ABOUT THE SPEAKER
Kate Marvel - Climate scientist
Climate scientist Kate Marvel looks at the big picture of environmental change.

Why you should listen

Kate Marvel is a scientist at Columbia University and the NASA Goddard Institute of Space studies. She uses computer models and satellite observations to monitor and explain the changes happening around us. Her work has suggested that human activities are already affecting global rainfall and cloud patterns. Marvel is committed to sharing the joy and beauty of science with wider audiences.

She has advised journalists, artists and policymakers, written a popular science blog and given frequent public talks. Her writing has appeared in Nautilus Magazine.

More profile about the speaker
Kate Marvel | Speaker | TED.com
TED2017

Kate Marvel: Can clouds buy us more time to solve climate change?

凱特馬爾維: 雲朵可否為我們爭取時間來解決氣候變化的問題﹖

Filmed:
1,287,488 views

毫無疑問氣候變遷是真的,但我們仍有許多不盡了解之處。我們知道得越多,就越有機會減緩氣候的變遷。我們仍然不確定雲朵在氣候變遷當中扮演什麼樣的角色。或許有微小的希望,雲朵能為我們爭取一些時間來處理這個問題,但是雲也可能加劇全球暖化。氣候科學家凱特馬爾維帶我們了解雲朵的科學,以及要醫治地球的發燒需要付出什麼代價。
- Climate scientist
Climate scientist Kate Marvel looks at the big picture of environmental change. Full bio

Double-click the English transcript below to play the video.

00:12
I am a climate氣候 scientist科學家,
0
905
1729
我是氣候科學家,
00:15
and I hate討厭 weather天氣.
1
3214
2763
而我討厭天氣。
00:18
I have spent花費 too much time in California加州,
2
6001
2406
我花了太多時間在加州,
00:20
and I strongly非常 feel that weather天氣
should be optional可選的.
3
8431
3665
我強烈認為,
天氣應該要是可選擇的。
00:24
(Laughter笑聲)
4
12120
1134
(笑聲)
00:25
So I don't want to experience經驗 clouds,
5
13278
3041
我並不想要體驗雲朵,
00:28
let alone單獨 study研究 them.
6
16343
1373
更不用說研究它們了。
00:30
But clouds seem似乎 to follow跟隨 me
wherever哪裡 I go.
7
18366
3697
但不論我到哪裡去,
雲朵似乎都跟著我。
00:34
The thing is, clouds are a real真實
challenge挑戰 for climate氣候 science科學.
8
22822
4481
重點是,對於氣候科學而言,
雲朵是非常有挑戰性的。
00:39
We don't know how they're going to react應對
as the planet行星 heats預賽 up,
9
27971
3821
我們不知道當地球溫度上升時,
它們會如何反應,
00:43
and hidden in that uncertainty不確定
10
31816
3721
而隱藏在那不確定性中的,
00:47
might威力 be hope希望.
11
35561
1286
可能是希望。
00:49
Maybe, just maybe,
12
37531
2533
可能,只是可能,
00:52
clouds could slow down global全球 warming變暖,
13
40088
2681
雲朵可能可以減緩全球暖化,
00:54
and buy購買 us a little bit more time
to get our act法案 together一起,
14
42793
3647
幫我們爭取一些時間來努力想辦法,
00:58
which哪一個 would be very convenient方便 right now.
15
46464
2716
對現在會是非常好用的。
01:01
I mean, even I could put up
with a few少數 more cloudy多雲的 days
16
49600
4090
我的意思是,即使是我
也願忍受多幾個陰天,
如果雲朵能拯救地球的話。
01:05
if clouds saved保存 the planet行星.
17
53714
2067
01:08
Now, we are sure about some things.
18
56722
2555
我們能確定的有幾件事。
01:11
Carbon dioxide二氧化碳 is a greenhouse溫室 gas加油站,
19
59897
2323
二氧化碳是溫室氣體,
01:14
we're emitting發光 a lot of it,
20
62244
1396
我們排放了很多二氧化碳,
01:15
and the planet行星 is heating加熱 up.
21
63664
1546
且地球溫度在上升。
01:17
Case案件 closed關閉.
22
65534
1312
結案。
01:19
But I still go to work every一切 day.
23
67507
1855
但我仍然每天都要工作。
01:21
It turns out that there is a lot
that we don't understand理解
24
69970
3700
結果發現,
關於氣候改變,還有著很多
我們不了解的地方。
01:25
about climate氣候 change更改.
25
73694
1467
01:27
In particular特定, we haven't沒有 answered回答
26
75614
2464
特別是,我們尚未回答
01:30
what seems似乎 to be a very
fundamental基本的 question.
27
78102
2884
一個似乎非常基礎的問題。
01:33
We know it's going to get hot,
28
81584
1591
我們知道會越來越熱,
01:35
but we don't know exactly究竟
how hot it's going to get.
29
83199
3719
但我們不知道究竟會到多熱。
01:39
Now, this is a really
easy簡單 question to answer回答
30
87672
2939
這是個很容易回答的問題,
01:42
if one of you would like
to give me a time machine.
31
90635
2974
只要有人能給我一台時光機器。
01:45
But I'm going to be honest誠實 with you:
32
93633
2461
但我得對各位說實話:
01:48
if I had a time machine,
33
96118
2055
如果我有一台時光機器,
01:50
I would not be hanging out
at this particular特定 point in history歷史.
34
98197
3286
我不會在歷史上的這個時間點逗留。
01:54
So in order訂購 to see the future未來,
35
102229
3053
所以,為了看到未來,
01:57
we have to rely依靠 on the output產量
of computer電腦 simulations模擬 --
36
105306
3614
我們要仰賴電腦模擬的輸出結果──
02:00
climate氣候 models楷模, like this one.
37
108944
1963
氣候模型,就像這一個。
02:03
Now, in my line of work,
38
111518
1840
在我的這個行業,
02:05
I encounter遭遇 many許多 very charming迷人
people on the internet互聯網
39
113382
3701
我會在網上遇到許多非常迷人的人,
02:09
who like to tell me
that climate氣候 models楷模 are all wrong錯誤.
40
117107
4136
他們會告訴我氣候模型都是錯的。
02:13
And I would just like to say:
41
121942
2316
我只想要說:
02:16
no kidding開玩笑!
42
124282
1184
別開玩笑了!
02:18
Seriously認真地? I get paid支付 to complain抱怨
about climate氣候 models楷模.
43
126389
3578
當真嗎?我領薪水來抱怨氣候模型。
02:21
But we don't want models楷模 to be perfect完善.
44
129991
3361
但我們不要求模型完美,
02:25
We want them to be useful有用.
45
133825
1495
只要有用就好。
02:27
I mean, think about it:
46
135946
1631
想想看:
02:29
a computer電腦 simulation模擬
47
137601
2058
能夠完全重製所有現實的電腦模擬。
02:31
that's able能夠 to exactly究竟
reproduce複製 all of reality現實.
48
139683
3886
02:36
That's not a climate氣候 model模型;
49
144166
1789
那不是氣候模型;
02:38
That's "The Matrix矩陣."
50
146495
1572
那是《駭客任務》。
(譯註:電影名稱)
02:41
So, models楷模 are not crystal水晶 balls.
51
149022
3412
所以,模型不是水晶球。
02:44
They're research研究 tools工具,
52
152458
1691
它們是研究工具,
02:46
and the ways方法 in which哪一個 they're wrong錯誤
can actually其實 teach us a lot.
53
154173
4250
它們錯誤的方式
其實能教我們很多東西。
02:50
For example:
54
158993
1353
比如:
02:52
different不同 climate氣候 models楷模
are largely大部分 able能夠 to capture捕獲
55
160370
2994
不同的氣候模型能捕捉到大部份
02:55
the warming變暖 that we've我們已經 seen看到 so far.
56
163388
2124
我們目前所看到的暖化現象。
02:57
But fast-forward快進 to the end結束 of the century世紀
57
165536
2768
但快轉到這個世紀末,
03:00
under a business-as-usual照常營業 scenario腳本,
58
168328
2329
在一切照常的情況下,
03:02
and climate氣候 models楷模
don't really agree同意 anymore.
59
170681
2526
氣候模型就不再一致了。
03:05
Yeah, they're all warming變暖;
that's just basic基本 physics物理.
60
173787
3192
是的,它們都變暖,
那只是基本的物理。
03:09
But some of them project項目 catastrophe災難 --
61
177330
3209
但有些模型預測會有大災難──
03:12
more than five times the warming變暖
we've我們已經 seen看到 already已經.
62
180563
2851
暖化的程度是我們
目前已看到的五倍以上;
03:15
And others其他 are literally按照字面 more chill寒意.
63
183756
2585
其他模型則預測稍微涼一些。
03:19
So why don't climate氣候 models楷模 agree同意
on how warm it's going to get?
64
187019
4824
所以,為什麼氣候模型對於
將來有多暖的預測會不一致呢?
03:24
Well, to a large extent程度,
65
192434
2047
有很大的程度,
03:26
it's because they don't agree同意
on what clouds will do in the future未來.
66
194505
3580
是因為它們對於雲朵在未來
扮演什麼角色的看法不一致。
03:30
And that is because, just like me,
67
198752
2771
那是因為,就跟我一樣,
03:33
computers電腦 hate討厭 clouds.
68
201547
1836
電腦也討厭雲朵。
03:35
Computers電腦 hate討厭 clouds because
they're simultaneously同時 very large
69
203819
4190
電腦討厭雲朵
是因為它們同時可大可小。
03:40
and very small.
70
208033
1246
03:41
Clouds are formed形成
71
209804
1158
雲朵的形成,
03:42
when microscopic顯微 water droplets液滴
or ice crystals晶體 coalesce合併
72
210986
4625
是顯微鏡才看得到的小水滴或冰晶體
包圍在小粒子的周圍結合。
03:47
around tiny particles粒子.
73
215635
1586
03:49
But at the same相同 time, they cover
two-thirds三分之二 of the earth's地球 surface表面.
74
217695
3719
但同時,它們覆蓋了
三分之二的地球表面。
03:53
In order訂購 to really
accurately準確 model模型 clouds,
75
221895
3020
為了要真正精確地建立雲朵的模型,
03:56
we'd星期三 need to track跟踪 the behavior行為
of every一切 water droplet水滴 and dust灰塵 grain糧食
76
224939
4524
我們必須要追蹤整個大氣當中
每個水滴與塵粒的行為,
04:01
in the entire整個 atmosphere大氣層,
77
229487
1442
04:02
and there's no computer電腦
powerful強大 enough足夠 to do that.
78
230953
2501
沒有電腦強大到可以做到這一點。
04:05
So instead代替, we have to make a trade-off交易:
79
233856
2761
因此,我們得要做取捨:
04:09
we can zoom放大 in and get the details細節 right,
80
237120
2903
我們可以放大一小塊範圍,
以求細節的正確,
04:12
but have no idea理念
what's going on worldwide全世界;
81
240047
2978
但就不知道全世界發生什麼事;
04:15
or, we could sacrifice犧牲
realism現實主義 at small scales
82
243049
4923
或者,我們可以犧牲
小規模的真實性,
04:19
in order訂購 to see the bigger picture圖片.
83
247996
1922
以求看到更大更整體的狀況。
04:22
Now, there's no one right answer回答,
84
250309
2230
沒有正確的答案,
04:24
no perfect完善 way to do this,
85
252563
1555
沒有完美的方式,
04:26
and different不同 climate氣候 models楷模
make different不同 choices選擇.
86
254602
2942
不同的氣候模型會做不同的選擇。
04:30
Now, it is unfortunate不幸的
87
258443
2365
很不幸的是,
04:32
that computers電腦 struggle鬥爭 with clouds,
88
260832
2338
電腦很難處理雲朵,
04:35
because clouds are crucially關鍵 important重要
89
263194
2698
因為雲朵在調節地球溫度上,
04:37
in regulating調節 the temperature溫度
of the planet行星.
90
265916
2352
扮演非常重要的角色。
04:40
In fact事實, if all the clouds went away,
91
268634
2571
事實上,如果所有的雲朵都沒了,
04:43
we would experience經驗
profound深刻 climate氣候 changes變化.
92
271229
3120
我們會經歷到很劇烈的氣候改變。
04:46
But without clouds,
93
274989
1473
但若沒有雲朵,
04:48
would it be warmer回暖 or colder更冷?
94
276486
2265
會比較溫暖或比較寒冷?
04:51
The answer回答 is both.
95
279492
1560
答案是,都會。
04:54
So I'm going to be honest誠實 with you,
I am not a cloud spotter去污劑.
96
282016
3022
老實告訴各位,我不是賞雲者。
04:57
My favorite喜愛 type類型 of cloud is none沒有.
97
285062
2270
我最喜歡晴朗無雲。
04:59
But even I know that clouds
come in all shapes形狀 and sizes大小.
98
287770
4106
但即使是我這種人,
也知道雲朵有各種形狀大小。
05:04
Low, thick clouds like these
are really good at blocking閉塞 out the sun太陽
99
292567
4220
像這樣的低厚雲層很能夠阻擋陽光,
05:08
and ruining破壞 your barbecue燒烤,
100
296811
1395
讓你的烤肉活動泡湯;
05:10
and high, wispy束狀 clouds like these cirrus觸鬚
101
298888
2923
而像這些卷雲的高雲,
05:13
largely大部分 let that sunlight陽光 stream through通過.
102
301835
2221
會讓大部份的陽光穿過。
05:16
Every一切 sunny晴朗 day is the same相同,
103
304616
2397
晴天全都一樣,
05:19
but every一切 cloudy多雲的 day
is cloudy多雲的 in its own擁有 way.
104
307037
2483
但每個陰天有它自己的多雲方式。
05:22
And it's this diversity多樣
105
310037
1958
正是這種多樣性,
05:24
that can make the global全球 impact碰撞 of clouds
very hard to understand理解.
106
312019
3805
讓雲朵的全球性影響變得難以了解。
05:28
So to see this global全球 effect影響 of clouds,
107
316276
3004
要了解雲朵的全球性效應,
05:31
it really helps幫助 to take a selfie自拍.
108
319304
2643
拍張自拍照是很有幫助的。
05:35
It will never cease停止 to blow打擊 my mind心神
109
323138
3501
我們能夠從外太空來看我們的星球,
這點總是讓我感到不可思議,
05:38
that we can see our planet行星
from outer space空間,
110
326663
2548
05:41
but we can't see all of it.
111
329872
1641
但我們無法看到它的全部。
05:44
Clouds are blocking閉塞 the view視圖.
112
332118
1640
雲朵會阻擋視線。
05:46
That's what they do.
113
334300
1365
這是它們的功能之一。
05:47
These low, thick clouds
are extremely非常 effective有效 sunshades遮陽篷.
114
335689
4686
低空的厚雲層是非常有效的遮陽板。
05:52
They turn back about 20 percent百分
of everything the sun太陽 sends發送 us.
115
340399
3564
雲朵反射回去 20% 的陽光,
05:56
That is a lot of wasted浪費 solar太陽能 power功率.
116
344474
2704
浪費掉許多的太陽能。
05:59
So, low clouds are powerful強大 sunshades遮陽篷,
117
347202
2982
所以,低雲是很強大的遮陽板,
06:02
making製造 the planet行星 cooler冷卻器.
118
350208
1840
讓地球比較涼快。
06:04
But that's not the only effect影響 of clouds.
119
352072
2169
但雲朵的效應不只如此。
06:06
Our planet行星 has a temperature溫度,
120
354946
1572
我們的星球有熱度,
06:08
and like anything with a temperature溫度,
121
356542
2187
就像所有有熱度的東西一樣,
06:10
it's giving off heat.
122
358753
1345
它會散熱。
06:12
We are radiating散熱 thermal energy能源
away into space空間,
123
360649
3326
我們向太空輻射熱能。
06:15
and we can see this in the infrared紅外線.
124
363999
2845
這現象用紅外線就可以看到。
06:18
Once一旦 again, clouds are blocking閉塞 the view視圖.
125
366868
3111
同樣的,雲朵會阻擋視線。
06:22
That's because high clouds live生活
in the upper reaches到達 of the atmosphere大氣層,
126
370387
3803
那是因為高雲位在大氣的上層,
06:26
where it's very cold.
127
374214
1373
那裡非常寒冷。
06:27
And this means手段 that they lose失去
very little heat to space空間 themselves他們自己.
128
375991
3698
這意味著它們本身
散失到太空的熱能很少。
06:31
But at the same相同 time, they block
the heat coming未來 up from the planet行星 below下面.
129
379713
4391
但同時,它們阻擋了
下方的地球向上散熱。
06:36
The earth地球 is trying to cool itself本身 off,
130
384128
2875
地球試著冷卻自己,
06:39
and high clouds are getting得到 in the way.
131
387027
2509
而高雲卻從中作梗。
06:42
The result結果 is a very
powerful強大 greenhouse溫室 effect影響.
132
390163
4074
結果就是非常強大的溫室效應。
06:46
So, clouds play this very
large and dual role角色
133
394999
3854
所以,雲朵在氣候系統中
扮演著非常大的雙重角色。
06:50
in the climate氣候 system系統.
134
398877
1571
06:52
We've我們已經 got low clouds that act法案
like a sunshade陽傘,
135
400472
2791
我們有低雲當遮陽板,
06:55
cooling冷卻 the planet行星,
136
403287
1369
冷卻地球,
06:56
and high clouds which哪一個 act法案
like a greenhouse溫室,
137
404680
2919
也有高雲當溫室,
06:59
warming變暖 the planet行星.
138
407623
1186
暖化地球。
07:01
Right now, these two effects效果 --
they don't cancel取消 out.
139
409425
3241
現今,這兩種效應並不會互相抵消。
07:04
That sunshade陽傘 -- it's a little
bit more powerful強大.
140
412690
3418
遮陽的力量稍大一些些。
07:08
So if we got rid擺脫
of all the clouds tomorrow明天,
141
416132
3078
所以,如果我們明天
就清除所有的雲朵──
07:11
which哪一個, for the record記錄,
I am not advocating主張,
142
419234
3214
聲明一下,我沒在提倡這件事喔──
07:14
our planet行星 would get warmer回暖.
143
422472
1830
那麼地球就會暖化。
07:17
So clearly明確地, all of the clouds
are not going away.
144
425055
3731
所以很顯然,雲不會消失。
07:20
But climate氣候 change更改 is change更改.
145
428810
2272
但氣候改變就是改變。
07:23
So we can ask:
146
431528
1410
所以我們可以問:
07:24
How will global全球 warming變暖 change更改 clouds?
147
432962
3088
全球暖化會如何改變雲朵?
07:28
But remember記得, clouds are so important重要
148
436876
2814
但切記雲朵
在調節地球溫度的重要角色,
07:31
in regulating調節 the earth's地球 temperature溫度,
149
439714
2098
07:33
and they both warm and cool the planet行星.
150
441836
2711
它們會冷卻也會暖化地球。
07:36
So even small changes變化 to cloud cover
151
444571
3080
所以即使雲朵的覆蓋稍微變了,
07:39
could have profound深刻 consequences後果.
152
447675
2081
也可能會造成深切的影響。
07:42
So we might威力 also ask:
153
450240
1960
所以我們也可以問:
07:44
How will clouds change更改 global全球 warming變暖?
154
452224
3109
雲朵會如何改變全球暖化?
07:47
And that is where there might威力
be space空間 for hope希望.
155
455970
3057
那可能是能找到希望的地方。
07:51
If global全球 warming變暖 triggers觸發器 cloud changes變化
156
459685
3204
如果全球暖化觸發了雲朵的改變,
07:54
that make for a less powerful強大 greenhouse溫室
or a more effective有效 sunshade陽傘,
157
462913
5152
導致溫室變弱、
或遮陽板變得更有效,
08:00
then that would enhance提高
the cooling冷卻 power功率 of clouds.
158
468089
3690
那麼那就會強化雲朵的冷卻力。
08:03
It would act法案 in opposition反對
to global全球 warming變暖,
159
471803
3527
它的功能就會和全球暖化正好相反,
08:07
and that's what's happening事件
in those climate氣候 models楷模
160
475354
2970
那就是那些預測暖化將會緩和的
08:10
that project項目 relatively相對 muted靜音 warming變暖.
161
478348
2493
氣候模型中所發生的現象。
08:13
But climate氣候 models楷模 struggle鬥爭 with clouds,
162
481394
3363
但,氣候模型很難處理雲朵,
08:16
and this uncertainty不確定 -- it goes both ways方法.
163
484781
3154
而這不確定性是雙向的。
08:20
Clouds could help us out
with global全球 warming變暖.
164
488592
2329
雲朵能協助我們處理全球暖化,
08:23
They could also make it worse更差.
165
491833
1599
也可能讓它惡化。
08:26
Now, we know that
climate氣候 change更改 is happening事件
166
494133
2886
現在,我們知道氣候改變正在發生,
08:29
because we can see it:
167
497043
1765
因為我們看見:
08:30
rising升起 temperatures溫度, melting融化 icecaps冰蓋,
shifts轉變 in rainfall雨量 patterns模式.
168
498832
5572
氣溫上升、冰山溶化、
降雨模式轉變。
08:36
And you might威力 think that we
could also see it in the clouds.
169
504881
3397
你可能會認為,我們也能
在雲朵上看到改變。
08:40
But here's這裡的 something else其他 unfortunate不幸的:
170
508302
2516
但還有件不幸的事:
08:42
clouds are really hard to see.
171
510842
2671
雲朵真的很難看見。
08:46
I see everybody每個人 from the Pacific和平的 Northwest西北
172
514434
2046
我看見來自太平洋西北地區的每個人
08:48
is like, "I have some
suggestions建議 for you."
173
516504
2199
都像在說:「我想給你些建議。」
08:50
(Laughter笑聲)
174
518727
1024
(笑聲)
08:51
And you guys, we have tried試著 looking up.
175
519775
2596
各位,我們有試過抬頭向上看了。
08:54
(Laughter笑聲)
176
522395
1051
(笑聲)
08:55
But in order訂購 to do climate氣候 science科學,
177
523470
3019
但為了要做氣候科學,
08:58
we need to see all of the clouds,
everywhere到處, for a very long time.
178
526513
5133
我們得要看見各處的所有雲朵,
且持續很長一段時間。
09:03
And that's what makes品牌 it hard.
179
531670
1745
那就是困難之處。
09:06
Now, nothing sees看到 more clouds
than a satellite衛星 --
180
534097
4774
現在,能看見最多雲朵的就是衞星,
09:10
not even a British英國的 person.
181
538895
1920
連英國人都看不到那麼多。
09:12
(Laughter笑聲)
182
540839
1121
(笑聲)
09:13
And fortunately幸好, we do have
satellite衛星 observations意見 of clouds
183
541984
5107
幸運的是,我們的確有
衛星觀測雲朵的資料,
09:19
that, like me, date日期 back to the 1980s.
184
547115
2864
就像我,可追溯到 1980 年代。
09:22
But these satellites衛星
were designed設計 for weather天氣,
185
550682
3614
但這些衛星是為了天氣設計的,
09:26
not climate氣候.
186
554320
1524
不是氣候。
09:27
They weren't in it for the long haul運輸.
187
555868
1914
它們無法持久。
09:29
So to get that long-term長期
trend趨勢 information信息,
188
557806
2686
若要取得長期趨勢的資訊,
09:32
we need to do climate氣候 science科學.
189
560516
1775
我們必須要做氣候科學。
09:34
We have to stitch together一起
the output產量 of multiple satellites衛星
190
562315
3118
我們得把不同視角、運行軌道,
09:37
with different不同 viewing觀看 angles and orbits軌道
191
565457
3078
帶著不同照相設備的多個衛星
09:40
and carrying攜帶 different不同 camera相機 equipment設備.
192
568559
1923
所輸出的資料結合起來。
09:42
And as a result結果,
193
570506
1222
而結果和我們的知識有差距。
09:43
there are gaps空白 in our knowledge知識.
194
571752
2152
09:46
But even from this very cloudy多雲的 picture圖片,
195
574499
3329
但即使是從這像多雲一樣
非常朦朧的狀況中,
09:49
we're starting開始 to get hints提示
of a possible可能 future未來.
196
577852
3163
我們也開始得到些關於
可能發生之未來的暗示。
09:53
When we looked看著 at the observations意見,
197
581648
2600
當我們看這些觀測資料時,
09:56
one thing jumped跳下 out at us:
198
584272
1816
有一點引起了我們的注意:
09:58
the clouds are moving移動.
199
586672
2029
雲朵在移動。
10:01
As the planet's地球上的 temperature溫度 increases增加,
200
589693
2489
隨著地球溫度上升,
10:04
high clouds rise上升 up.
201
592206
1932
高雲會上升。
10:06
They move移動 to the colder更冷
upper reaches到達 of the atmosphere大氣層,
202
594686
4230
它們移向大氣中更上層更冷的地方,
10:10
and this means手段 that even
as the planet行星 heats預賽 up,
203
598940
3663
這意味著,即使地球在變暖,
10:14
high clouds don't.
204
602627
1317
高雲卻不會。
10:16
They remain at roughly大致
the same相同 temperature溫度.
205
604384
2637
它們的溫度大致上維持相同。
10:19
So they are not losing失去 more heat to space空間.
206
607045
3498
所以它們並沒有散失更多熱到太空。
10:22
But at the same相同 time,
they're trapping誘捕 more heat
207
610567
3037
但同時卻圈住了更多
10:25
from the warming變暖 planet行星 below下面.
208
613628
1733
在下方暖化中的地球的熱能。
10:27
This intensifies加劇 the greenhouse溫室 effect影響.
209
615849
3000
這會讓溫室效應加劇。
10:31
High clouds are making製造
global全球 warming變暖 worse更差.
210
619794
3746
高雲會讓全球暖化的情況更糟。
10:36
Clouds are moving移動
in other dimensions尺寸, too.
211
624382
2465
雲朵也向其他維度移動。
10:38
The atmospheric大氣的 circulation循環,
that large-scale大規模 motion運動
212
626871
3005
大氣環流,
大氣中空氣和水的大規模移動
10:41
of air空氣 and water in the atmosphere大氣層,
213
629900
1918
10:43
is changing改變,
214
631842
1387
正在改變,
10:45
and clouds are going with it.
215
633253
2264
而雲朵也隨之移動。
10:49
On large scales,
216
637216
1606
大規模來看,
10:50
clouds seem似乎 to be moving移動
from the tropics熱帶 toward the poles.
217
638846
4112
雲朵似乎是從熱帶移向極地。
10:54
It's kind of like your
grandparents祖父母 in reverse相反.
218
642982
2537
這有點像是你的祖父母返老還童。
10:58
And this matters事項,
219
646207
1579
這有其重要性,
10:59
because if your job工作
is to block incoming sunlight陽光,
220
647810
3849
因為如果你要阻擋太陽光射進來,
11:03
you are going to be much
more effective有效 in the tropics熱帶
221
651683
3016
你身在熱帶會有效許多,
11:06
under that intense激烈 tropical熱帶 sun太陽
222
654723
2197
熱帶的太陽非常強烈,
11:08
than you are in higher更高 latitudes緯度.
223
656944
1857
在較高的緯度就比較沒效。
11:11
So if this keeps保持 up,
224
659272
1870
所以如果繼續這樣下去,
11:13
this will also make global全球 warming變暖 worse更差.
225
661166
3097
這也會讓全球暖化再惡化。
11:16
And what we have not found發現,
226
664287
2321
儘管花了數年在尋找,
11:18
despite儘管 years年份 of looking,
227
666632
2278
我們仍然尚未發現
11:20
is any indication跡象 of the opposite對面.
228
668934
2578
任何顯示相反情況的徵兆。
11:24
There is no observational觀察 evidence證據
229
672045
2932
觀察到的證據未能證明
11:27
that clouds will substantially基本上
slow down global全球 warming變暖.
230
675001
3735
雲朵在本質上能減緩全球暖化。
11:32
The earth地球 is not going
to break打破 its own擁有 fever發熱.
231
680141
3337
地球並不會治好它自己的發燒。
11:36
Now, there are still uncertainties不確定性 here.
232
684193
2436
這裡仍然有著不確定性。
11:39
We don't know for sure
233
687224
2228
我們不能確定
11:41
what the future未來 holds持有.
234
689476
1655
未來會怎樣。
11:43
But we are sending發出 our kids孩子 there,
235
691851
2526
但我們的孩子正朝向未來的不歸路。
11:46
and they are never coming未來 back.
236
694982
1998
11:50
I want them to be prepared準備
for what they'll他們會 face面對,
237
698433
3131
我警告他們,對將要
面臨的狀況要有心理準備,
11:54
and that is why it is so important重要
238
702300
3243
因此,非常重要的事就是要讓那些
11:57
to keep our earth-observing地球觀測
satellites衛星 up there
239
705567
3251
觀察地球的衛星能繼續在天上運行,
12:00
and to hire聘請 diverse多種 and smart聰明
and talented天才 people
240
708842
3796
並要僱用多樣化、聰明有才華的人,
12:04
who do not hate討厭 clouds
241
712662
2267
不討厭雲朵的人,
12:06
to improve提高 the climate氣候 models楷模.
242
714953
1935
來改善氣候模型。
12:09
But uncertainty不確定 is not ignorance無知.
243
717570
3523
但不確定性並不等同無知。
12:14
We don't know everything,
244
722053
1472
我們並非全知,
12:16
but we don't know nothing,
245
724093
1594
但也不是全然無知,
12:18
and we know what carbon dioxide二氧化碳 does.
246
726434
2394
且我們知道二氧化碳的影響。
12:21
I started開始 my career事業 as an astrophysicist天體物理學家,
247
729831
3164
我最初的職業是天體物理學家,
12:25
so you can believe me
248
733019
1482
所以你們可以相信我,
12:26
when I say that this is the greatest最大
place地點 in the universe宇宙.
249
734525
5457
我說這裡是宇宙中最棒的地方。
12:33
Other planets行星 might威力 have liquid液體 water.
250
741084
2817
其他的星球可能有液態水。
12:36
On earth地球, we have whiskey威士忌酒.
251
744988
3143
在地球,我們有威士忌。
12:40
(Laughter笑聲)
252
748155
2013
(笑聲)
12:42
(Applause掌聲)
253
750192
5008
(掌聲)
12:47
We are so lucky幸運 to live生活 here,
254
755224
3193
我們如此有幸能住在這裡,
12:51
but let's not push our luck運氣.
255
759590
2094
但不要得寸進尺以為好運會長久。
12:54
I don't think that clouds
will save保存 the planet行星.
256
762476
2938
我不認為雲朵能拯救地球。
12:58
I think that's probably大概 up to us.
257
766225
1688
拯救地球的責任可能要由我們承擔。
13:00
Thank you.
258
768357
1239
謝謝。
13:01
(Applause掌聲)
259
769620
2950
(掌聲)
Translated by Lilian Chiu
Reviewed by Helen Chang

▲Back to top

ABOUT THE SPEAKER
Kate Marvel - Climate scientist
Climate scientist Kate Marvel looks at the big picture of environmental change.

Why you should listen

Kate Marvel is a scientist at Columbia University and the NASA Goddard Institute of Space studies. She uses computer models and satellite observations to monitor and explain the changes happening around us. Her work has suggested that human activities are already affecting global rainfall and cloud patterns. Marvel is committed to sharing the joy and beauty of science with wider audiences.

She has advised journalists, artists and policymakers, written a popular science blog and given frequent public talks. Her writing has appeared in Nautilus Magazine.

More profile about the speaker
Kate Marvel | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee