ABOUT THE SPEAKER
Kate Marvel - Climate scientist
Climate scientist Kate Marvel looks at the big picture of environmental change.

Why you should listen

Kate Marvel is a scientist at Columbia University and the NASA Goddard Institute of Space studies. She uses computer models and satellite observations to monitor and explain the changes happening around us. Her work has suggested that human activities are already affecting global rainfall and cloud patterns. Marvel is committed to sharing the joy and beauty of science with wider audiences.

She has advised journalists, artists and policymakers, written a popular science blog and given frequent public talks. Her writing has appeared in Nautilus Magazine.

More profile about the speaker
Kate Marvel | Speaker | TED.com
TED2017

Kate Marvel: Can clouds buy us more time to solve climate change?

卡特·马文: 云可以为我们解决气候变化再争取些时间吗?

Filmed:
1,287,488 views

气候变化是真的,事实就是这样。但是我们对它仍有很多不了解的地方。我们了解的越多,我们更有可能减缓它的步伐。有一个仍不为熟知的问题:云起了什么样的作用?有一个小小的希望,那就是它们可以为我们处理问题争取些时间。或者它们会恶化全球变暖。气象学家卡特·马文带领我们了解了云朵的科学,以及如何让地球治愈自己的烧热。
- Climate scientist
Climate scientist Kate Marvel looks at the big picture of environmental change. Full bio

Double-click the English transcript below to play the video.

00:12
I am a climate气候 scientist科学家,
0
905
1729
我是一名气象学家,
00:15
and I hate讨厌 weather天气.
1
3214
2763
我讨厌天气。
00:18
I have spent花费 too much time in California加州,
2
6001
2406
我在加利福尼亚州待了太长时间,
00:20
and I strongly非常 feel that weather天气
should be optional可选的.
3
8431
3665
我强烈的认为天气
应该是可有可无的。
00:24
(Laughter笑声)
4
12120
1134
(笑声)
00:25
So I don't want to experience经验 clouds,
5
13278
3041
我不想看见天上的云,
00:28
let alone单独 study研究 them.
6
16343
1373
更不要说研究它们了。
00:30
But clouds seem似乎 to follow跟随 me
wherever哪里 I go.
7
18366
3697
但是我到哪里,云就跟到哪里。
00:34
The thing is, clouds are a real真实
challenge挑战 for climate气候 science科学.
8
22822
4481
事实上,研究云对于
气象学来说是一个挑战。
00:39
We don't know how they're going to react应对
as the planet行星 heats预赛 up,
9
27971
3821
我们不知道随着地球的升温,
它们会如何变化,
00:43
and hidden in that uncertainty不确定
10
31816
3721
而蕴藏在那不确定性之中的,
00:47
might威力 be hope希望.
11
35561
1286
可能是希望。
00:49
Maybe, just maybe,
12
37531
2533
也许,只是也许,
00:52
clouds could slow down global全球 warming变暖,
13
40088
2681
云可以减缓气候变暖的速度,
00:54
and buy购买 us a little bit more time
to get our act法案 together一起,
14
42793
3647
可以给我们的团结行动争取一点时间,
00:58
which哪一个 would be very convenient方便 right now.
15
46464
2716
而现在这很重要。
01:01
I mean, even I could put up
with a few少数 more cloudy多云的 days
16
49600
4090
我想说,如果云可以拯救地球的话,
01:05
if clouds saved保存 the planet行星.
17
53714
2067
我宁愿多忍受几天的多云天。
01:08
Now, we are sure about some things.
18
56722
2555
现在,我们已经确认了某些事情。
01:11
Carbon dioxide二氧化碳 is a greenhouse温室 gas加油站,
19
59897
2323
二氧化碳是一种温室气体,
01:14
we're emitting发光 a lot of it,
20
62244
1396
我们大量排放,
01:15
and the planet行星 is heating加热 up.
21
63664
1546
而地球在升温。
01:17
Case案件 closed关闭.
22
65534
1312
事情就是这样。
01:19
But I still go to work every一切 day.
23
67507
1855
但是我每天仍去工作。
01:21
It turns out that there is a lot
that we don't understand理解
24
69970
3700
事实是,我们对于气候变化
01:25
about climate气候 change更改.
25
73694
1467
还有很多不知道的地方。
01:27
In particular特定, we haven't没有 answered回答
26
75614
2464
特别的,我们没有回答
01:30
what seems似乎 to be a very
fundamental基本的 question.
27
78102
2884
一个看上去十分基本的问题。
01:33
We know it's going to get hot,
28
81584
1591
我们知道会变得更热,
01:35
but we don't know exactly究竟
how hot it's going to get.
29
83199
3719
但是我们并不知道会变得多热。
01:39
Now, this is a really
easy简单 question to answer回答
30
87672
2939
如果你们能给我一台时间机器,
01:42
if one of you would like
to give me a time machine.
31
90635
2974
这会是一个十分简单的问题。
01:45
But I'm going to be honest诚实 with you:
32
93633
2461
但是我想和你们开诚布公,
01:48
if I had a time machine,
33
96118
2055
如果我有一台时间机器,
01:50
I would not be hanging out
at this particular特定 point in history历史.
34
98197
3286
我不会去历史上的这个时间点。
01:54
So in order订购 to see the future未来,
35
102229
3053
为了预测未来,
01:57
we have to rely依靠 on the output产量
of computer电脑 simulations模拟 --
36
105306
3614
我们需要依靠电脑模拟的结果,
02:00
climate气候 models楷模, like this one.
37
108944
1963
气候模型,就像这个一样。
02:03
Now, in my line线 of work,
38
111518
1840
现在,在我的工作中,
02:05
I encounter遭遇 many许多 very charming迷人
people on the internet互联网
39
113382
3701
我在网上遇到了许多人
02:09
who like to tell me
that climate气候 models楷模 are all wrong错误.
40
117107
4136
告诉我气候模型都是错的。
02:13
And I would just like to say:
41
121942
2316
而我只想说:
02:16
no kidding开玩笑!
42
124282
1184
不是开玩笑!
02:18
Seriously认真地? I get paid支付 to complain抱怨
about climate气候 models楷模.
43
126389
3578
认真的吗?我拿着工资来抱怨气候模型。
02:21
But we don't want models楷模 to be perfect完善.
44
129991
3361
但是我们不希望模型是完美的。
02:25
We want them to be useful有用.
45
133825
1495
我们希望它们是有用的。
02:27
I mean, think about it:
46
135946
1631
我想说,想想这个:
02:29
a computer电脑 simulation模拟
47
137601
2058
一个可以
02:31
that's able能够 to exactly究竟
reproduce复制 all of reality现实.
48
139683
3886
准确复制所有现实的电脑模拟。
02:36
That's not a climate气候 model模型;
49
144166
1789
那不是气候模型,
02:38
That's "The Matrix矩阵."
50
146495
1572
那是《黑客帝国》。
02:41
So, models楷模 are not crystal水晶 balls.
51
149022
3412
所以,模型不是水晶球。
02:44
They're research研究 tools工具,
52
152458
1691
它们是研究工具,
02:46
and the ways方法 in which哪一个 they're wrong错误
can actually其实 teach us a lot.
53
154173
4250
它们在某些方面的错误,
事实上可以教我们很多。
02:50
For example:
54
158993
1353
比方说:
02:52
different不同 climate气候 models楷模
are largely大部分 able能够 to capture捕获
55
160370
2994
不同的气候模型大多可以捕捉
02:55
the warming变暖 that we've我们已经 seen看到 so far.
56
163388
2124
我们现在见证的气候变暖。
02:57
But fast-forward快进 to the end结束 of the century世纪
57
165536
2768
但是如果情形不变
03:00
under a business-as-usual照常营业 scenario脚本,
58
168328
2329
快进到本世纪末,
03:02
and climate气候 models楷模
don't really agree同意 anymore.
59
170681
2526
气候模型的结果不再一致。
03:05
Yeah, they're all warming变暖;
that's just basic基本 physics物理.
60
173787
3192
是的,它们都预测变暖,
这只是基本的物理。
03:09
But some of them project项目 catastrophe灾难 --
61
177330
3209
但是有些预测灾难性的后果,
03:12
more than five times the warming变暖
we've我们已经 seen看到 already已经.
62
180563
2851
是我们现在见证的变暖的五倍。
03:15
And others其他 are literally按照字面 more chill寒意.
63
183756
2585
其他的要更冷一些。
03:19
So why don't climate气候 models楷模 agree同意
on how warm it's going to get?
64
187019
4824
那么为什么气候模型不能在
会有多暖这个问题上达成一致呢?
03:24
Well, to a large extent程度,
65
192434
2047
大致上来说,
03:26
it's because they don't agree同意
on what clouds will do in the future未来.
66
194505
3580
这是因为它们对云
在未来起的作用不一致。
03:30
And that is because, just like me,
67
198752
2771
这是因为,就像我一样,
03:33
computers电脑 hate讨厌 clouds.
68
201547
1836
电脑讨厌云。
03:35
Computers电脑 hate讨厌 clouds because
they're simultaneously同时 very large
69
203819
4190
电脑讨厌云,因为它们既很大,
03:40
and very small.
70
208033
1246
又很小。
03:41
Clouds are formed形成
71
209804
1158
当微小的水滴或冰晶
03:42
when microscopic显微 water droplets液滴
or ice crystals晶体 coalesce合并
72
210986
4625
在细微颗粒物上附着时,
03:47
around tiny particles粒子.
73
215635
1586
云便形成了。
03:49
But at the same相同 time, they cover
two-thirds三分之二 of the earth's地球 surface表面.
74
217695
3719
但是同时,
它们覆盖了地球三分之二的表面。
03:53
In order订购 to really
accurately准确 model模型 clouds,
75
221895
3020
为了真真正正的模拟云,
03:56
we'd星期三 need to track跟踪 the behavior行为
of every一切 water droplet水滴 and dust灰尘 grain粮食
76
224939
4524
我们需要追踪整个大气层里,
04:01
in the entire整个 atmosphere大气层,
77
229487
1442
每个水滴和颗粒物的行踪,
04:02
and there's no computer电脑
powerful强大 enough足够 to do that.
78
230953
2501
而没有计算机可以强大到这个地步。
04:05
So instead代替, we have to make a trade-off交易:
79
233856
2761
所以,我们要做一个权衡:
04:09
we can zoom放大 in and get the details细节 right,
80
237120
2903
我们可以放大,把细节做对,
04:12
but have no idea理念
what's going on worldwide全世界;
81
240047
2978
但是没有办法知道全世界范围内会怎么;
04:15
or, we could sacrifice牺牲
realism现实主义 at small scales
82
243049
4923
或者,我们可以牺牲细节层面上的真实,
04:19
in order订购 to see the bigger picture图片.
83
247996
1922
以看到全局。
04:22
Now, there's no one right answer回答,
84
250309
2230
现在,没有一个正确的答案,
04:24
no perfect完善 way to do this,
85
252563
1555
没有一个完美的方法,
04:26
and different不同 climate气候 models楷模
make different不同 choices选择.
86
254602
2942
而不同的气候模型指向不同的选择。
04:30
Now, it is unfortunate不幸的
87
258443
2365
电脑受制于云的存在,
04:32
that computers电脑 struggle斗争 with clouds,
88
260832
2338
这是非常不幸的,
04:35
because clouds are crucially关键 important重要
89
263194
2698
因为云对于调节全球的气温,
04:37
in regulating调节 the temperature温度
of the planet行星.
90
265916
2352
起到了关键性的作用。
04:40
In fact事实, if all the clouds went away,
91
268634
2571
事实上,如果没有云,
04:43
we would experience经验
profound深刻 climate气候 changes变化.
92
271229
3120
我们会经历猛烈的气候变化。
04:46
But without clouds,
93
274989
1473
但是没有云,
04:48
would it be warmer回暖 or colder更冷?
94
276486
2265
是会变的更热,还是更冷呢?
04:51
The answer回答 is both.
95
279492
1560
两个都是答案。
04:54
So I'm going to be honest诚实 with you,
I am not a cloud spotter去污剂.
96
282016
3022
实话对你们说,
我不一直看着云。
04:57
My favorite喜爱 type类型 of cloud is none没有.
97
285062
2270
我不喜欢任何种类的云。
04:59
But even I know that clouds
come in all shapes形状 and sizes大小.
98
287770
4106
但是我知道云有不同的形状和大小。
05:04
Low, thick clouds like these
are really good at blocking闭塞 out the sun太阳
99
292567
4220
像这种低、厚的云可以很好的挡住太阳,
05:08
and ruining破坏 your barbecue烧烤,
100
296811
1395
毁掉你的野餐,
05:10
and high, wispy束状 clouds like these cirrus触须
101
298888
2923
而像这卷云一样的高、轻薄的云
05:13
largely大部分 let that sunlight阳光 stream through通过.
102
301835
2221
则会让阳光透过。
05:16
Every一切 sunny晴朗 day is the same相同,
103
304616
2397
每个大晴天都是一样的,
05:19
but every一切 cloudy多云的 day
is cloudy多云的 in its own拥有 way.
104
307037
2483
但是每个多云天则各有不同。
05:22
And it's this diversity多样
105
310037
1958
而正是这种多样性
05:24
that can make the global全球 impact碰撞 of clouds
very hard to understand理解.
106
312019
3805
使得理解全球范围内云的影响变得困难。
05:28
So to see this global全球 effect影响 of clouds,
107
316276
3004
所以为了考察云的全球影响,
05:31
it really helps帮助 to take a selfie自拍.
108
319304
2643
拍张自拍是很有用的。
05:35
It will never cease停止 to blow打击 my mind心神
109
323138
3501
我们能从外太空看到我们的星球,
05:38
that we can see our planet行星
from outer space空间,
110
326663
2548
这一点一直为我所惊诧,
05:41
but we can't see all of it.
111
329872
1641
但是我们不能看到它的全部。
05:44
Clouds are blocking闭塞 the view视图.
112
332118
1640
云挡住了视野。
05:46
That's what they do.
113
334300
1365
这就是它们所做的。
05:47
These low, thick clouds
are extremely非常 effective有效 sunshades遮阳篷.
114
335689
4686
这些低、厚的云朵是非常有效的遮阳蓬。
05:52
They turn back about 20 percent百分
of everything the sun太阳 sends发送 us.
115
340399
3564
它们反射回将近20%的太阳光。
05:56
That is a lot of wasted浪费 solar太阳能 power功率.
116
344474
2704
那浪费了很多太阳能。
05:59
So, low clouds are powerful强大 sunshades遮阳篷,
117
347202
2982
所以,低空的云朵是有力的遮阳蓬,
06:02
making制造 the planet行星 cooler冷却器.
118
350208
1840
让地球变凉爽。
06:04
But that's not the only effect影响 of clouds.
119
352072
2169
但是这不是云的唯一效果。
06:06
Our planet行星 has a temperature温度,
120
354946
1572
我们的星球有温度,
06:08
and like anything with a temperature温度,
121
356542
2187
就像任何有温度的物体一样,
06:10
it's giving off heat.
122
358753
1345
它会散热。
06:12
We are radiating散热 thermal energy能源
away into space空间,
123
360649
3326
我们将热能辐射到宇宙之中,
06:15
and we can see this in the infrared红外线.
124
363999
2845
这可以在红外线中观测到。
06:18
Once一旦 again, clouds are blocking闭塞 the view视图.
125
366868
3111
又一次,云挡住了。
06:22
That's because high clouds live生活
in the upper reaches到达 of the atmosphere大气层,
126
370387
3803
这是因为在十分寒冷的大气层上侧,
06:26
where it's very cold.
127
374214
1373
存在着高层云朵。
06:27
And this means手段 that they lose失去
very little heat to space空间 themselves他们自己.
128
375991
3698
这意味着它们本身只会损失很少的热量到宇宙中。
06:31
But at the same相同 time, they block
the heat coming未来 up from the planet行星 below下面.
129
379713
4391
但是同时,它们挡住了
从下方地球散发出来的热量。
06:36
The earth地球 is trying to cool itself本身 off,
130
384128
2875
地球想要变凉快些,
06:39
and high clouds are getting得到 in the way.
131
387027
2509
但是高空云朵挡住了(热量的)去路。
06:42
The result结果 is a very
powerful强大 greenhouse温室 effect影响.
132
390163
4074
结果就是十分强烈的温室效应。
06:46
So, clouds play this very
large and dual role角色
133
394999
3854
所以,云在气象系统中
06:50
in the climate气候 system系统.
134
398877
1571
扮演着这个巨大的双重角色。
06:52
We've我们已经 got low clouds that act法案
like a sunshade阳伞,
135
400472
2791
我们有像遮阳蓬一样的低空云朵来
06:55
cooling冷却 the planet行星,
136
403287
1369
给地球降温,
06:56
and high clouds which哪一个 act法案
like a greenhouse温室,
137
404680
2919
还有类似温室气体作用的高空云朵来
06:59
warming变暖 the planet行星.
138
407623
1186
给地球升温。
07:01
Right now, these two effects效果 --
they don't cancel取消 out.
139
409425
3241
现在,这两种效应——
它们不相互抵消。
07:04
That sunshade阳伞 -- it's a little
bit more powerful强大.
140
412690
3418
那遮阳蓬——影响更大些。
07:08
So if we got rid摆脱
of all the clouds tomorrow明天,
141
416132
3078
所以如果明天我们把云都弄掉,
07:11
which哪一个, for the record记录,
I am not advocating主张,
142
419234
3214
注意一下,我不是在辩护,
07:14
our planet行星 would get warmer回暖.
143
422472
1830
我们的星球会变得更热。
07:17
So clearly明确地, all of the clouds
are not going away.
144
425055
3731
显然,云是不会消散的。
07:20
But climate气候 change更改 is change更改.
145
428810
2272
但是气候在变化。
07:23
So we can ask:
146
431528
1410
所以我们会问:
07:24
How will global全球 warming变暖 change更改 clouds?
147
432962
3088
全球变暖会怎么改变云?
07:28
But remember记得, clouds are so important重要
148
436876
2814
但是记住,云在调节地球温度这件事上
07:31
in regulating调节 the earth's地球 temperature温度,
149
439714
2098
起着十分重要的作用,
07:33
and they both warm and cool the planet行星.
150
441836
2711
它们同时提高且降低这地球的温度。
07:36
So even small changes变化 to cloud cover
151
444571
3080
所以即使是云的覆盖变化了一点点,
07:39
could have profound深刻 consequences后果.
152
447675
2081
也会有很大的影响。
07:42
So we might威力 also ask:
153
450240
1960
我们还会问:
07:44
How will clouds change更改 global全球 warming变暖?
154
452224
3109
云会如何影响全球变暖?
07:47
And that is where there might威力
be space空间 for hope希望.
155
455970
3057
这可能是希望之所在。
07:51
If global全球 warming变暖 triggers触发器 cloud changes变化
156
459685
3204
如果全球变暖引起的变化
07:54
that make for a less powerful强大 greenhouse温室
or a more effective有效 sunshade阳伞,
157
462913
5152
减弱了温室效应或是增强了遮阳蓬,
08:00
then that would enhance提高
the cooling冷却 power功率 of clouds.
158
468089
3690
那么便会加强云的制冷能力。
08:03
It would act法案 in opposition反对
to global全球 warming变暖,
159
471803
3527
这会产生与全球变暖相反的效果,
08:07
and that's what's happening事件
in those climate气候 models楷模
160
475354
2970
正是在那些预测变暖相对缓和的
08:10
that project项目 relatively相对 muted静音 warming变暖.
161
478348
2493
模型中所发生的。
08:13
But climate气候 models楷模 struggle斗争 with clouds,
162
481394
3363
但是气候模型受制于云,
08:16
and this uncertainty不确定 -- it goes both ways方法.
163
484781
3154
以及这种不确定性——是把双刃剑。
08:20
Clouds could help us out
with global全球 warming变暖.
164
488592
2329
云可以把我们从全球变暖中解救出来。
08:23
They could also make it worse更差.
165
491833
1599
它们也可以使得情况变糟。
08:26
Now, we know that
climate气候 change更改 is happening事件
166
494133
2886
现在,我们知道气候变化正在发生,
08:29
because we can see it:
167
497043
1765
因为我们见证了:
08:30
rising升起 temperatures温度, melting融化 icecaps冰盖,
shifts转变 in rainfall雨量 patterns模式.
168
498832
5572
升高的气温,融化的冰盖,改变的降雨模式。
08:36
And you might威力 think that we
could also see it in the clouds.
169
504881
3397
你可能认为我们在云上也见到了改变。
08:40
But here's这里的 something else其他 unfortunate不幸的:
170
508302
2516
但是非常不幸:
08:42
clouds are really hard to see.
171
510842
2671
云很难观察。
08:46
I see everybody每个人 from the Pacific和平的 Northwest西北
172
514434
2046
我遇到每个来自美国西北部的人
08:48
is like, "I have some
suggestions建议 for you."
173
516504
2199
差不多都是“我想给提些建议。”
08:50
(Laughter笑声)
174
518727
1024
(笑声)
08:51
And you guys, we have tried试着 looking up.
175
519775
2596
伙计,我们尝试过(那些建议)。
08:54
(Laughter笑声)
176
522395
1051
(笑声)
08:55
But in order订购 to do climate气候 science科学,
177
523470
3019
但为了气象科学研究,
08:58
we need to see all of the clouds,
everywhere到处, for a very long time.
178
526513
5133
我们需要观测所有的云,
每个地方,并持续很长时间。
09:03
And that's what makes品牌 it hard.
179
531670
1745
这就让事情难办了。
09:06
Now, nothing sees看到 more clouds
than a satellite卫星 --
180
534097
4774
现在,没有东西可以比卫星观测更多的云——
09:10
not even a British英国的 person.
181
538895
1920
连英国人也不行。
09:12
(Laughter笑声)
182
540839
1121
(笑声)
09:13
And fortunately幸好, we do have
satellite卫星 observations意见 of clouds
183
541984
5107
幸运的是,我们有很多云的卫星观测,
09:19
that, like me, date日期 back to the 1980s.
184
547115
2864
就像我一样,最早到上世纪八十年代。
09:22
But these satellites卫星
were designed设计 for weather天气,
185
550682
3614
但是这些卫星是为天气服务的,
09:26
not climate气候.
186
554320
1524
而不是气候。
09:27
They weren't in it for the long haul运输.
187
555868
1914
它们不是为了持久战。
09:29
So to get that long-term长期
trend趋势 information信息,
188
557806
2686
所以为了获得长期趋势信息,
09:32
we need to do climate气候 science科学.
189
560516
1775
我们需要进行气象科学研究。
09:34
We have to stitch together一起
the output产量 of multiple satellites卫星
190
562315
3118
我们需要用不同的观测视角和观测轨道,
09:37
with different不同 viewing观看 angles and orbits轨道
191
565457
3078
以及不同的摄像设备,
09:40
and carrying携带 different不同 camera相机 equipment设备.
192
568559
1923
将不同卫星的输出整合起来。
09:42
And as a result结果,
193
570506
1222
作为结果,
09:43
there are gaps空白 in our knowledge知识.
194
571752
2152
我们的知识中存在盲点。
09:46
But even from this very cloudy多云的 picture图片,
195
574499
3329
但是即使从这些非常模糊的图像中,
09:49
we're starting开始 to get hints提示
of a possible可能 future未来.
196
577852
3163
我们开始看到可能的未来的线索。
09:53
When we looked看着 at the observations意见,
197
581648
2600
当我们研究这些观测时,
09:56
one thing jumped跳下 out at us:
198
584272
1816
一件事情跃然纸上:
09:58
the clouds are moving移动.
199
586672
2029
云在移动。
10:01
As the planet's地球上的 temperature温度 increases增加,
200
589693
2489
随着地球温度升高,
10:04
high clouds rise上升 up.
201
592206
1932
高层云朵上升。
10:06
They move移动 to the colder更冷
upper reaches到达 of the atmosphere大气层,
202
594686
4230
它们移到了更冷的大气层上侧,
10:10
and this means手段 that even
as the planet行星 heats预赛 up,
203
598940
3663
这意味着即使地球在变暖,
10:14
high clouds don't.
204
602627
1317
高层云朵并不这样。
10:16
They remain at roughly大致
the same相同 temperature温度.
205
604384
2637
它们保持着差不多相同的温度。
10:19
So they are not losing失去 more heat to space空间.
206
607045
3498
所以它们没有损失更多的热量到宇宙中。
10:22
But at the same相同 time,
they're trapping诱捕 more heat
207
610567
3037
但同时,它们困住了更多的
10:25
from the warming变暖 planet行星 below下面.
208
613628
1733
来自下方变暖的地球的热量。
10:27
This intensifies加剧 the greenhouse温室 effect影响.
209
615849
3000
着加剧了温室效应。
10:31
High clouds are making制造
global全球 warming变暖 worse更差.
210
619794
3746
高层云朵使得全球变暖变得更糟。
10:36
Clouds are moving移动
in other dimensions尺寸, too.
211
624382
2465
云也在其他层面移动。
10:38
The atmospheric大气的 circulation循环,
that large-scale大规模 motion运动
212
626871
3005
大气环流,
10:41
of air空气 and water in the atmosphere大气层,
213
629900
1918
即大气中大范围的空气和水的移动,
10:43
is changing改变,
214
631842
1387
在变化,
10:45
and clouds are going with it.
215
633253
2264
而且云随之而动。
10:49
On large scales,
216
637216
1606
大范围来看,
10:50
clouds seem似乎 to be moving移动
from the tropics热带 toward the poles.
217
638846
4112
云看上去从赤道移向了两极。
10:54
It's kind of like your
grandparents祖父母 in reverse相反.
218
642982
2537
这就像你祖父母在返老还童一样。
10:58
And this matters事项,
219
646207
1579
这很重要,
10:59
because if your job工作
is to block incoming sunlight阳光,
220
647810
3849
因为如果你的职责是挡住过来的太阳光,
11:03
you are going to be much
more effective有效 in the tropics热带
221
651683
3016
挡住赤道那强烈的阳光
11:06
under that intense激烈 tropical热带 sun太阳
222
654723
2197
要比在高纬度
11:08
than you are in higher更高 latitudes纬度.
223
656944
1857
更加有效。
11:11
So if this keeps保持 up,
224
659272
1870
如果这种情况持续,
11:13
this will also make global全球 warming变暖 worse更差.
225
661166
3097
全球变暖也会加剧。
11:16
And what we have not found发现,
226
664287
2321
尽管有多年的观测,
11:18
despite尽管 years年份 of looking,
227
666632
2278
我们仍没发现,
11:20
is any indication迹象 of the opposite对面.
228
668934
2578
任何相反的迹象。
11:24
There is no observational观察 evidence证据
229
672045
2932
没有观测证据显示
11:27
that clouds will substantially基本上
slow down global全球 warming变暖.
230
675001
3735
云可以显著的降低全球变暖的速度。
11:32
The earth地球 is not going
to break打破 its own拥有 fever发热.
231
680141
3337
地球不能自己治愈发热。
11:36
Now, there are still uncertainties不确定性 here.
232
684193
2436
现在,仍然存在不确定性。
11:39
We don't know for sure
233
687224
2228
我们不准确知道
11:41
what the future未来 holds持有.
234
689476
1655
未来会怎么样。
11:43
But we are sending发出 our kids孩子 there,
235
691851
2526
但是我们把我们的孩子送往那里,
11:46
and they are never coming未来 back.
236
694982
1998
他们永远不会回来。
11:50
I want them to be prepared准备
for what they'll他们会 face面对,
237
698433
3131
我想让他们为他们将要面对的做好准备,
11:54
and that is why it is so important重要
238
702300
3243
这就是为什么让我们的地球观测卫星
11:57
to keep our earth-observing地球观测
satellites卫星 up there
239
705567
3251
继续在太空运作,
12:00
and to hire聘请 diverse多种 and smart聪明
and talented天才 people
240
708842
3796
以及雇用不同的、聪明的、有才能的、
12:04
who do not hate讨厌 clouds
241
712662
2267
而且不讨厌云的人,来改进气候模型
12:06
to improve提高 the climate气候 models楷模.
242
714953
1935
十分重要的原因。
12:09
But uncertainty不确定 is not ignorance无知.
243
717570
3523
但是不确定性不容忽视。
12:14
We don't know everything,
244
722053
1472
我们不知道所有事情,
12:16
but we don't know nothing,
245
724093
1594
但我们不是一无所知,
12:18
and we know what carbon dioxide二氧化碳 does.
246
726434
2394
我们知道二氧化碳所做的。
12:21
I started开始 my career事业 as an astrophysicist天体物理学家,
247
729831
3164
我以天体物理学家作为职业起步,
12:25
so you can believe me
248
733019
1482
所以你们可以相信我,
12:26
when I say that this is the greatest最大
place地点 in the universe宇宙.
249
734525
5457
我说地球是宇宙中最棒的地方。
12:33
Other planets行星 might威力 have liquid液体 water.
250
741084
2817
其他星球可能有液态水。
12:36
On earth地球, we have whiskey威士忌酒.
251
744988
3143
地球上,我们有威士忌。
12:40
(Laughter笑声)
252
748155
2013
(笑声)
12:42
(Applause掌声)
253
750192
5008
(掌声)
12:47
We are so lucky幸运 to live生活 here,
254
755224
3193
我们能居住于此太幸运了,
12:51
but let's not push our luck运气.
255
759590
2094
但让我们不要用尽好运。
12:54
I don't think that clouds
will save保存 the planet行星.
256
762476
2938
我不认为云会拯救地球。
12:58
I think that's probably大概 up to us.
257
766225
1688
我认为那取决于我们。
13:00
Thank you.
258
768357
1239
谢谢。
13:01
(Applause掌声)
259
769620
2950
(掌声)
Translated by Lipeng Chen
Reviewed by Conway Ye

▲Back to top

ABOUT THE SPEAKER
Kate Marvel - Climate scientist
Climate scientist Kate Marvel looks at the big picture of environmental change.

Why you should listen

Kate Marvel is a scientist at Columbia University and the NASA Goddard Institute of Space studies. She uses computer models and satellite observations to monitor and explain the changes happening around us. Her work has suggested that human activities are already affecting global rainfall and cloud patterns. Marvel is committed to sharing the joy and beauty of science with wider audiences.

She has advised journalists, artists and policymakers, written a popular science blog and given frequent public talks. Her writing has appeared in Nautilus Magazine.

More profile about the speaker
Kate Marvel | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee