ABOUT THE SPEAKER
Mariano Sigman - Neuroscientist
In his provocative, mind-bending book "The Secret Life of the Mind," neuroscientist Mariano Sigman reveals his life’s work exploring the inner workings of the human brain.

Why you should listen

Mariano Sigman, a physicist by training, is a leading figure in the cognitive neuroscience of learning and decision making. Sigman was awarded a Human Frontiers Career Development Award, the National Prize of Physics, the Young Investigator Prize of "College de France," the IBM Scalable Data Analytics Award and is a scholar of the James S. McDonnell Foundation. In 2016 he was made a Laureate of the Pontifical Academy of Sciences.

In The Secret Life of the Mind, Sigman's ambition is to explain the mind so that we can understand ourselves and others more deeply. He shows how we form ideas during our first days of life, how we give shape to our fundamental decisions, how we dream and imagine, why we feel certain emotions, how the brain transforms and how who we are changes with it. Spanning biology, physics, mathematics, psychology, anthropology, linguistics, philosophy and medicine, as well as gastronomy, magic, music, chess, literature and art, The Secret Life of the Mind revolutionizes how neuroscience serves us in our lives, revealing how the infinity of neurons inside our brains manufacture how we perceive, reason, feel, dream and communicate.

More profile about the speaker
Mariano Sigman | Speaker | TED.com
TED2016

Mariano Sigman: Your words may predict your future mental health

Mariano Sigman: As túas palabras poderían predicir a túa futura saúde mental

Filmed:
3,146,887 views

Pode a forma en que falas e escribes hoxe predicir o teu estado mental futuro? Incluso o comezo dunha psicose? Nesta fascinante charla, o neurocientífico Mariano Sigman reflexiona acerca da Grecia clásica e as orixes da introspección para investigar como as nosas palabras amosan a nosa vida interior e explica con detalle un algoritmo de mapeamento de palabras que podería predicir o desenvolvemento da esquizofrenia. "Poderíamos ver no futuro unha forma diferente de saúde mental," di Sigman, "baseada na análise obxectiva, cuantitativa e automatizada das palabras que escribimos, das palabras que pronunciamos."
- Neuroscientist
In his provocative, mind-bending book "The Secret Life of the Mind," neuroscientist Mariano Sigman reveals his life’s work exploring the inner workings of the human brain. Full bio

Double-click the English transcript below to play the video.

00:13
We have historical records that allow us
to know how the ancient Greeks dressed,
0
1006
5150
Existen rexistros históricos
que nos permiten saber
como vestían os antigos gregos,
como vivían,
00:18
how they lived,
1
6180
1254
00:19
how they fought ...
2
7458
1522
como loitaban...
00:21
but how did they think?
3
9004
1524
mais, como pensaban?
00:23
One natural idea is that the deepest
aspects of human thought --
4
11432
4440
Unha idea natural é que os aspectos máis
profundos do pensamento humano
--a nosa capacidade para imaxinar,
00:27
our ability to imagine,
5
15896
1872
00:29
to be conscious,
6
17792
1397
para sermos conscientes,
00:31
to dream --
7
19213
1231
para soñar--
00:32
have always been the same.
8
20468
1619
foron sempre os mesmos.
00:34
Another possibility
9
22872
1499
Outra posibilidade
00:36
is that the social transformations
that have shaped our culture
10
24395
3723
é que as transformacións sociais
que deran forma á nosa cultura
00:40
may have also changed
the structural columns of human thought.
11
28142
3785
puideran cambiar tamén as columnas
estruturais do pensamento humano.
00:44
We may all have different
opinions about this.
12
32911
2524
Pode que todos teñamos opinións
diferentes sobre isto.
00:47
Actually, it's a long-standing
philosophical debate.
13
35459
2717
Realmente, trátase
dun vello debate filosófico.
00:50
But is this question
even amenable to science?
14
38644
2727
No entanto, pode abordarse
esta pregunta desde a ciencia?
00:54
Here I'd like to propose
15
42834
2506
Gustaríame propoñer que,
00:57
that in the same way we can reconstruct
how the ancient Greek cities looked
16
45364
4772
do mesmo xeito que recreamos o
aspecto das antigas cidades gregas
01:02
just based on a few bricks,
17
50160
2388
a partir duns cantos ladrillos,
01:04
that the writings of a culture
are the archaeological records,
18
52572
4126
vexamos os escritos dunha cultura
como os rexistros arqueolóxicos,
01:08
the fossils, of human thought.
19
56722
2143
os fósiles do pensamento humano.
01:11
And in fact,
20
59905
1174
E, de feito,
01:13
doing some form of psychological analysis
21
61103
2206
facendo algún tipo de análise psicolóxica
01:15
of some of the most ancient
books of human culture,
22
63333
3544
dalgúns dos libros máis antigos
da cultura humana,
01:18
Julian Jaynes came up in the '70s
with a very wild and radical hypothesis:
23
66901
5955
Julian Jaynes suxeriu nos 70
unha hipótese tan arriscada como radical:
01:24
that only 3,000 years ago,
24
72880
2413
que hai só 3.000 anos,
01:27
humans were what today
we would call schizophrenics.
25
75317
4888
os humanos eran
o que hoxe chamaríamos esquizofrénicos.
01:33
And he made this claim
26
81753
1508
E fixo esta afirmación
01:35
based on the fact that the first
humans described in these books
27
83285
3301
baseándose en que os primeiros humanos
descritos neses libros
01:38
behaved consistently,
28
86610
1904
comportábanse de xeito sistemático
01:40
in different traditions
and in different places of the world,
29
88538
3016
nas diferentes tradicións
e lugares do mundo,
01:43
as if they were hearing and obeying voices
30
91578
3532
como se escoitasen e obedecesen voces
01:47
that they perceived
as coming from the Gods,
31
95134
3040
que eles crían que procedían dos Deuses,
01:50
or from the muses ...
32
98198
1198
ou das musas...
01:52
what today we would call hallucinations.
33
100063
2769
e que hoxe chamariamos alucinacións.
01:55
And only then, as time went on,
34
103888
2626
E só máis tarde, co paso do tempo,
01:58
they began to recognize
that they were the creators,
35
106538
3651
comezaron a recoñecer
que eles mesmos eran os creadores,
02:02
the owners of these inner voices.
36
110213
2515
os donos daquelas voces interiores.
02:05
And with this, they gained introspection:
37
113316
2715
E a partir disto, gañaron introspección:
02:08
the ability to think
about their own thoughts.
38
116055
2483
a capacidade de pensar
sobre os propios pensamentos.
02:11
So Jaynes's theory is that consciousness,
39
119785
3397
Así que a teoría de Jaynes
é que a consciencia,
02:15
at least in the way we perceive it today,
40
123206
3166
polo menos da forma
en que a percibimos hoxe,
02:18
where we feel that we are the pilots
of our own existence --
41
126396
3540
sentindo que somos pilotos
na nosa propia existencia,
02:21
is a quite recent cultural development.
42
129960
2737
é un avance cultural bastante recente.
02:25
And this theory is quite spectacular,
43
133456
1786
E esta teoría é formidable,
mais ten un problema obvio
02:27
but it has an obvious problem
44
135266
1433
que é o feito de estar construída
sobre uns poucos exemplos moi específicos.
02:28
which is that it's built on just a few
and very specific examples.
45
136723
3992
02:33
So the question is whether the theory
46
141085
1763
De xeito que a pregunta é se a teoría
02:34
that introspection built up in human
history only about 3,000 years ago
47
142872
4751
de que a introspección desenvolvida
na historia humana hai só 3.000 anos
02:39
can be examined in a quantitative
and objective manner.
48
147647
2984
se pode examinar desde un punto de vista
cuantitativo e obxectivo.
02:43
And the problem of how
to go about this is quite obvious.
49
151543
3563
E o problema de como abordar
isto é bastante obvio.
02:47
It's not like Plato woke up one day
and then he wrote,
50
155130
3460
Non é coma se Platón se erguese
un día e logo escribise.
02:50
"Hello, I'm Plato,
51
158614
1659
"Ola, son Platón,
e desde hoxe, teño unha conciencia
completamente introspectiva."
02:52
and as of today, I have
a fully introspective consciousness."
52
160297
2889
02:55
(Laughter)
53
163210
2293
(Risas)
02:57
And this tells us actually
what is the essence of the problem.
54
165527
3333
E isto, en verdade, dinos
cal é a esencia do problema.
03:01
We need to find the emergence
of a concept that's never said.
55
169467
4055
Temos que atopar a emerxencia
dun concepto que nunca foi dito.
03:06
The word introspection
does not appear a single time
56
174434
4310
A palabra "introspección"
non aparece nin unha soa vez
03:10
in the books we want to analyze.
57
178768
1919
nos libros que queremos analizar.
03:13
So our way to solve this
is to build the space of words.
58
181728
4087
Así que a nosa forma de resolvelo
foi construír o espazo das palabras.
03:18
This is a huge space
that contains all words
59
186571
3287
Este é un gran espazo
que contén todas as palabras
03:21
in such a way that the distance
between any two of them
60
189882
2802
dispostas de modo
que a distancia entre dúas delas
03:24
is indicative of how
closely related they are.
61
192708
2883
é indicativa do estreitamente
relacionadas que están.
03:28
So for instance,
62
196460
1151
Por exemplo,
03:29
you want the words "dog" and "cat"
to be very close together,
63
197635
2897
un espera que as palabras
"can" e "gato" estean moi próximas,
03:32
but the words "grapefruit" and "logarithm"
to be very far away.
64
200556
3831
e que "pomelo" e "logaritmo"
estean moi separadas.
03:36
And this has to be true
for any two words within the space.
65
204809
3896
E isto débese cumprir para cada
par de palabras dentro do espazo.
03:41
And there are different ways
that we can construct the space of words.
66
209626
3341
E podemos construír o espazo das palabras
de diferentes maneiras.
Unha é preguntándolles aos expertos,
03:44
One is just asking the experts,
67
212991
1643
03:46
a bit like we do with dictionaries.
68
214658
1896
un pouco como facemos cos dicionarios.
03:48
Another possibility
69
216896
1428
Outra posibilidade
03:50
is following the simple assumption
that when two words are related,
70
218348
3715
é seguir a simple suposición de que
cando dúas palabras están relacionadas
03:54
they tend to appear in the same sentences,
71
222087
2349
tenden a aparecer nas mesmas frases,
03:56
in the same paragraphs,
72
224460
1453
nos mesmos parágrafos,
03:57
in the same documents,
73
225937
1770
nos mesmos documentos,
03:59
more often than would be expected
just by pure chance.
74
227731
3182
máis veces das que se esperaría
por simple casualidade.
04:04
And this simple hypothesis,
75
232231
2050
E esta sinxela hipótese,
04:06
this simple method,
76
234305
1306
este simple método,
04:07
with some computational tricks
77
235635
1607
cunha serie de trucos computacionais
04:09
that have to do with the fact
78
237266
1389
relacionados co feito
04:10
that this is a very complex
and high-dimensional space,
79
238679
3064
de que este é un espazo complexo
e de gran dimensión,
04:13
turns out to be quite effective.
80
241767
1665
resultou ser moi efectivo.
04:16
And just to give you a flavor
of how well this works,
81
244155
2802
E para darvos unha mostra
do ben que funciona,
04:18
this is the result we get when
we analyze this for some familiar words.
82
246981
3912
este é o resultado conseguido cando
analizamos algunhas palabras familiares.
04:23
And you can see first
83
251607
1185
Podedes ver primeiro
04:24
that words automatically organize
into semantic neighborhoods.
84
252816
3278
que as palabras se organizan
automaticamente en campos semánticos.
04:28
So you get the fruits, the body parts,
85
256118
2217
Velaí as froitas, as partes do corpo,
as partes do ordenador,
os termos científicos...
04:30
the computer parts,
the scientific terms and so on.
86
258359
2425
04:33
The algorithm also identifies
that we organize concepts in a hierarchy.
87
261119
4222
O algoritmo tamén identifica
que organizamos conceptos en xerarquías.
04:37
So for instance,
88
265852
1151
Por exemplo,
04:39
you can see that the scientific terms
break down into two subcategories
89
267027
3597
podedes ver que os termos científicos
se distribúen en dúas subcategorías
04:42
of the astronomic and the physics terms.
90
270648
2100
de termos astronómicos e físicos.
04:45
And then there are very fine things.
91
273338
2246
E logo temos cousas moi sutís.
04:47
For instance, the word astronomy,
92
275608
1905
Por exemplo, a palabra astronomía,
04:49
which seems a bit bizarre where it is,
93
277537
1815
que parece ter unha disposición estraña,
04:51
is actually exactly where it should be,
94
279376
2048
está exactamente onde debería,
04:53
between what it is,
95
281448
1595
entre o que é,
04:55
an actual science,
96
283067
1270
unha ciencia real,
04:56
and between what it describes,
97
284361
1536
e entre o que describe,
04:57
the astronomical terms.
98
285921
1492
os termos astronómicos.
05:00
And we could go on and on with this.
99
288182
1891
E poderiamos seguir e seguir con isto.
05:02
Actually, if you stare
at this for a while,
100
290097
2060
En verdade, se ollades para isto un anaco,
05:04
and you just build random trajectories,
101
292181
1858
e unides traxectorias aleatoriamente,
05:06
you will see that it actually feels
a bit like doing poetry.
102
294063
3166
veredes que se parece
un pouco a facer poesía.
05:10
And this is because, in a way,
103
298018
1882
Pasa isto porque, dalgún xeito,
05:11
walking in this space
is like walking in the mind.
104
299924
2940
camiñar por este espazo
é como camiñar pola mente.
05:16
And the last thing
105
304027
1617
E por último,
05:17
is that this algorithm also identifies
what are our intuitions,
106
305668
4040
este algoritmo tamén identifica
cales son as nosas intuicións,
05:21
of which words should lead
in the neighborhood of introspection.
107
309732
3896
sobre que palabras deberían ir primeiro
ao campo da introspección.
05:25
So for instance,
108
313652
1223
Así, por exemplo,
05:26
words such as "self," "guilt,"
"reason," "emotion,"
109
314899
3979
palabras como "eu," "culpa,"
"razón," "emoción,"
05:30
are very close to "introspection,"
110
318902
1889
están moi preto de "introspección,"
05:32
but other words,
111
320815
1151
mentres que outras,
05:33
such as "red," "football,"
"candle," "banana,"
112
321990
2167
como "vermello," "fútbol,"
"candea," "plátano"
05:36
are just very far away.
113
324181
1452
están moi lonxe.
05:38
And so once we've built the space,
114
326054
2762
E unha vez que construímos o espazo,
05:40
the question of the history
of introspection,
115
328840
2826
a pregunta sobre a historia
da introspección,
05:43
or of the history of any concept
116
331690
2333
ou sobre a historia de calquera concepto
05:46
which before could seem abstract
and somehow vague,
117
334047
4779
que antes parecía abstracta e
dalgún xeito difusa,
05:50
becomes concrete --
118
338850
1604
vólvese concreta,
05:52
becomes amenable to quantitative science.
119
340478
2738
é abordable desde a ciencia cuantitativa.
05:56
All that we have to do is take the books,
120
344216
2762
Todo o que temos que facer é
coller os libros,
05:59
we digitize them,
121
347002
1381
dixitalizalos,
06:00
and we take this stream
of words as a trajectory
122
348407
2809
e tomar este fluxo de palabras
como unha traxectoria,
06:03
and project them into the space,
123
351240
1969
proxectándoo no espazo,
06:05
and then we ask whether this trajectory
spends significant time
124
353233
3754
e logo preguntármonos se esta traxectoria
pasa un tempo significativo
06:09
circling closely to the concept
of introspection.
125
357011
2992
circulando preto do concepto
de introspección.
06:12
And with this,
126
360760
1196
E con isto,
06:13
we could analyze
the history of introspection
127
361980
2112
poderiamos analizar
a historia da introspección
06:16
in the ancient Greek tradition,
128
364116
1921
na tradición da antiga Grecia,
06:18
for which we have the best
available written record.
129
366061
2602
da cal temos o mellor rexistro
escrito dispoñible.
06:21
So what we did is we took all the books --
130
369631
2255
Así que o que fixemos foi
coller todos os libros,
06:23
we just ordered them by time --
131
371910
2284
ordenámolos cronoloxicamente,
e de cada libro collemos as palabras
06:26
for each book we take the words
132
374218
1752
e proxectámolas no espazo,
06:27
and we project them to the space,
133
375994
1961
06:29
and then we ask for each word
how close it is to introspection,
134
377979
3032
logo miramos o cerca
que cada palabra estaba da introspección,
e fixemos unha media.
06:33
and we just average that.
135
381035
1230
06:34
And then we ask whether,
as time goes on and on,
136
382590
3198
Despois preguntámonos se,
a medida que pasaba o tempo,
06:37
these books get closer,
and closer and closer
137
385812
3252
eses libros se achegaban máis e máis
06:41
to the concept of introspection.
138
389088
1754
ao concepto da introspección.
06:42
And this is exactly what happens
in the ancient Greek tradition.
139
390866
3801
E isto é exactamente o que sucede
na tradición da Grecia antiga.
06:47
So you can see that for the oldest books
in the Homeric tradition,
140
395698
3127
Pódese ver que, dentro dos libros
máis antigos na tradición homérica
06:50
there is a small increase with books
getting closer to introspection.
141
398849
3412
hai unha pequena aproximación
á introspección.
06:54
But about four centuries before Christ,
142
402285
2206
Pero uns catro séculos antes de Cristo,
06:56
this starts ramping up very rapidly
to an almost five-fold increase
143
404515
4708
comeza a despegar rapidamente
ata case quintuplicarse
07:01
of books getting closer,
and closer and closer
144
409247
2500
a aproximación paulatina dos libros
07:03
to the concept of introspection.
145
411771
1682
ao concepto de introspección.
07:06
And one of the nice things about this
146
414159
2424
E algo bo disto
é que agora podémonos preguntar
07:08
is that now we can ask
147
416607
1198
07:09
whether this is also true
in a different, independent tradition.
148
417829
4147
se isto tamén é certo nunha tradición
diferente e independente.
07:14
So we just ran this same analysis
on the Judeo-Christian tradition,
149
422962
3176
Así que empregamos esta mesma análise
na tradición xudeocristiá,
07:18
and we got virtually the same pattern.
150
426162
2721
e obtivemos virtualmente o mesmo patrón.
07:21
Again, you see a small increase
for the oldest books in the Old Testament,
151
429548
4635
De novo, un pequeno aumento nos libros
máis antigos do Antigo Testamento,
07:26
and then it increases much more rapidly
152
434207
1914
e logo un aumento moito máis rápido
07:28
in the new books of the New Testament.
153
436145
1839
nos libros do Novo Testamento.
07:30
And then we get the peak of introspection
154
438008
2032
E logo chegamos ó cumio da introspección
07:32
in "The Confessions of Saint Augustine,"
155
440064
2127
n’as “Confesións de Santo Agostiño”,
07:34
about four centuries after Christ.
156
442215
1857
uns catrocentos anos despois de Cristo.
07:36
And this was very important,
157
444897
1944
E isto foi moi importante,
07:38
because Saint Augustine
had been recognized by scholars,
158
446865
3373
porque Santo Agostiño
foi recoñecido por eruditos,
07:42
philologists, historians,
159
450262
2172
filólogos, historiadores,
07:44
as one of the founders of introspection.
160
452458
2078
como un dos fundadores da instrospección.
07:47
Actually, some believe him to be
the father of modern psychology.
161
455060
3297
En verdade, algúns considérano
o pai da psicoloxía moderna.
07:51
So our algorithm,
162
459012
1839
Así que o noso algoritmo,
07:52
which has the virtue
of being quantitative,
163
460875
2842
que ten a virtude de ser cuantitativo,
07:55
of being objective,
164
463741
1263
de ser obxectivo,
07:57
and of course of being extremely fast --
165
465028
2016
e, por suposto, sumamente veloz
07:59
it just runs in a fraction of a second --
166
467068
2397
--opera nunha fracción de segundo--
08:01
can capture some of the most
important conclusions
167
469489
3503
pode captar algunhas
das conclusións máis importantes
08:05
of this long tradition of investigation.
168
473016
2222
desta longa tradición de investigación.
08:08
And this is in a way
one of the beauties of science,
169
476317
3651
E isto é dalgún xeito
unha das belezas da ciencia,
08:11
which is that now this idea
can be translated
170
479992
3476
que é que agora esta idea pode trasladarse
08:15
and generalized to a whole lot
of different domains.
171
483492
2571
e estenderse a moitos dominios distintos.
08:18
So in the same way that we asked
about the past of human consciousness,
172
486769
4767
Así que do mesmo xeito que preguntamos
sobre o pasado da percepción humana,
08:23
maybe the most challenging question
we can pose to ourselves
173
491560
3406
quizais a pregunta máis complicada
que podemos formularnos
08:26
is whether this can tell us something
about the future of our own consciousness.
174
494990
4137
é se isto pode contarnos algo
sobre o futuro da nosa propia consciencia.
08:31
To put it more precisely,
175
499550
1470
Dito de forma máis precisa,
08:33
whether the words we say today
176
501044
2416
se as palabras que pronunciamos hoxe
08:35
can tell us something
of where our minds will be in a few days,
177
503484
5197
poden dicir algo sobre onde estarán
as nosas mentes nuns cantos días,
08:40
in a few months
178
508705
1151
nuns cantos meses
08:41
or a few years from now.
179
509880
1182
ou nuns cantos anos.
08:43
And in the same way many of us
are now wearing sensors
180
511597
3020
E da mesma forma en que moitos de nós
levamos sensores
que nos miden o ritmo cardíaco,
08:46
that detect our heart rate,
181
514641
1786
08:48
our respiration,
182
516451
1269
a respiración,
08:49
our genes,
183
517744
1667
os xenes,
coa esperanza de que poida axudarnos
a previr enfermidades,
08:51
on the hopes that this may
help us prevent diseases,
184
519435
3651
podemos preguntarnos se monitorizando
e analizando as palabras que dicimos,
08:55
we can ask whether monitoring
and analyzing the words we speak,
185
523110
3521
08:58
we tweet, we email, we write,
186
526655
2683
chiamos, enviamos por correo, escribimos,
09:01
can tell us ahead of time whether
something may go wrong with our minds.
187
529362
4808
estas poden indicar antes de tempo
se algo vai ir mal nas nosas mentes.
09:07
And with Guillermo Cecchi,
188
535087
1534
E canda Guillermo Cecchi,
09:08
who has been my brother in this adventure,
189
536645
3001
o meu irmán nesta aventura,
09:11
we took on this task.
190
539670
1555
fixémonos cargo desta tarefa.
09:14
And we did so by analyzing
the recorded speech of 34 young people
191
542228
5532
E fixémolo analizando
o discurso gravado de 34 mozos
09:19
who were at a high risk
of developing schizophrenia.
192
547784
2801
que tiñan un alto risco
de desenvolver esquizofrenia.
09:23
And so what we did is,
we measured speech at day one,
193
551434
2881
O que fixemos foi medir
o discurso no día un,
e logo preguntarnos se as propiedades
dese discurso poderían predicir,
09:26
and then we asked whether the properties
of the speech could predict,
194
554339
3242
09:29
within a window of almost three years,
195
557605
2496
nun intervalo de case tres anos,
09:32
the future development of psychosis.
196
560125
2035
o futuro desenvolvemento da psicose.
09:35
But despite our hopes,
197
563427
2366
Pero malia as nosas expectativas,
09:37
we got failure after failure.
198
565817
3117
acadamos un fracaso tras outro.
09:41
There was just not enough
information in semantics
199
569793
3882
Non había información
suficiente na semántica
09:45
to predict the future
organization of the mind.
200
573699
2793
coma para predicir
a futura organización da mente.
09:48
It was good enough
201
576516
1809
Era boa dabondo
09:50
to distinguish between a group
of schizophrenics and a control group,
202
578349
4175
para distinguir entre un grupo
de esquizofrénicos e un grupo de control,
09:54
a bit like we had done
for the ancient texts,
203
582548
2712
como fixeramos cos textos antigos,
09:57
but not to predict the future
onset of psychosis.
204
585284
2994
mais non para predicir
o inicio dunha psicose.
10:01
But then we realized
205
589164
1706
Porén, decatámonos
10:02
that maybe the most important thing
was not so much what they were saying,
206
590894
4088
de que quizais o máis importante
non era o que estaban a dicir,
10:07
but how they were saying it.
207
595006
1673
senón como o dicían.
10:09
More specifically,
208
597679
1220
Máis especificamente,
non se trataba do campo semántico
ao que pertencían as palabras,
10:10
it was not in which semantic
neighborhoods the words were,
209
598923
2827
10:13
but how far and fast they jumped
210
601774
2600
senón do lonxe e rápido que saltaban
10:16
from one semantic neighborhood
to the other one.
211
604398
2301
dun campo semántico a outro.
10:19
And so we came up with this measure,
212
607247
1731
Así que elaboramos esta medida,
denominada "coherencia semántica",
10:21
which we termed semantic coherence,
213
609002
2389
10:23
which essentially measures the persistence
of speech within one semantic topic,
214
611415
4804
que basicamente mide a persistencia
da fala dentro dun tema semántico,
10:28
within one semantic category.
215
616243
1529
nunha categoría semántica.
10:31
And it turned out to be
that for this group of 34 people,
216
619294
4047
E resultou que neste grupo de 34 persoas,
10:35
the algorithm based on semantic
coherence could predict,
217
623365
3659
o algoritmo baseado
na coherencia semántica puido predicir,
10:39
with 100 percent accuracy,
218
627048
2500
cunha precisión do 100 por cento,
10:41
who developed psychosis and who will not.
219
629572
2507
quen desenvolvería psicose e quen non.
10:44
And this was something
that could not be achieved --
220
632976
2937
E isto foi algo que non se puido conseguir
10:47
not even close --
221
635937
1508
--nin por aproximación--
10:49
with all the other
existing clinical measures.
222
637469
3126
con ningunha
das medidas clínicas existentes.
10:54
And I remember vividly,
while I was working on this,
223
642525
3579
E recordo vividamente,
mentres traballaba nisto,
10:58
I was sitting at my computer
224
646128
2317
estaba eu sentado diante do ordenador
11:00
and I saw a bunch of tweets by Polo --
225
648469
2635
e vin uns cantos chíos de Polo
11:03
Polo had been my first student
back in Buenos Aires,
226
651128
3167
--Polo fora o meu primeiro estudante
en Bos Aires,
e naquel momento
estaba a vivir en Nova York
11:06
and at the time
he was living in New York.
227
654319
2070
11:08
And there was something in this tweets --
228
656413
2088
E había algo nos seus chíos
11:10
I could not tell exactly what
because nothing was said explicitly --
229
658525
3501
--non era quen de dicir o que,
non había nada explícito--
11:14
but I got this strong hunch,
230
662050
2021
pero tiven un forte presentimento,
11:16
this strong intuition,
that something was going wrong.
231
664095
2955
unha forte intuición,
de que algo non ía ben.
11:20
So I picked up the phone,
and I called Polo,
232
668347
2723
Así que collín o teléfono e chameino,
11:23
and in fact he was not feeling well.
233
671094
1919
e era certo, non se sentía ben.
11:25
And this simple fact,
234
673362
1937
E este simple feito,
11:27
that reading in between the lines,
235
675323
2491
este ler entre liñas,
11:29
I could sense,
through words, his feelings,
236
677838
4262
este sentir, a través das palabras,
os seus sentimentos,
11:34
was a simple, but very
effective way to help.
237
682124
2619
foi unha forma de axudar
sinxela, pero moi efectiva.
11:37
What I tell you today
238
685987
1638
O que vos digo hoxe
11:39
is that we're getting
close to understanding
239
687649
2508
é que estamos preto de comprender
11:42
how we can convert this intuition
that we all have,
240
690181
4286
como converter esta intuición
que todos temos,
11:46
that we all share,
241
694491
1365
que todos compartimos,
11:47
into an algorithm.
242
695880
1197
nun algoritmo.
11:50
And in doing so,
243
698102
1461
E, ao facelo,
11:51
we may be seeing in the future
a very different form of mental health,
244
699587
4650
poderiamos ver no futuro
unha forma moi diferente de saúde mental,
11:56
based on objective, quantitative
and automated analysis
245
704261
5621
baseada nunha análise obxectiva,
cuantitativa e automatizada
12:01
of the words we write,
246
709906
1709
das palabras que escribimos,
12:03
of the words we say.
247
711639
1537
das palabras que dicimos.
12:05
Gracias.
248
713200
1151
Grazas.
12:06
(Applause)
249
714375
6883
(Aplausos)

▲Back to top

ABOUT THE SPEAKER
Mariano Sigman - Neuroscientist
In his provocative, mind-bending book "The Secret Life of the Mind," neuroscientist Mariano Sigman reveals his life’s work exploring the inner workings of the human brain.

Why you should listen

Mariano Sigman, a physicist by training, is a leading figure in the cognitive neuroscience of learning and decision making. Sigman was awarded a Human Frontiers Career Development Award, the National Prize of Physics, the Young Investigator Prize of "College de France," the IBM Scalable Data Analytics Award and is a scholar of the James S. McDonnell Foundation. In 2016 he was made a Laureate of the Pontifical Academy of Sciences.

In The Secret Life of the Mind, Sigman's ambition is to explain the mind so that we can understand ourselves and others more deeply. He shows how we form ideas during our first days of life, how we give shape to our fundamental decisions, how we dream and imagine, why we feel certain emotions, how the brain transforms and how who we are changes with it. Spanning biology, physics, mathematics, psychology, anthropology, linguistics, philosophy and medicine, as well as gastronomy, magic, music, chess, literature and art, The Secret Life of the Mind revolutionizes how neuroscience serves us in our lives, revealing how the infinity of neurons inside our brains manufacture how we perceive, reason, feel, dream and communicate.

More profile about the speaker
Mariano Sigman | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee