57
Looks beautiful, right?
船乗りでなくても分かります
03:59
Great, if you're not a great mariner.
このようにしていることもあります
04:01
Sometimes it looks
a little more like this.
貴重なサンプルを失くしていないか
確認している場面です
04:04
This is us trying to make sure
that we don't lose precious samples.
皆が忙しく動き回ったり
私はひどい船酔いをしたりと
04:07
Everyone's scurrying around,
and I get terribly seasick,
楽しいことばかりではありませんが
大抵は楽しいです
04:10
so it's not always a lot of fun,
but overall it is.
私たちは腕利きの
地図製作者になる必要がありました
04:13
So we've got to become
a really good mapper to do this.
このように見事なサンゴの分布は
なかなかありません
04:15
You don't see that kind of spectacular
coral abundance everywhere.
世界中の深海にありますが
04:19
It is global and it is deep,
私たちは本当に適当な
場所を見つける必要があります
04:22
but we need to really find
the right places.
今見たのが世界の海底地図
その上に重ねたのが
04:25
We just saw a global map,
and overlaid was our cruise passage
昨年の航路です
04:28
from last year.
04:29
This was a seven-week cruise,
7週間の航海でした
約7万5千平方キロに及ぶ―
04:31
and this is us, having made our own maps
海底の地図をたった7週間で
独自に作成しましたが
04:33
of about 75,000 square kilometers
of the seafloor in seven weeks,
これは海底のほんの一部分です
04:37
but that's only a tiny fraction
of the seafloor.
西から東へ移動します
04:40
We're traveling from west to east,
大きな縮尺の地図では
海底は何の特徴もなく見えますが
04:41
over part of the ocean that would
look featureless on a big-scale map,
04:45
but actually some of these mountains
are as big as Everest.
これらの山のいくつかは
エベレスト級の大きさです
私たちが船上で作成する地図では
04:48
So with the maps that we make on board,
約100メートルの解像度が得られ
04:50
we get about 100-meter resolution,
これは機材の配置場所を選ぶには
十分ですが観察には不十分です
04:52
enough to pick out areas
to deploy our equipment,
04:55
but not enough to see very much.
このため遠隔操作の無人探査機を
海底から約5メートルで
04:57
To do that, we need to fly
remotely-operated vehicles
泳がせる必要があります
05:00
about five meters off the seafloor.
すると水深数千メートル地点で
1メートルの解像度の地図が得られます
05:02
And if we do that, we can get maps
that are one-meter resolution
すると水深数千メートル地点で
1メートルの解像度の地図が得られます
05:05
down thousands of meters.
この遠隔操作無人探査機は
05:07
Here is a remotely-operated vehicle,
研究用のレベルです
05:09
a research-grade vehicle.
上部にずらりと並んだ
大きなライトが見えます
05:12
You can see an array
of big lights on the top.
高解像度カメラや
マニピュレーターアーム
05:14
There are high-definition cameras,
manipulator arms,
サンプルを収めるための
多数の小箱などがあります
05:17
and lots of little boxes and things
to put your samples.
さあ 今回の航海で初の潜水です
05:21
Here we are on our first dive
of this particular cruise,
海に潜っています
05:24
plunging down into the ocean.
無人探査機が他の船の影響を
受けないように
05:26
We go pretty fast to make sure
the remotely operated vehicles
かなりの高速で潜らせます
05:29
are not affected by any other ships.
さらに深く潜ると
05:31
And we go down,
このような物が見えます
05:32
and these are the kinds of things you see.
体長1メートルほどの
海綿動物がいます
05:34
These are deep sea sponges, meter scale.
これは泳ぐ棘皮動物
つまり小さなナマコです
05:38
This is a swimming holothurian --
it's a small sea slug, basically.
これはスローモーションです
05:43
This is slowed down.
映像の大部分は
実際は長時間かかるので
05:44
Most of the footage I'm showing
you is speeded up,
早送りしています
05:46
because all of this takes a lot of time.
これもまた 美しいナマコです
05:49
This is a beautiful holothurian as well.
これからお見せする動物に
皆さん驚くでしょう
05:52
And this animal you're going to see
coming up was a big surprise.
私も見たことがなかったので
一同が驚いたものです
05:55
I've never seen anything like this
and it took us all a bit surprised.
約15時間の作業の後で
私たちが少しイライラしてきた頃
05:59
This was after about 15 hours of work
and we were all a bit trigger-happy,
突如この巨大な海の怪物が
くねりながら通ったのです
06:03
and suddenly this giant
sea monster started rolling past.
これはパイロソーマもしくは
群体ホヤと呼ばれています
06:05
It's called a pyrosome
or colonial tunicate, if you like.
私たちが探していた物では
ありませんでした
06:08
This wasn't what we were looking for.
私たちが探していたのは
深海のサンゴです
06:10
We were looking for corals,
deep sea corals.
ある映像をお見せします
06:14
You're going to see a picture
of one in a moment.
小形で体長は5センチ程です
06:16
It's small, about five centimeters high.
炭酸カルシウムでできているので
触手が見えます
06:19
It's made of calcium carbonate,
so you can see its tentacles there,
海流を受けて動いています
06:22
moving in the ocean currents.
このような生物は
恐らく100年は生きています
06:25
An organism like this probably lives
for about a hundred years.
そして成長しながら
海から化学物質を取り込みます
06:28
And as it grows, it takes in
chemicals from the ocean.
その化学物質の種類や量は
06:31
And the chemicals,
or the amount of chemicals,
水温、pH値や栄養素によって
異なります
06:34
depends on the temperature;
it depends on the pH,
06:36
it depends on the nutrients.
06:38
And if we can understand how
these chemicals get into the skeleton,
どのように化学物質が
骨格に取り込まれるかが分かれば
戻って化石標本を収集し
06:41
we can then go back,
collect fossil specimens,
昔の海がどういうありさまだったのか
再現できます
06:44
and reconstruct what the ocean
used to look like in the past.
これは私たちが
真空装置でサンゴを収集し
06:47
And here you can see us collecting
that coral with a vacuum system,
サンプル容器に入れている様子です
06:50
and we put it into a sampling container.
これはとても慎重な作業だと
言っておきます
06:53
We can do this very
carefully, I should add.
中にはさらに長命な生物もいます
06:55
Some of these organisms live even longer.
これはクロサンゴ類のレイオパテスで
同僚のブレンダン・ロアークが
06:57
This is a black coral called Leiopathes,
an image taken by my colleague,
ハワイの海面下約500メートルで
撮影しました
07:01
Brendan Roark, about 500
meters below Hawaii.
4000年は経過しています
07:04
Four thousand years is a long time.
この枝を1本採って磨いてみると
07:06
If you take a branch from one
of these corals and polish it up,
画面のさしわたしが数百ミクロンです
07:10
this is about 100 microns across.
ブレンダンは
これをいくつかの分析にかけ
07:12
And Brendan took some analyses
across this coral --
跡が見えますね
07:15
you can see the marks --
実際の成長輪の可視化に
成功しました
07:17
and he's been able to show
that these are actual annual bands,
つまり 水深500メートルのサンゴも
07:20
so even at 500 meters deep in the ocean,
季節による変化を記録できるのです
07:22
corals can record seasonal changes,
これには目を見張ります
07:24
which is pretty spectacular.
しかし4000年では最終氷期の
最盛期には届きません
07:26
But 4,000 years is not enough to get
us back to our last glacial maximum.
ではどうするか?
07:30
So what do we do?
これらの化石標本を調査します
07:31
We go in for these fossil specimens.
このため 私は研究班で
実に不人気です
07:34
This is what makes me really unpopular
with my research team.
海底へ進んでいくと
07:37
So going along,
あちこちに大きなサメや
07:38
there's giant sharks everywhere,
ホヤそして泳ぐナマコ
07:39
there are pyrosomes,
there are swimming holothurians,
大きな海綿動物がいます
07:42
there's giant sponges,
しかし私は研究員を
化石のある場所へ連れて行き
07:43
but I make everyone go down
to these dead fossil areas
ショベルで海底をすくうことに
たっぷり時間をかけさせるのです
07:46
and spend ages kind of shoveling
around on the seafloor.
そしてこれらのサンゴを全て収集して
持ち帰り 分類します
07:49
And we pick up all these corals,
bring them back, we sort them out.
それぞれ年齢が異なり
07:53
But each one of these is a different age,
もしも年齢が分かれば
07:55
and if we can find out how old they are
化学信号の測定が可能で
07:57
and then we can measure
those chemical signals,
過去に海で何が起きていたのかを
調査するのに役立ちます
08:00
this helps us to find out
08:01
what's been going on
in the ocean in the past.
左側の写真は
08:04
So on the left-hand image here,
サンゴの一部を採取し
注意深く磨いて
08:06
I've taken a slice through a coral,
polished it very carefully
光学像を撮影したものです
08:09
and taken an optical image.
右側の写真は
08:11
On the right-hand side,
同じサンゴのかけらを原子炉に入れ
08:12
we've taken that same piece of coral,
put it in a nuclear reactor,
核分裂を誘発した画像です
08:15
induced fission,
核分裂のたびにその痕跡が
08:16
and every time there's some decay,
サンゴに残されていくので
08:18
you can see that marked out in the coral,
ウランの分布がわかります
08:20
so we can see the uranium distribution.
この分析は何のためか?
08:22
Why are we doing this?
ウランはぜんぜん
評判の良くない元素ですが
08:23
Uranium is a very poorly regarded element,
私は好きです
08:25
but I love it.
崩壊によりその比率や
事象が起きた年代を測定できます
08:27
The decay helps us find out
about the rates and dates
08:30
of what's going on in the ocean.
最初を思い出すと
08:31
And if you remember from the beginning,
これこそ気候の調査で
突き止めたかったことです
08:33
that's what we want to get at
when we're thinking about climate.
サンゴが含有するウランと
娘核種のトリウムを
08:36
So we use a laser to analyze uranium
レーザーで分析すると
08:38
and one of its daughter products,
thorium, in these corals,
化石がちょうど何歳か
分かります
08:41
and that tells us exactly
how old the fossils are.
この南極海の美しい動画を使って
08:44
This beautiful animation
of the Southern Ocean
08:46
I'm just going to use illustrate
how we're using these corals
私たちがサンゴから
古代海洋の情報を―
どのように得るのか
説明していきましょう
08:50
to get at some of the ancient
ocean feedbacks.
08:54
You can see the density
of the surface water
ライアン・アバナシーによる
この動画で
08:56
in this animation by Ryan Abernathey.
海面の海水の密度が分かります
たった1年分のデータですが
08:59
It's just one year of data,
南極海がどれほど活発なのかが
わかります
09:01
but you can see how dynamic
the Southern Ocean is.
ボックスが示す海水の密度が
集中的に混合している海域―
09:04
The intense mixing,
particularly the Drake Passage,
特にドレーク海峡は
09:07
which is shown by the box,
09:10
is really one of the strongest
currents in the world
世界で最も潮の流れが
荒い海域の一つで
潮は西から東へ通っていきます
09:13
coming through here,
flowing from west to east.
09:15
It's very turbulently mixed,
海中の大きな山の上を流れるので
激しく混合し
09:16
because it's moving over those
great big undersea mountains,
海中の大きな山の上を流れるので
激しく混合し
これが海中と大気中の
二酸化炭素と熱を交換可能にします
09:19
and this allows CO2 and heat to exchange
with the atmosphere in and out.
基本的に海は
南極海を介して呼吸しています
09:24
And essentially, the oceans are breathing
through the Southern Ocean.
私たちは南極海の海峡を行来して
サンゴを収集し
09:28
We've collected corals from back and forth
across this Antarctic passage,
ウラン年代測定により
驚くべき発見をしました
09:34
and we've found quite a surprising thing
from my uranium dating:
実は氷河期から間氷期へ
移行している間に
09:37
the corals migrated from south to north
サンゴは南から北へ
移動していたのです
09:39
during this transition from the glacial
to the interglacial.
09:43
We don't really know why,
理由は分かりませんが
食料や水中の酸素と
関連していると考えられます
09:44
but we think it's something
to do with the food source
食料や水中の酸素と
関連していると考えられます
09:46
and maybe the oxygen in the water.
さて ここからです
09:49
So here we are.
南極海のサンゴから得た
気候についての見解を説明します
09:50
I'm going to illustrate what I think
we've found about climate
09:53
from those corals in the Southern Ocean.
私たちは海山を上って下り
サンゴの化石を集めました
09:55
We went up and down sea mountains.
We collected little fossil corals.
これが私の説明です
09:59
This is my illustration of that.
私たちは独自のサンゴの分析により
10:00
We think back in the glacial,
氷河期を研究した結果
10:02
from the analysis
we've made in the corals,
南極海の深部は炭素が豊富で
10:04
that the deep part of the Southern Ocean
was very rich in carbon,
上部は低密度の海水の層であったと
知りました
10:07
and there was a low-density
layer sitting on top.
これが海から二酸化炭素を
放出しないようにします
10:10
That stops carbon dioxide
coming out of the ocean.
その後見つけた
中間年齢のサンゴにより
10:13
We then found corals
that are of an intermediate age,
気候の遷移の中で
海水が混合したことが分かりました
10:16
and they show us that the ocean mixed
partway through that climate transition.
これにより炭素は深海から
放出されるようになります
10:20
That allows carbon to come
out of the deep ocean.
10:24
And then if we analyze corals
closer to the modern day,
より現代に近いサンゴを
分析するか
実際にとにかく海底まで潜り
10:27
or indeed if we go down there today anyway
サンゴを化学測定すれば
10:29
and measure the chemistry of the corals,
私たちは炭素が出入り可能な時代に
移ったのだと分かります
10:31
we see that we move to a position
where carbon can exchange in and out.
こうして私たちはサンゴの化石を
10:35
So this is the way
we can use fossil corals
環境を学ぶために役立てています
10:37
to help us learn about the environment.
最後のスライドをご覧ください
10:41
So I want to leave you
with this last slide.
これは先ほど
ご覧に入れた映像の抜粋です
10:43
It's just a still taken out of that first
piece of footage that I showed you.
10:47
This is a spectacular coral garden.
見事なサンゴの庭園ですね
想像を絶する美しさです
10:50
We didn't even expect
to find things this beautiful.
数千メートルの水面下
10:52
It's thousands of meters deep.
新種の生物がいます
10:54
There are new species.
10:56
It's just a beautiful place.
とにかく美しい場所です
ここにある化石全て
10:58
There are fossils in amongst,
そして深海にある
サンゴの化石の真価を
10:59
and now I've trained you
to appreciate the fossil corals
皆さんにお伝えしました
11:02
that are down there.
今度幸運にも
飛行機で海を越えるか
11:03
So next time you're lucky enough
to fly over the ocean
航海する機会があれば
11:06
or sail over the ocean,
思い出してください
海底には―
11:08
just think -- there are massive
sea mountains down there
誰も見たことのない巨大な海山や
11:10
that nobody's ever seen before,
美しいサンゴの庭園があると
11:12
and there are beautiful corals.
ありがとうございます
11:14
Thank you.
(拍手)
11:15
(Applause)
Translator:Yuko Masubuchi
Reviewer:Takamitsu Hirono

sponsored links

Laura Robinson - Ocean scientist
Dr. Laura Robinson's scientific mission is to document and understand the processes that govern climate.

Why you should listen

Dr. Laura Robinson's research the processes that govern climate on time scales ranging from the modern day back through hundreds of thousands of years. To do this research, Robinson uses geochemical techniques, with an emphasis on radioactive elements including uranium series isotopes and radiocarbon. These elements are particularly valuable as they have a wide range of decay rates and geochemical properties and can be analyzed in geologic materials such as corals, marine sediments and seawater.

Through a combination of field work and lab work, Robinson has been tackling questions relating to: timing of Pleistocene climate change events; palaeoclimate reconstructions; deep-sea coral paleo-biogeography; impact of weathering on the ocean and climate; biomineralization; development of new geochemical proxies for past climate conditions; chemical tracers of ocean circulation.

Robinson describes the inspiration behind her work:

“When I finished my PhD, I moved to California to work with Professor Jess Adkins at Caltech on a project using deep-sea corals. Before that time, like many people, I did not know that corals lived in the deep ocean. The first thing I did was prepare for a research cruise to the North Atlantic. We took the research submarine 'Alvin' out to undersea mountains and were able to collect fossil corals from the seafloor. The start of my work in the Southern Ocean came from analysis of a single coral specimen from the Smithsonian Natural History Museum in Washington DC. They loaned us the sample, and we found that it was about 16,000 years old, just right for looking at the middle of the last global deglaciation. Being able to access and work on these specimens is a fantastic way of starting a science project. We published a paper on that sample, and then, together with a coral biologist, I wrote a proposal to fund specific expeditions to the Southern Ocean, and to the Equatorial Atlantic to gain a wider view of how the Atlantic Ocean behaved during major climate transitions.

I love the research as it combines field work, lab work and collaborations with all kinds of people including scientists, engineers as well as the ships' crews. In terms of scientists, I work with biologists, oceanographers, chemists, geologists, habitat specialists and a whole range of people who have technical expertise across these fields.”

Learn more about Robinson's current expidition in the Southern Ocean. 

sponsored links

If you need translations, you can install "Google Translate" extension into your Chrome Browser.
Furthermore, you can change playback rate by installing "Video Speed Controller" extension.

Data provided by TED.

This website is owned and operated by Tokyo English Network.
The developer's blog is here.