ABOUT THE SPEAKER
Marcus du Sautoy - Mathematician
Oxford's newest science ambassador Marcus du Sautoy is also author of The Times' Sexy Maths column. He'll take you footballing with prime numbers, whopping symmetry groups, higher dimensions and other brow-furrowers.

Why you should listen

Marcus du Sautoy only permits prime numbers on the uniforms of his football team, but that idiosyncrasy isn't (entirely) driven by superstition -- just pure love. (His number is 17.) You might say primes, "the atoms of mathematics," as he calls them, are du Sautoy's intellectual spouse, the passion that has driven him from humble-enough academic beginnings to a spectacular and awarded career in maths, including a Royal Society fellowship and, of course, his recent election to the Simonyi Professorship for the Public Understanding of Science, the post previously held by Richard Dawkins.

A gifted science communicator -- interesting fashion sense aside -- du Sautoy has most recently been host of the BBC miniseries "The Story of Maths," which explores fascinating mathematical theories and techniques from throughout history and across cultures. Before that, he hosted The Num8er My5teries, a lecture series on history's stubbornest math problems -- the sorts of conundrums that get your head griddle-hot with thinking. He's also author, perhaps most famously, of The Music of the Primes, an engaging look at the often Pyrrhic attempts at cracking the Riemann Hypothesis. His 2008 book, Symmetry: A Journey into the Patterns of Nature, looks at various kinds of mathematical and aesthetic symmetry, including a massive, mysterious object called "the Monster" that exists in 196,883 dimensions.

More profile about the speaker
Marcus du Sautoy | Speaker | TED.com
TEDGlobal 2009

Marcus du Sautoy: Symmetry, reality's riddle

Marcus du Sautoy:對稱性——真實謎語

Filmed:
1,158,477 views

世界變得對稱,從旋轉的亞原子粒子到阿拉貝司克舞姿令人眼花繚亂的美。但這些已經不能夠滿足人們的視覺享受。牛津的數學家 Marcus du Sautoy 讓大家簡單了解一下看不見的數字與對稱物體的結合。
- Mathematician
Oxford's newest science ambassador Marcus du Sautoy is also author of The Times' Sexy Maths column. He'll take you footballing with prime numbers, whopping symmetry groups, higher dimensions and other brow-furrowers. Full bio

Double-click the English transcript below to play the video.

00:18
On the 30th of May可能, 1832,
0
0
4000
在1832年5月30日,
00:22
a gunshot槍擊 was heard聽說
1
4000
2000
人們聽到一聲槍響,
00:24
ringing鈴聲 out across橫過 the 13th arrondissement in Paris巴黎.
2
6000
3000
槍聲穿透了巴黎的第十三區
00:27
(Gunshot槍擊)
3
9000
1000
(槍聲)
00:28
A peasant, who was walking步行 to market市場 that morning早上,
4
10000
3000
一個那天早晨正前往市集的農民
00:31
ran towards where the gunshot槍擊 had come from,
5
13000
2000
朝槍聲傳來的地方跑了過去,
00:33
and found發現 a young年輕 man writhing扭動 in agony痛苦 on the floor地板,
6
15000
4000
發現一名年輕男子正痛得在地上打滾,
00:37
clearly明確地 shot射擊 by a dueling決鬥 wound傷口.
7
19000
3000
顯然他在決鬥中遭到了槍擊。
00:40
The young年輕 man's男人的 name名稱 was Evariste埃瓦里斯特 Galois伽羅瓦.
8
22000
3000
這個年輕人名叫 Evariste • Galois
00:43
He was a well-known知名 revolutionary革命的 in Paris巴黎 at the time.
9
25000
4000
是巴黎當時一個有有名的革命者
00:47
Galois伽羅瓦 was taken採取 to the local本地 hospital醫院
10
29000
3000
Galois 被送到了當地的醫院,
00:50
where he died死亡 the next下一個 day in the arms武器 of his brother哥哥.
11
32000
3000
第二天死在他兄弟的懷中
00:53
And the last words he said to his brother哥哥 were,
12
35000
2000
他對他兄弟說的臨別遺言是
00:55
"Don't cry for me, Alfred阿爾弗雷德.
13
37000
2000
“不要為我哭泣, Alfred
00:57
I need all the courage勇氣 I can muster鼓起
14
39000
2000
我需要聚集我能聚集的所有勇氣
00:59
to die at the age年齡 of 20."
15
41000
4000
讓我在20歲時死去。 ”
01:03
It wasn't, in fact事實, revolutionary革命的 politics政治
16
45000
2000
實際上,革命政治並不是
01:05
for which哪一個 Galois伽羅瓦 was famous著名.
17
47000
2000
使 Galois 著名的原因。
01:07
But a few少數 years年份 earlier, while still at school學校,
18
49000
3000
而是幾年前,當他還在上學時,
01:10
he'd他會 actually其實 cracked破解 one of the big mathematical數學的
19
52000
2000
他破解了
01:12
problems問題 at the time.
20
54000
2000
當時重大數學問題之一
01:14
And he wrote to the academicians院士 in Paris巴黎,
21
56000
2000
隨後他寫信給巴黎的院士
01:16
trying to explain說明 his theory理論.
22
58000
2000
嘗試解釋他的理論
01:18
But the academicians院士 couldn't不能 understand理解 anything that he wrote.
23
60000
3000
但院士們弄不懂他寫的任何東西。
01:21
(Laughter笑聲)
24
63000
1000
(大笑)
01:22
This is how he wrote most of his mathematics數學.
25
64000
3000
這就是他怎麼寫大部分數學理論的
01:25
So, the night before that duel決鬥, he realized實現
26
67000
2000
因此,在決鬥的前一天晚上,他意識到
01:27
this possibly或者 is his last chance機會
27
69000
3000
這可能是他最後一次機會
01:30
to try and explain說明 his great breakthrough突破.
28
72000
2000
來嘗試解釋他的重大突破
01:32
So he stayed up the whole整個 night, writing寫作 away,
29
74000
3000
所以他徹夜未眠,不停地寫東西,
01:35
trying to explain說明 his ideas思路.
30
77000
2000
試圖解釋他的想法
01:37
And as the dawn黎明 came來了 up and he went to meet遇到 his destiny命運,
31
79000
3000
隨著黎明的到來,他準備迎接自己的命運。
01:40
he left this pile of papers文件 on the table for the next下一個 generation.
32
82000
4000
他把桌子上的一堆文件留給了下一代。
01:44
Maybe the fact事實 that he stayed up all night doing mathematics數學
33
86000
3000
也許徹夜研究數學
01:47
was the fact事實 that he was such這樣 a bad shot射擊 that morning早上 and got killed殺害.
34
89000
3000
是他那天早晨受到槍擊且被殺的真正原因
01:50
But contained inside those documents文件
35
92000
2000
但包含在那些文件中的
01:52
was a new language語言, a language語言 to understand理解
36
94000
3000
是一種新的語言,這種語言能讓人們理解
01:55
one of the most fundamental基本的 concepts概念
37
97000
2000
科學的一個最基本的概念,
01:57
of science科學 -- namely亦即 symmetry對稱.
38
99000
3000
即對稱性。
02:00
Now, symmetry對稱 is almost幾乎 nature's大自然 language語言.
39
102000
2000
現今,對稱性幾乎是大自然的語言。
02:02
It helps幫助 us to understand理解 so many許多
40
104000
2000
它有助於我們了解許多
02:04
different不同 bits of the scientific科學 world世界.
41
106000
2000
科學世界裡不同的小東西。
02:06
For example, molecular分子 structure結構體.
42
108000
2000
例如,分子結構。
02:08
What crystals晶體 are possible可能,
43
110000
2000
什麼晶體是能讓
02:10
we can understand理解 through通過 the mathematics數學 of symmetry對稱.
44
112000
4000
我們可以通過數學的對稱性來了解的?
02:14
In microbiology微生物學 you really don't want to get a symmetrical對稱 object目的,
45
116000
2000
在微生物學中,你真的不想研究對稱的東西。
02:16
because they are generally通常 rather nasty討厭.
46
118000
2000
因為它們一般都比較令人討厭。
02:18
The swine flu流感 virus病毒, at the moment時刻, is a symmetrical對稱 object目的.
47
120000
3000
目前的豬流感病毒就是一種結構對稱的病毒。
02:21
And it uses使用 the efficiency效率 of symmetry對稱
48
123000
2000
而且它利用對稱的功效
02:23
to be able能夠 to propagate傳播 itself本身 so well.
49
125000
4000
來增強自己繁殖的速度
02:27
But on a larger scale規模 of biology生物學, actually其實 symmetry對稱 is very important重要,
50
129000
3000
但從大方向來說,對稱性事實上對生物學非常重要
02:30
because it actually其實 communicates相通 genetic遺傳 information信息.
51
132000
2000
因為它能傳遞遺傳信息
02:32
I've taken採取 two pictures圖片 here and I've made製作 them artificially人為 symmetrical對稱.
52
134000
4000
我帶了兩張照片到這兒來,並人工的把他們做成了對稱的
02:36
And if I ask you which哪一個 of these you find more beautiful美麗,
53
138000
3000
如果我問你們覺得哪些更漂亮,
02:39
you're probably大概 drawn to the lower降低 two.
54
141000
2000
你們可能會被下面的兩張吸引住。
02:41
Because it is hard to make symmetry對稱.
55
143000
3000
因為很難做到對稱,
02:44
And if you can make yourself你自己 symmetrical對稱, you're sending發出 out a sign標誌
56
146000
2000
所以如果你可以使自己對稱,那麼你在傳遞一種信號
02:46
that you've got good genes基因, you've got a good upbringing教養
57
148000
3000
它意味著你得到了好的遺傳基因,你有好的教養,
02:49
and therefore因此 you'll你會 make a good mate伴侶.
58
151000
2000
因而你會有一個好的伴侶。
02:51
So symmetry對稱 is a language語言 which哪一個 can help to communicate通信
59
153000
3000
所以,對稱性是一種語言,它能有助於傳遞
02:54
genetic遺傳 information信息.
60
156000
2000
遺傳信息。
02:56
Symmetry對稱 can also help us to explain說明
61
158000
2000
對稱性還可以幫助我們解釋
02:58
what's happening事件 in the Large Hadron強子 Collider對撞機 in CERNCERN.
62
160000
3000
歐洲粒子物理研究所大型強子對撞機正發生著什麼事情。
03:01
Or what's not happening事件 in the Large Hadron強子 Collider對撞機 in CERNCERN.
63
163000
3000
或者歐洲粒子物理研究所的大型強子對撞機沒有發生什麼事情。
03:04
To be able能夠 to make predictions預測 about the fundamental基本的 particles粒子
64
166000
2000
為了能夠對基本粒子作出預測,
03:06
we might威力 see there,
65
168000
2000
我們可能會在那兒看到的(基本粒子),
03:08
it seems似乎 that they are all facets of some strange奇怪 symmetrical對稱 shape形狀
66
170000
4000
似乎所有的小平面都有某種奇怪的對稱形狀
03:12
in a higher更高 dimensional尺寸的 space空間.
67
174000
2000
當它們在更高維的空間中時。
03:14
And I think Galileo伽利略 summed總結 up, very nicely很好,
68
176000
2000
我認為伽利略很好地概括了
03:16
the power功率 of mathematics數學
69
178000
2000
數學的力量:
03:18
to understand理解 the scientific科學 world世界 around us.
70
180000
2000
它讓我們得以了解周圍的科學世界
03:20
He wrote, "The universe宇宙 cannot不能 be read
71
182000
2000
他寫道:“我們無法閱讀宇宙,
03:22
until直到 we have learnt學到了 the language語言
72
184000
2000
除非學會它的語言,
03:24
and become成為 familiar with the characters人物 in which哪一個 it is written書面.
73
186000
3000
且熟悉其寫作特點。
03:27
It is written書面 in mathematical數學的 language語言,
74
189000
2000
它是用數學語言寫的。
03:29
and the letters are triangles三角形, circles and other geometric幾何 figures人物,
75
191000
4000
字母是三角形、圓和其他的幾何數字,
03:33
without which哪一個 means手段 it is humanly從人的角度 impossible不可能
76
195000
2000
沒有這些字母就意味著在人力所能及的範圍內是不可能
03:35
to comprehend理解 a single word."
77
197000
3000
理解任何一個字。 ”
03:38
But it's not just scientists科學家們 who are interested有興趣 in symmetry對稱.
78
200000
3000
不只是科學家們對對稱性感興趣。
03:41
Artists藝術家 too love to play around with symmetry對稱.
79
203000
3000
藝術家也喜歡擺弄對稱性。
03:44
They also have a slightly more ambiguous曖昧 relationship關係 with it.
80
206000
3000
他們與對稱性有一些更模糊的關係。
03:47
Here is Thomas托馬斯 Mann talking about symmetry對稱 in "The Magic魔法 Mountain."
81
209000
3000
這是托馬斯•曼在《魔山》中談到的對稱性。
03:50
He has a character字符 describing說明 the snowflake雪花,
82
212000
3000
他這樣描寫雪花
03:53
and he says he "shuddered打了一個寒顫 at its perfect完善 precision精確,
83
215000
3000
他說他,“因其有完美的精確度而震撼,
03:56
found發現 it deathly死一般, the very marrow骨髓 of death死亡."
84
218000
3000
發現它死亡的精髓讓他想到死亡。 ”
03:59
But what artists藝術家 like to do is to set up expectations期望
85
221000
2000
但藝術家們想要做的是樹立對對稱性的期望,
04:01
of symmetry對稱 and then break打破 them.
86
223000
2000
然後打破它們。
04:03
And a beautiful美麗 example of this
87
225000
2000
就這一點我找到了一個很好的例子,
04:05
I found發現, actually其實, when I visited參觀 a colleague同事 of mine
88
227000
2000
其實是當我拜訪我的同事
04:07
in Japan日本, Professor教授 Kurokawa黑川.
89
229000
2000
在日本的黑川紀章教授時發現的
04:09
And he took me up to the temples寺廟 in Nikko日光.
90
231000
3000
他帶我到日光市的寺廟去
04:12
And just after this photo照片 was taken採取 we walked up the stairs樓梯.
91
234000
3000
就在拍好這張照片後,我們走上樓梯,
04:15
And the gateway網關 you see behind背後
92
237000
2000
你們看到的這後面的大門
04:17
has eight columns, with beautiful美麗 symmetrical對稱 designs設計 on them.
93
239000
3000
有八根柱子,都有著漂亮的對稱性設計。
04:20
Seven of them are exactly究竟 the same相同,
94
242000
2000
其中七個是完全一樣的,
04:22
and the eighth第八 one is turned轉身 upside上邊 down.
95
244000
3000
而第八個是顛倒過來的。
04:25
And I said to Professor教授 Kurokawa黑川,
96
247000
2000
我就對黑川紀章教授說:
04:27
"Wow, the architects建築師 must必須 have really been kicking themselves他們自己
97
249000
2000
“哇,建築師們肯定自責的很
04:29
when they realized實現 that they'd他們會 made製作 a mistake錯誤 and put this one upside上邊 down."
98
251000
3000
要是他麼發現犯了這麼一個錯誤,這根柱子竟然是相反的。 ”
04:32
And he said, "No, no, no. It was a very deliberate商榷 act法案."
99
254000
3000
他說,“不,不,不。這是故意設計成這樣的。”
04:35
And he referred簡稱 me to this lovely可愛 quote引用 from the Japanese日本
100
257000
2000
他還向我提到了這個可愛的出處,來自日本
04:37
"Essays隨筆 in Idleness懶惰" from the 14th century世紀,
101
259000
3000
1 4世紀的《徒然草》
04:40
in which哪一個 the essayist散文家 wrote, "In everything,
102
262000
2000
其中,散文家寫道:“在一切事物中,
04:42
uniformity均勻性 is undesirable不可取.
103
264000
3000
一致性是不可取的。
04:45
Leaving離開 something incomplete殘缺 makes品牌 it interesting有趣,
104
267000
2000
留下一些不完整的東西會更有趣,
04:47
and gives one the feeling感覺 that there is room房間 for growth發展."
105
269000
3000
而且一致性給人一種沒有發展空間的感覺。 ”
04:50
Even when building建造 the Imperial帝國 Palace,
106
272000
2000
即使是建造皇宮時,
04:52
they always leave離開 one place地點 unfinished未完成.
107
274000
4000
他們也總是留下一個未完工的地方。
04:56
But if I had to choose選擇 one building建造 in the world世界
108
278000
3000
但如果我必須選擇這世界上的一個建築,
04:59
to be cast out on a desert沙漠 island, to live生活 the rest休息 of my life,
109
281000
3000
將其扔到一個荒島上,且我要在那裡度過餘生,
05:02
being存在 an addict癮君子 of symmetry對稱, I would probably大概 choose選擇 the Alhambra阿罕布拉 in Granada格拉納達.
110
284000
4000
作為一個對對稱性痴迷的人,我可能會選擇在格拉納達的阿爾罕布拉。
05:06
This is a palace celebrating慶祝 symmetry對稱.
111
288000
2000
這是一座歌頌對稱性的宮殿。
05:08
Recently最近 I took my family家庭 --
112
290000
2000
最近,我帶我的家人——
05:10
we do these rather kind of nerdy書呆子 mathematical數學的 trips旅行, which哪一個 my family家庭 love.
113
292000
3000
我們進行這種並沒有學術氣息的數學旅行,我的家人都很喜歡。
05:13
This is my son兒子 Tamer塔梅爾. You can see
114
295000
2000
這是我的兒子塔梅爾。你們可以看到
05:15
he's really enjoying享受 our mathematical數學的 trip to the Alhambra阿罕布拉.
115
297000
3000
他真的很喜歡我們在阿爾罕布拉的數學之旅。
05:18
But I wanted to try and enrich豐富 him.
116
300000
3000
但我想嘗試使他變得充實。
05:21
I think one of the problems問題 about school學校 mathematics數學
117
303000
2000
我認為學校教的數學存在的一個問題就是
05:23
is it doesn't look at how mathematics數學 is embedded嵌入式
118
305000
2000
它沒有關注數學是如何被運用於
05:25
in the world世界 we live生活 in.
119
307000
2000
我們所處的這個世界。
05:27
So, I wanted to open打開 his eyes眼睛 up to
120
309000
2000
所以,我想開拓他的眼界,讓他知道
05:29
how much symmetry對稱 is running賽跑 through通過 the Alhambra阿罕布拉.
121
311000
3000
阿爾罕布拉運用著多少對稱性。
05:32
You see it already已經. Immediately立即 you go in,
122
314000
2000
你們已經看到了。你一走進去,
05:34
the reflective反光 symmetry對稱 in the water.
123
316000
2000
水中有反映出對稱。
05:36
But it's on the walls牆壁 where all the exciting扣人心弦 things are happening事件.
124
318000
3000
但是,所有令人興奮的事情發生在牆壁上。
05:39
The Moorish摩爾人的 artists藝術家 were denied否認 the possibility可能性
125
321000
2000
人們否認摩爾藝術家能夠
05:41
to draw things with souls靈魂.
126
323000
2000
用靈魂來繪畫。
05:43
So they explored探討 a more geometric幾何 art藝術.
127
325000
2000
因此,他們探索出一種更加幾何化的藝術。
05:45
And so what is symmetry對稱?
128
327000
2000
那麼什麼是對稱性?
05:47
The Alhambra阿罕布拉 somehow不知何故 asks all of these questions問題.
129
329000
3000
阿爾罕布拉以某種方式提出了所有這些問題。
05:50
What is symmetry對稱? When [there] are two of these walls牆壁,
130
332000
2000
什麼是對稱性?當[那兒]有兩面牆時,
05:52
do they have the same相同 symmetries對稱性?
131
334000
2000
他們有相同的對稱性嗎?
05:54
Can we say whether是否 they discovered發現
132
336000
2000
我們可以說他們是否發現了
05:56
all of the symmetries對稱性 in the Alhambra阿罕布拉?
133
338000
3000
阿爾罕布拉所有的對稱性嗎?
05:59
And it was Galois伽羅瓦 who produced生成 a language語言
134
341000
2000
是 Galois 研製出了一種語言
06:01
to be able能夠 to answer回答 some of these questions問題.
135
343000
3000
來回答這樣的問題
06:04
For Galois伽羅瓦, symmetry對稱 -- unlike不像 for Thomas托馬斯 Mann,
136
346000
3000
對 Galois 來說,對稱性不是托馬斯曼所說的
06:07
which哪一個 was something still and deathly死一般 --
137
349000
2000
靜態的和死一般的東西
06:09
for Galois伽羅瓦, symmetry對稱 was all about motion運動.
138
351000
3000
對 Galois 來說,所有的對稱性都是關於運動的
06:12
What can you do to a symmetrical對稱 object目的,
139
354000
2000
你能對一個對稱性的物體做些什麼?
06:14
move移動 it in some way, so it looks容貌 the same相同
140
356000
2000
用某種方法移動它,讓它看起來
06:16
as before you moved移動 it?
141
358000
2000
跟你移動它之前一樣?
06:18
I like to describe描述 it as the magic魔法 trick moves移動.
142
360000
2000
我喜歡把這形容為神奇的假動作。
06:20
What can you do to something? You close your eyes眼睛.
143
362000
2000
你對一些東西可以做些什麼?閉上你的眼睛。
06:22
I do something, put it back down again.
144
364000
2000
我移動它,再把它放回到原處。
06:24
It looks容貌 like it did before it started開始.
145
366000
2000
它看起來和動之前一樣。
06:26
So, for example, the walls牆壁 in the Alhambra阿罕布拉 --
146
368000
2000
那麼,例如,阿爾罕布拉的牆壁。
06:28
I can take all of these tiles瓷磚, and fix固定 them at the yellow黃色 place地點,
147
370000
4000
我可以把所有的這些瓦片拿起來,把他們放在這個黃色的地方,
06:32
rotate迴轉 them by 90 degrees,
148
374000
2000
並把它們旋轉九十度,
06:34
put them all back down again and they fit適合 perfectly完美 down there.
149
376000
3000
再把他們都放回去,它們非常吻合。
06:37
And if you open打開 your eyes眼睛 again, you wouldn't不會 know that they'd他們會 moved移動.
150
379000
3000
如果你再睜開你的眼睛,你不會知道它們被移動過。
06:40
But it's the motion運動 that really characterizes特徵化 the symmetry對稱
151
382000
3000
但正是運動才使對稱性
06:43
inside the Alhambra阿罕布拉.
152
385000
2000
在阿爾罕布拉具有特色。
06:45
But it's also about producing生產 a language語言 to describe描述 this.
153
387000
2000
但也要創造一種語言來描繪它。
06:47
And the power功率 of mathematics數學 is often經常
154
389000
3000
數學的力量往往
06:50
to change更改 one thing into another另一個, to change更改 geometry幾何 into language語言.
155
392000
4000
把一樣東西變成另一樣,把幾何變成語言。
06:54
So I'm going to take you through通過, perhaps也許 push you a little bit mathematically數學 --
156
396000
3000
因此,我將帶你經歷,可能強加一些數學的東西給你們,
06:57
so brace支撐 yourselves你自己 --
157
399000
2000
所以撐住自己,
06:59
push you a little bit to understand理解 how this language語言 works作品,
158
401000
3000
強加一些數學的知識讓你們了解這種語言是怎麼運作的,
07:02
which哪一個 enables使 us to capture捕獲 what is symmetry對稱.
159
404000
2000
這讓我們能夠捕捉到什麼是對稱性。
07:04
So, let's take these two symmetrical對稱 objects對象 here.
160
406000
3000
那讓我們把這兩個對稱物放到這兒。
07:07
Let's take the twisted扭曲 six-pointed六尖 starfish海星.
161
409000
2000
拿這個扭曲了的六角海星來說。
07:09
What can I do to the starfish海星 which哪一個 makes品牌 it look the same相同?
162
411000
3000
我怎麼做能讓這個海星看起來和原來一樣呢?
07:12
Well, there I rotated旋轉 it by a sixth第六 of a turn,
163
414000
3000
嗯,我把它旋轉了六分之一圈,
07:15
and still it looks容貌 like it did before I started開始.
164
417000
2000
它看起來仍然跟我動過之前一樣。
07:17
I could rotate迴轉 it by a third第三 of a turn,
165
419000
3000
我可以把它旋轉三分之一圈,
07:20
or a half a turn,
166
422000
2000
或者半圈,
07:22
or put it back down on its image圖片, or two thirds三分之二 of a turn.
167
424000
3000
或將它恢復到原圖,或旋轉三分之二圈。
07:25
And a fifth第五 symmetry對稱, I can rotate迴轉 it by five sixths六分之 of a turn.
168
427000
4000
第五種對稱,我可以把它旋轉六分之五圈。
07:29
And those are things that I can do to the symmetrical對稱 object目的
169
431000
3000
這些就是我能對對稱物所做的,
07:32
that make it look like it did before I started開始.
170
434000
3000
可以讓它看起來跟我動它們之前一樣。
07:35
Now, for Galois伽羅瓦, there was actually其實 a sixth第六 symmetry對稱.
171
437000
3000
對 Galois 來說,實際上還有第六種對稱。
07:38
Can anybody任何人 think what else其他 I could do to this
172
440000
2000
大家能想到其它什麼辦法
07:40
which哪一個 would leave離開 it like I did before I started開始?
173
442000
3000
可以讓它跟我動它之前一樣?
07:43
I can't flip翻動 it because I've put a little twist on it, haven't沒有 I?
174
445000
3000
我不能翻轉它,因為我已​​經把它扭曲了一些,是吧?
07:46
It's got no reflective反光 symmetry對稱.
175
448000
2000
這樣它沒有反射對稱了。
07:48
But what I could do is just leave離開 it where it is,
176
450000
3000
但我可以做的就是把它放在原處,
07:51
pick it up, and put it down again.
177
453000
2000
把它拿起來再把它放下。
07:53
And for Galois伽羅瓦 this was like the zeroth symmetry對稱.
178
455000
3000
對 Galois 來說,這就像是第零個對稱。
07:56
Actually其實, the invention發明 of the number zero
179
458000
3000
其實,數字零的發明
07:59
was a very modern現代 concept概念, seventh第七 century世紀 A.D., by the Indians印度人.
180
461000
3000
是一個非常現代化的概念,它是公元七世紀印度人發明的。
08:02
It seems似乎 mad to talk about nothing.
181
464000
3000
談論無有感覺很瘋狂。
08:05
And this is the same相同 idea理念. This is a symmetrical對稱 --
182
467000
2000
這是同樣的概念。這是對稱的——
08:07
so everything has symmetry對稱, where you just leave離開 it where it is.
183
469000
2000
所以一切事物都有對稱性,把它放在拿起它的地方。
08:09
So, this object目的 has six symmetries對稱性.
184
471000
3000
所以這個物體有六種對稱。
08:12
And what about the triangle三角形?
185
474000
2000
那三角形呢?
08:14
Well, I can rotate迴轉 by a third第三 of a turn clockwise順時針
186
476000
4000
嗯,我可以把它順時針旋轉三分之一圈
08:18
or a third第三 of a turn anticlockwise逆時針.
187
480000
2000
或逆時針旋轉三分之一圈。
08:20
But now this has some reflectionalreflectional symmetry對稱.
188
482000
2000
但現在有反射對稱
08:22
I can reflect反映 it in the line through通過 X,
189
484000
2000
我可以在X軸上翻轉它,
08:24
or the line through通過 Y,
190
486000
2000
或在Y軸上,
08:26
or the line through通過 Z.
191
488000
2000
或在Z軸上。
08:28
Five symmetries對稱性 and then of course課程 the zeroth symmetry對稱
192
490000
3000
五種對稱,當然還有第零個對稱,
08:31
where I just pick it up and leave離開 it where it is.
193
493000
3000
我把它拿起來,放回原處。
08:34
So both of these objects對象 have six symmetries對稱性.
194
496000
3000
因此,這些物體都有六種對稱。
08:37
Now, I'm a great believer信徒 that mathematics數學 is not a spectator觀眾 sport運動,
195
499000
3000
現在,我十分相信數學不是旁觀者的運動,
08:40
and you have to do some mathematics數學
196
502000
2000
你必須做一些數學運算
08:42
in order訂購 to really understand理解 it.
197
504000
2000
才能真正理解它。
08:44
So here is a little question for you.
198
506000
2000
這兒有個小問題問問你們。
08:46
And I'm going to give a prize at the end結束 of my talk
199
508000
2000
我將在講座結束後給一個獎品
08:48
for the person who gets得到 closest最近的 to the answer回答.
200
510000
2000
給那個給出的答案最接近的人。
08:50
The Rubik's魔方 Cube立方體.
201
512000
2000
魔術方塊
08:52
How many許多 symmetries對稱性 does a Rubik's魔方 Cube立方體 have?
202
514000
3000
一個魔術方塊有多少種對稱?
08:55
How many許多 things can I do to this object目的
203
517000
2000
有多少種方法可以在動了這個物體,
08:57
and put it down so it still looks容貌 like a cube立方體?
204
519000
2000
且把它放下後它仍然看起來像一個立方體?
08:59
Okay? So I want you to think about that problem問題 as we go on,
205
521000
3000
好嗎?我希望隨著講座的繼續,你們可以想想這個問題,
09:02
and count計數 how many許多 symmetries對稱性 there are.
206
524000
2000
數數它有多少種對稱。
09:04
And there will be a prize for the person who gets得到 closest最近的 at the end結束.
207
526000
4000
講座結束後獎品會給答案最接近的人
09:08
But let's go back down to symmetries對稱性 that I got for these two objects對象.
208
530000
4000
讓我們回到這兩個物體的對稱性上。
09:12
What Galois伽羅瓦 realized實現: it isn't just the individual個人 symmetries對稱性,
209
534000
3000
Galois 意識到這不僅僅是個體的對稱性,
09:15
but how they interact相互作用 with each other
210
537000
2000
而是個體之間如何相互作用
09:17
which哪一個 really characterizes特徵化 the symmetry對稱 of an object目的.
211
539000
4000
才真正賦予了一個物體具有對稱性的特點。
09:21
If I do one magic魔法 trick move移動 followed其次 by another另一個,
212
543000
3000
如果我做一個神奇的假動作,然後再做一個,
09:24
the combination組合 is a third第三 magic魔法 trick move移動.
213
546000
2000
兩個合併起來就是第三個神奇的假動作。
09:26
And here we see Galois伽羅瓦 starting開始 to develop發展
214
548000
2000
這裡我們了解到 Glaois 開始開發
09:28
a language語言 to see the substance物質
215
550000
3000
一種語言來研究
09:31
of the things unseen看不見, the sort分類 of abstract抽象 idea理念
216
553000
2000
看不見的東西所具有的內在含義,以及
09:33
of the symmetry對稱 underlying底層 this physical物理 object目的.
217
555000
3000
物理物體中存在的對稱性的抽象的概念。
09:36
For example, what if I turn the starfish海星
218
558000
3000
例如,如果我把海星旋轉
09:39
by a sixth第六 of a turn,
219
561000
2000
六分之一圈,
09:41
and then a third第三 of a turn?
220
563000
2000
然後再轉三分之一圈會,結果會怎樣?
09:43
So I've given特定 names. The capital首都 letters, A, B, C, D, E, F,
221
565000
3000
所以我給它們取了名字。大寫的字母A、B、C、D、E、F,
09:46
are the names for the rotations旋轉.
222
568000
2000
這些名字旋轉的代號。
09:48
B, for example, rotates旋轉 the little yellow黃色 dot
223
570000
3000
例如B,旋轉小黃點,
09:51
to the B on the starfish海星. And so on.
224
573000
3000
它位於海星上的B處,諸如此類。
09:54
So what if I do B, which哪一個 is a sixth第六 of a turn,
225
576000
2000
那麼,如果我旋轉B,轉六分之一圈,
09:56
followed其次 by C, which哪一個 is a third第三 of a turn?
226
578000
3000
其次是C,轉三分之一圈?
09:59
Well let's do that. A sixth第六 of a turn,
227
581000
2000
嗯,讓我們開始。六分之一圈,
10:01
followed其次 by a third第三 of a turn,
228
583000
2000
接著是三分之一圈,
10:03
the combined結合 effect影響 is as if I had just rotated旋轉 it by half a turn in one go.
229
585000
5000
合併後的效果就像我剛剛把它一次旋轉了半圈一樣。
10:08
So the little table here records記錄
230
590000
2000
那這個小表格記載著
10:10
how the algebra代數 of these symmetries對稱性 work.
231
592000
3000
這些對稱的代數是怎麼運作的。
10:13
I do one followed其次 by another另一個, the answer回答 is
232
595000
2000
我將一個接一個的旋轉,結果就是
10:15
it's rotation迴轉 D, half a turn.
233
597000
2000
D旋轉了半圈。
10:17
What I if I did it in the other order訂購? Would it make any difference區別?
234
599000
3000
如果我按其他順序旋轉呢?會有什麼不同嗎?
10:20
Let's see. Let's do the third第三 of the turn first, and then the sixth第六 of a turn.
235
602000
4000
讓我們來看看。讓我們先旋轉三分之一圈,然後旋轉六分之一圈。
10:24
Of course課程, it doesn't make any difference區別.
236
606000
2000
當然,沒有什麼差別。
10:26
It still ends結束 up at half a turn.
237
608000
2000
結果仍然是半圈。
10:28
And there is some symmetry對稱 here in the way the symmetries對稱性 interact相互作用 with each other.
238
610000
5000
某種對稱方式是通過相互作用得到的。
10:33
But this is completely全然 different不同 to the symmetries對稱性 of the triangle三角形.
239
615000
3000
但這與三角形的對稱性是完全不同的。
10:36
Let's see what happens發生 if we do two symmetries對稱性
240
618000
2000
讓我們看看如果對三角形
10:38
with the triangle三角形, one after the other.
241
620000
2000
一個接一個的進行兩個對稱旋轉會怎樣。
10:40
Let's do a rotation迴轉 by a third第三 of a turn anticlockwise逆時針,
242
622000
3000
讓我們逆時針旋轉三分之一圈,
10:43
and reflect反映 in the line through通過 X.
243
625000
2000
然後在X軸上翻轉。
10:45
Well, the combined結合 effect影響 is as if I had just doneDONE the reflection反射 in the line through通過 Z
244
627000
4000
嗯,合併後的效果就像我剛剛以Z軸翻轉
10:49
to start開始 with.
245
631000
2000
開始一樣。
10:51
Now, let's do it in a different不同 order訂購.
246
633000
2000
現在,讓我們按不同的順序來一次。
10:53
Let's do the reflection反射 in X first,
247
635000
2000
我們先在X軸上翻轉,
10:55
followed其次 by the rotation迴轉 by a third第三 of a turn anticlockwise逆時針.
248
637000
4000
然後逆時針旋轉三分之一圈。
10:59
The combined結合 effect影響, the triangle三角形 ends結束 up somewhere某處 completely全然 different不同.
249
641000
3000
合併後的效果是三角形停的地方完全不同。
11:02
It's as if it was reflected反射的 in the line through通過 Y.
250
644000
3000
就像是在Y軸上翻轉了一樣。
11:05
Now it matters事項 what order訂購 you do the operations操作 in.
251
647000
3000
現在看來這與你操作它的順序有關。
11:08
And this enables使 us to distinguish區分
252
650000
2000
這使我們能夠區分
11:10
why the symmetries對稱性 of these objects對象 --
253
652000
2000
為什麼這些物體的對稱性
11:12
they both have six symmetries對稱性. So why shouldn't不能 we say
254
654000
2000
都有六個。那麼,為什麼我們不能說
11:14
they have the same相同 symmetries對稱性?
255
656000
2000
它們有相同的對稱性呢?
11:16
But the way the symmetries對稱性 interact相互作用
256
658000
2000
但對稱相互作用的方式
11:18
enable啟用 us -- we've我們已經 now got a language語言
257
660000
2000
使我們——我們現在已經有一種語言
11:20
to distinguish區分 why these symmetries對稱性 are fundamentally從根本上 different不同.
258
662000
3000
來區分為什麼這些對稱在根本上是不同的。
11:23
And you can try this when you go down to the pub酒館, later後來 on.
259
665000
3000
你也可以嘗試一下,當你去酒吧時,以後去的時候。
11:26
Take a beer啤酒 mat and rotate迴轉 it by a quarter25美分硬幣 of a turn,
260
668000
3000
拿一個啤酒墊,把它旋轉四分之一圈,
11:29
then flip翻動 it. And then do it in the other order訂購,
261
671000
2000
然後翻轉它。然後再按其它順序做,
11:31
and the picture圖片 will be facing面對 in the opposite對面 direction方向.
262
673000
4000
酒墊上的圖將是朝反方向面對你的。
11:35
Now, Galois伽羅瓦 produced生成 some laws法律 for how these tables -- how symmetries對稱性 interact相互作用.
263
677000
4000
Galois 為這些表格以及對稱性如何相互作用研究出了一些定律。
11:39
It's almost幾乎 like little Sudoku數獨 tables.
264
681000
2000
這像一個小數獨表。
11:41
You don't see any symmetry對稱 twice兩次
265
683000
2000
你看不到任何重複的對稱
11:43
in any row or column.
266
685000
2000
出現在任何一欄或一行中。
11:45
And, using運用 those rules規則, he was able能夠 to say
267
687000
4000
通過運用那些定律,他可以說
11:49
that there are in fact事實 only two objects對象
268
691000
2000
事實上只有兩個物體
11:51
with six symmetries對稱性.
269
693000
2000
有六個對稱。
11:53
And they'll他們會 be the same相同 as the symmetries對稱性 of the triangle三角形,
270
695000
3000
而且這六個對稱將和三角形的對稱,
11:56
or the symmetries對稱性 of the six-pointed六尖 starfish海星.
271
698000
2000
或六角海星的對稱是一樣的。
11:58
I think this is an amazing驚人 development發展.
272
700000
2000
我覺得這是一個驚人的發展。
12:00
It's almost幾乎 like the concept概念 of number being存在 developed發達 for symmetry對稱.
273
702000
4000
它幾乎是為了對稱而研製的數的概念。
12:04
In the front面前 here, I've got one, two, three people
274
706000
2000
在這前面,我請一、二、三個人
12:06
sitting坐在 on one, two, three chairs椅子.
275
708000
2000
坐在一、二、三把椅子上。
12:08
The people and the chairs椅子 are very different不同,
276
710000
3000
坐在椅子上的人都不一樣,
12:11
but the number, the abstract抽象 idea理念 of the number, is the same相同.
277
713000
3000
但是數字,數字的抽象的觀念,都是一樣的。
12:14
And we can see this now: we go back to the walls牆壁 in the Alhambra阿罕布拉.
278
716000
3000
現在我們可以看到這個:我們回到阿爾罕布拉的牆壁。
12:17
Here are two very different不同 walls牆壁,
279
719000
2000
這有兩面很不一樣的牆壁,
12:19
very different不同 geometric幾何 pictures圖片.
280
721000
2000
很不相同的幾何圖片。
12:21
But, using運用 the language語言 of Galois伽羅瓦,
281
723000
2000
但是,利用 Galois 的語言
12:23
we can understand理解 that the underlying底層 abstract抽象 symmetries對稱性 of these things
282
725000
3000
我們可以知道這些東西含有的抽象的對稱
12:26
are actually其實 the same相同.
283
728000
2000
實際上是相同的。
12:28
For example, let's take this beautiful美麗 wall
284
730000
2000
例如,讓我們把這面漂亮的牆
12:30
with the triangles三角形 with a little twist on them.
285
732000
3000
和三角形稍微扭曲一下。
12:33
You can rotate迴轉 them by a sixth第六 of a turn
286
735000
2000
你可以把它們旋轉六分之一圈,
12:35
if you ignore忽視 the colors顏色. We're not matching匹配 up the colors顏色.
287
737000
2000
如果忽略他們的顏色。我們不是在做顏色配對
12:37
But the shapes形狀 match比賽 up if I rotate迴轉 by a sixth第六 of a turn
288
739000
3000
而是在形狀配對,如果我把他們旋轉六分之一圈,
12:40
around the point where all the triangles三角形 meet遇到.
289
742000
3000
圍繞著所有三角形交彙的一點旋轉。
12:43
What about the center中央 of a triangle三角形? I can rotate迴轉
290
745000
2000
三角形的中心會怎麼樣?我可以
12:45
by a third第三 of a turn around the center中央 of the triangle三角形,
291
747000
2000
圍繞著三角形的中心把他們旋轉三分之一圈,
12:47
and everything matches火柴 up.
292
749000
2000
那麼一切就都對上了。
12:49
And then there is an interesting有趣 place地點 halfway along沿 an edge邊緣,
293
751000
2000
這兒有個有趣的地方,沿著邊的一半
12:51
where I can rotate迴轉 by 180 degrees.
294
753000
2000
我可以把它旋轉180度。
12:53
And all the tiles瓷磚 match比賽 up again.
295
755000
3000
那麼所有的瓦片又重新匹配了。
12:56
So rotate迴轉 along沿 halfway along沿 the edge邊緣, and they all match比賽 up.
296
758000
3000
所以,沿著邊的一半旋轉,那麼他們都能配合上。
12:59
Now, let's move移動 to the very different-looking不同的前瞻性 wall in the Alhambra阿罕布拉.
297
761000
4000
現在,讓我們移動阿爾罕布拉的一面外觀非常不一樣的牆。
13:03
And we find the same相同 symmetries對稱性 here, and the same相同 interaction相互作用.
298
765000
3000
我們在這兒發現同樣的對稱性和同樣的相互作用。
13:06
So, there was a sixth第六 of a turn. A third第三 of a turn where the Z pieces meet遇到.
299
768000
5000
那麼是轉了六分之一轉。轉了三分之一圈時第Z片交會
13:11
And the half a turn is halfway between之間 the six pointed stars明星.
300
773000
4000
旋轉半圈時離六角星交會還有一半。
13:15
And although雖然 these walls牆壁 look very different不同,
301
777000
2000
儘管這些牆壁看起來非常不同,
13:17
Galois伽羅瓦 has produced生成 a language語言 to say
302
779000
3000
Galois 研製出一種語言說,
13:20
that in fact事實 the symmetries對稱性 underlying底層 these are exactly究竟 the same相同.
303
782000
3000
其實這些東西所具有的對稱性是完全相同的。
13:23
And it's a symmetry對稱 we call 6-3-2.
304
785000
3000
這個對稱性我們稱之為6-3-2。
13:26
Here is another另一個 example in the Alhambra阿罕布拉.
305
788000
2000
另一個阿爾罕布拉的例子。
13:28
This is a wall, a ceiling天花板, and a floor地板.
306
790000
3000
這是一面牆、天花板和地板。
13:31
They all look very different不同. But this language語言 allows允許 us to say
307
793000
3000
它們都看起來都非常不一樣。但是,這種語言讓我們可以說
13:34
that they are representations交涉 of the same相同 symmetrical對稱 abstract抽象 object目的,
308
796000
4000
它們是相同的對稱的抽象物體,
13:38
which哪一個 we call 4-4-2. Nothing to do with football足球,
309
800000
2000
我們稱之為4-4-2。這與足球毫無關係,
13:40
but because of the fact事實 that there are two places地方 where you can rotate迴轉
310
802000
3000
而是因為他們都有兩個你可以旋轉
13:43
by a quarter25美分硬幣 of a turn, and one by half a turn.
311
805000
4000
四分之一圈和二分之一圈的地方。
13:47
Now, this power功率 of the language語言 is even more,
312
809000
2000
現在,這種語言的力量更加強大,
13:49
because Galois伽羅瓦 can say,
313
811000
2000
因為 Galois 可能會說,
13:51
"Did the Moorish摩爾人的 artists藝術家 discover發現 all of the possible可能 symmetries對稱性
314
813000
3000
“摩爾藝術家發現了阿爾罕布拉牆上所有可能對稱的
13:54
on the walls牆壁 in the Alhambra阿罕布拉?"
315
816000
2000
地方了嗎? ”
13:56
And it turns out they almost幾乎 did.
316
818000
2000
結果是他們幾乎都發現了。
13:58
You can prove證明, using運用 Galois'伽羅華“ language語言,
317
820000
2000
你可以用伽羅瓦的語言來證明,
14:00
there are actually其實 only 17
318
822000
2000
實際上只有17種
14:02
different不同 symmetries對稱性 that you can do in the walls牆壁 in the Alhambra阿罕布拉.
319
824000
4000
可以在阿爾罕布拉的牆上得到的不同的對稱。
14:06
And they, if you try to produce生產 a different不同 wall with this 18th one,
320
828000
3000
而且他們,如果你嘗試研製出第18面不同的牆壁,
14:09
it will have to have the same相同 symmetries對稱性 as one of these 17.
321
831000
5000
這面牆肯定與17種對稱中的一種對稱是相同的。
14:14
But these are things that we can see.
322
836000
2000
但這些都是我們可以看到的。
14:16
And the power功率 of Galois'伽羅華“ mathematical數學的 language語言
323
838000
2000
而 Galois 的數學語言的力量
14:18
is it also allows允許 us to create創建
324
840000
2000
也讓我們能
14:20
symmetrical對稱 objects對象 in the unseen看不見 world世界,
325
842000
3000
在看不見的世界裡創造對稱的物體,
14:23
beyond the two-dimensional二維, three-dimensional三維,
326
845000
2000
超越二維、三維,
14:25
all the way through通過 to the four-四- or five-五- or infinite-dimensional無窮維 space空間.
327
847000
3000
全都向四維或五維或無窮維空間發展。
14:28
And that's where I work. I create創建
328
850000
2000
而這正是我在研究的東西。我創建
14:30
mathematical數學的 objects對象, symmetrical對稱 objects對象,
329
852000
2000
數學對象和對稱物體,
14:32
using運用 Galois'伽羅華“ language語言,
330
854000
2000
通過運用 Galois 的語言
14:34
in very high dimensional尺寸的 spaces空間.
331
856000
2000
在非常高維的空間裡創建。
14:36
So I think it's a great example of things unseen看不見,
332
858000
2000
因此,我認為這是個對於看不見的東西的很好的例子,
14:38
which哪一個 the power功率 of mathematical數學的 language語言 allows允許 you to create創建.
333
860000
4000
數學語言的力量讓你可以創建出來。
14:42
So, like Galois伽羅瓦, I stayed up all last night
334
864000
2000
因此,像 Glaois 一樣,我昨晚徹夜未眠
14:44
creating創建 a new mathematical數學的 symmetrical對稱 object目的 for you,
335
866000
4000
為你們建立了一個新的數學對稱物。
14:48
and I've got a picture圖片 of it here.
336
870000
2000
我這兒有一張它的照片。
14:50
Well, unfortunately不幸 it isn't really a picture圖片. If I could have my board
337
872000
3000
但是,可惜的是它不是一張真正的照片。我可以把我的圖板
14:53
at the side here, great, excellent優秀.
338
875000
2000
放在這邊嗎?很好,非常好。
14:55
Here we are. Unfortunately不幸, I can't show顯示 you
339
877000
2000
這兒。可惜的是我無法向你們展示
14:57
a picture圖片 of this symmetrical對稱 object目的.
340
879000
2000
這個對稱物的照片。
14:59
But here is the language語言 which哪一個 describes介紹
341
881000
3000
但這兒有語言能描繪
15:02
how the symmetries對稱性 interact相互作用.
342
884000
2000
其對稱性怎麼相互作用的。
15:04
Now, this new symmetrical對稱 object目的
343
886000
2000
現在這個新的對稱物
15:06
does not have a name名稱 yet然而.
344
888000
2000
還沒有名字。
15:08
Now, people like getting得到 their names on things,
345
890000
2000
就像人們給東西命名一樣,
15:10
on craters隕石坑 on the moon月亮
346
892000
2000
給月球上的隕石坑命名,
15:12
or new species種類 of animals動物.
347
894000
2000
或給新動物品種命名一樣。
15:14
So I'm going to give you the chance機會 to get your name名稱 on a new symmetrical對稱 object目的
348
896000
4000
所以我想給你們機會來給新的對稱物命名,
15:18
which哪一個 hasn't有沒有 been named命名 before.
349
900000
2000
以前沒有給它取過名字。
15:20
And this thing -- species種類 die away,
350
902000
2000
而且這個東西——物種會逐漸消失,
15:22
and moons月亮 kind of get hit擊中 by meteors流星 and explode爆炸 --
351
904000
3000
月球可能會被隕石撞擊並發生爆炸——
15:25
but this mathematical數學的 object目的 will live生活 forever永遠.
352
907000
2000
但是這個數學物體將長存於世。
15:27
It will make you immortal不朽.
353
909000
2000
它將使你不朽。
15:29
In order訂購 to win贏得 this symmetrical對稱 object目的,
354
911000
3000
為了贏得這個對稱物,
15:32
what you have to do is to answer回答 the question I asked you at the beginning開始.
355
914000
3000
你所要做的就是回答我在一開始問的問題。
15:35
How many許多 symmetries對稱性 does a Rubik's魔方 Cube立方體 have?
356
917000
4000
魔術方塊有多少種對稱呢?
15:39
Okay, I'm going to sort分類 you out.
357
921000
2000
好吧,我來給你們整理一下。
15:41
Rather than you all shouting叫喊 out, I want you to count計數 how many許多 digits數字 there are
358
923000
3000
而不是大家都喊出來,我想讓你們數數有多少位數字
15:44
in that number. Okay?
359
926000
2000
在那個答案裡。好嗎?
15:46
If you've got it as a factorial階乘, you've got to expand擴大 the factorials階乘.
360
928000
3000
如果你得出的結果是一個階乘,那麼你要擴大它的階乘。
15:49
Okay, now if you want to play,
361
931000
2000
好了,現在如果你想參與,
15:51
I want you to stand up, okay?
362
933000
2000
我希望你能站起來,好嗎?
15:53
If you think you've got an estimate估計 for how many許多 digits數字,
363
935000
2000
如果你認為你已經估計出了它有多少位數字,
15:55
right -- we've我們已經 already已經 got one competitor競爭者 here.
364
937000
3000
好的——我們在這兒已經有了一位參賽者——
15:58
If you all stay down he wins it automatically自動.
365
940000
2000
如果你們都繼續坐著,那麼他就自動贏了。
16:00
Okay. Excellent優秀. So we've我們已經 got four here, five, six.
366
942000
3000
好的。很好。我們已經有四位、五位、六位。
16:03
Great. Excellent優秀. That should get us going. All right.
367
945000
5000
很好。太好了。讓我們繼續。好了。
16:08
Anybody任何人 with five or less digits數字, you've got to sit down,
368
950000
3000
你們中有人的答案是等於或少於五位數的,那你得坐下了。
16:11
because you've underestimated低估.
369
953000
2000
因為你們估計少了。
16:13
Five or less digits數字. So, if you're in the tens of thousands數千 you've got to sit down.
370
955000
4000
五位數或更少的。那麼,如果你的答案是幾萬的話,你得坐下。
16:17
60 digits數字 or more, you've got to sit down.
371
959000
3000
六十或六十多位數的,你必須坐下。
16:20
You've overestimated高估.
372
962000
2000
你估計得多了。
16:22
20 digits數字 or less, sit down.
373
964000
4000
二十位數或二十位以下的,坐下。
16:26
How many許多 digits數字 are there in your number?
374
968000
5000
你的答案是幾位數?
16:31
Two? So you should have satSAT down earlier.
375
973000
2000
兩個?那你早就該坐下了。
16:33
(Laughter笑聲)
376
975000
1000
(大笑)
16:34
Let's have the other ones那些, who satSAT down during the 20, up again. Okay?
377
976000
4000
讓我們再來問問其他人,誰估計的是二十位的,請再次站起來,好嗎?
16:38
If I told you 20 or less, stand up.
378
980000
2000
如果我告訴你是二十位或二十位以下,請站起來。
16:40
Because this one. I think there were a few少數 here.
379
982000
2000
因為這一個。我想應該有一些人。
16:42
The people who just last satSAT down.
380
984000
3000
誰是最後一個坐下去的。
16:45
Okay, how many許多 digits數字 do you have in your number?
381
987000
5000
好的,你的答案是多少位數?
16:50
(Laughs)
382
992000
3000
(笑)
16:53
21. Okay good. How many許多 do you have in yours你的?
383
995000
2000
21。好的,很好。你的是多少位?
16:55
18. So it goes to this lady淑女 here.
384
997000
3000
18。那麼是這位女士贏了。
16:58
21 is the closest最近的.
385
1000000
2000
21是最接近的。
17:00
It actually其實 has -- the number of symmetries對稱性 in the Rubik's魔方 cube立方體
386
1002000
2000
實際上,魔術方塊對稱種數的答案
17:02
has 25 digits數字.
387
1004000
2000
有25位數字。
17:04
So now I need to name名稱 this object目的.
388
1006000
2000
那麼現在我需要給這個物體命名。
17:06
So, what is your name名稱?
389
1008000
2000
嗯,你叫什麼名字?
17:08
I need your surname. Symmetrical對稱 objects對象 generally通常 --
390
1010000
3000
我需要你的姓氏。對稱的物體一般——
17:11
spell拼寫 it for me.
391
1013000
2000
為我拼寫一下。
17:13
G-H-E-ZGHEZ
392
1015000
7000
G-H-E-Z
17:20
No, SO2 has already已經 been used, actually其實,
393
1022000
2000
不,SO2已經用過了,其實,
17:22
in the mathematical數學的 language語言. So you can't have that one.
394
1024000
2000
在數學語言裡。你不能用那個名字。
17:24
So GhezGHEZ, there we go. That's your new symmetrical對稱 object目的.
395
1026000
2000
Ghez,就是這個名字啦。這是你的新的對稱物。
17:26
You are now immortal不朽.
396
1028000
2000
你現在是不朽的了。
17:28
(Applause掌聲)
397
1030000
6000
(鼓掌)
17:34
And if you'd like your own擁有 symmetrical對稱 object目的,
398
1036000
2000
而且,如果你想用你自己的對稱物,
17:36
I have a project項目 raising提高 money for a charity慈善機構 in Guatemala危地馬拉,
399
1038000
3000
我有一個項目,是為在瓜地馬拉的慈善籌錢的,
17:39
where I will stay up all night and devise設計 an object目的 for you,
400
1041000
3000
我可以熬夜為你發明一個物體,
17:42
for a donation捐款 to this charity慈善機構 to help kids孩子 get into education教育 in Guatemala危地馬拉.
401
1044000
4000
讓你可以為慈善捐款來幫助瓜地馬拉的孩子們,讓他們能接受教育。
17:46
And I think what drives驅動器 me, as a mathematician數學家,
402
1048000
3000
我認為,作為一個數學家,
17:49
are those things which哪一個 are not seen看到, the things that we haven't沒有 discovered發現.
403
1051000
4000
給我動力的是那些看不到的東西,是我們還未發現的東西。
17:53
It's all the unanswered懸而未決 questions問題 which哪一個 make mathematics數學 a living活的 subject學科.
404
1055000
4000
它們都是懸而未決的問題,這使數學繼續活著
17:57
And I will always come back to this quote引用 from the Japanese日本 "Essays隨筆 in Idleness懶惰":
405
1059000
3000
我常常想起引自日本《徒然草》中的這句話:
18:00
"In everything, uniformity均勻性 is undesirable不可取.
406
1062000
3000
“在一切事物中,一致性是不可取的。
18:03
Leaving離開 something incomplete殘缺 makes品牌 it interesting有趣,
407
1065000
3000
留下若干不完整,會更有趣,
18:06
and gives one the feeling感覺 that there is room房間 for growth發展." Thank you.
408
1068000
3000
並給予一種仍有發展空間的感覺。 ”謝謝。
18:09
(Applause掌聲)
409
1071000
7000
(掌聲)
Translated by Coco Shen
Reviewed by Geoff Chen

▲Back to top

ABOUT THE SPEAKER
Marcus du Sautoy - Mathematician
Oxford's newest science ambassador Marcus du Sautoy is also author of The Times' Sexy Maths column. He'll take you footballing with prime numbers, whopping symmetry groups, higher dimensions and other brow-furrowers.

Why you should listen

Marcus du Sautoy only permits prime numbers on the uniforms of his football team, but that idiosyncrasy isn't (entirely) driven by superstition -- just pure love. (His number is 17.) You might say primes, "the atoms of mathematics," as he calls them, are du Sautoy's intellectual spouse, the passion that has driven him from humble-enough academic beginnings to a spectacular and awarded career in maths, including a Royal Society fellowship and, of course, his recent election to the Simonyi Professorship for the Public Understanding of Science, the post previously held by Richard Dawkins.

A gifted science communicator -- interesting fashion sense aside -- du Sautoy has most recently been host of the BBC miniseries "The Story of Maths," which explores fascinating mathematical theories and techniques from throughout history and across cultures. Before that, he hosted The Num8er My5teries, a lecture series on history's stubbornest math problems -- the sorts of conundrums that get your head griddle-hot with thinking. He's also author, perhaps most famously, of The Music of the Primes, an engaging look at the often Pyrrhic attempts at cracking the Riemann Hypothesis. His 2008 book, Symmetry: A Journey into the Patterns of Nature, looks at various kinds of mathematical and aesthetic symmetry, including a massive, mysterious object called "the Monster" that exists in 196,883 dimensions.

More profile about the speaker
Marcus du Sautoy | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee