Joseph DeSimone: What if 3D printing was 100x faster?
Džo Desimon (Joe DeSimone): Šta kada bi 3D štampanje bilo 100 puta brže?
The CEO of Carbon3D, Joseph DeSimone has made breakthrough contributions to the field of 3D printing. Full bio
Double-click the English transcript below to play the video.
we've been working on
na čemu radimo
of additive manufacturing,
but it's quite complex at the same time.
ali je u isto vreme kompleksan.
geodesic structures
geodezijskih struktura
by traditional manufacturing techniques.
proizvesti tradicionalnim tehnikama.
that you can't injection mold it.
dobiti ubrizgavanjem u kalup.
through milling.
izradom na glodalici.
three and 10 hours to fabricate it,
između tri i deset sati da ga naprave,
to try to fabricate it onstage
da ga napravimo na sceni
over and over again,
iznova i iznova
associated with 2D printing.
povezane sa 2D štampanjem.
lay down ink on a page to make letters,
na list stavite mastilo da dobijete slova,
to build up a three-dimensional object.
kako bi se dobio trodimenzionalni objekat.
kako bi se uradilo isto to,
the same sort of thing,
and integrated circuits
i integrisana kola
a material scientist too,
materijalni naučnik
are also material scientists,
materijalni naučnici,
interested in 3D printing.
3D štampanje.
new ideas are often simple connections
jednostavne veze
in different communities,
iz različitih zajednica,
operate in this fashion,
ne bi ovako funkcionisao,
arise out of a puddle
to actually try to get this to work?
da nateramo ovo da radi?
if we could do this,
ako bismo mogli da uradimo ovo,
the three issues holding back 3D printing
tri problema koja sputavaju 3D štampanje
than 3D printed parts. (Laughter)
od delova koji se štampaju u 3D. (Smeh)
in mechanical properties,
u mehaničkim svojstvima
we could eliminate those defects.
mogli bismo i da uklonimo te defekte.
we could also start using materials
mogli bismo da počnemo da koristimo
and we could have amazing properties.
mogli bismo da imamo neverovatna svojstva.
imitate Hollywood,
da imitiramo Holivud,
some standard knowledge
neka osnovna znanja
to grow parts continuously.
da neprestano "uzgajamo" delove.
na različite načine.
and convert it to a solid,
u čvrstu materiju,
are polar opposites from one another
polarno suprotni
the light and oxygen,
svetlost i kiseonik,
[Continuous Liquid Interface Production.]
[Produkcija stalnog interfejsa tečnosti]
that holds the puddle,
is a special window.
that will lower into the puddle
koja se spušta u baricu
is a digital light projection system
za digitalnu projekciju svetla
in the ultraviolet region.
u ultraljubičastom regionu.
in the bottom of this reservoir,
na dnu rezervoara,
it's a very special window.
i veoma poseban prozor.
but it's permeable to oxygen.
već je i propustljiv na kiseonik.
like a contact lens.
as you lower a stage in there,
with an oxygen-impermeable window,
sa prozorom kroz koji prodire kiseonik,
with a traditional window,
sa tradicionanim prozorom,
the next layer, you have to separate it,
morate da ga odvojite,
iznova i iznova.
with oxygen coming through the bottom
of tens of microns thick,
desetina mikrona,
of a red blood cell,
crvenog krvnog zrnca,
that remains a liquid,
koji ostaje u tečnom stanju
we can change the dead zone thickness.
možemo da menjamo debljinu mrtve zone.
that we control: oxygen content,
koje kontrolišemo: sadržaj kiseonika,
the dose to cure,
doza koju treba osušiti,
to control this process.
da bismo kontrolisali ovaj proces.
than traditional 3D printers,
od tradicionalnih 3D štampača,
to deliver liquid to that interface,
dostavljanja tečnosti na interfejs,
for generating a lot of heat,
za stvaranje dosta toplote,
I get very excited at heat transfer
zbog prenosa toplote
have water-cooled 3D printers,
3D štampače sa vodenim hlađenjem
we eliminate the layers,
eliminišu se slojevi
na molekularnom nivou.
of most parts made in a 3D printer
koji su nastali u 3D štampaču
that depend on the orientation
koji zavise od pravca
because of the layer-like structure.
zbog strukture nalik na slojeve.
with the print direction.
nastali ubacivanjem u kalupe,
than traditional 3D manufacturing.
od tradicionalnog 3D štampanja.
chemistry textbook at this,
that can give rise to the properties
koje mogu da dovedu do izražaja
u 3D odštampanom proizvodu.
like this won't work onstage, right?
neće raditi na sceni, zar ne?
with great mechanical properties.
sa sjajnim mehaničkim svojstvima.
or high dampening.
or great sneakers, for example.
ili odlične patike, na primer.
that have incredible strength,
sa neverovatnom snagom,
really strong materials,
zaista snažne materijale,
if you actually make a part
da ako zapravo napravite deo
to be a final part,
what happens is,
in digital manufacturing.
u digitalnoj proizvodnji.
to a prototype to manufacturing.
na prototip, pa na proizvodnju.
right at prototype,
odmah kod prototipa
all the way to manufacturing
the properties to be a final part.
da bude konačni deo.
to prototyping to manufacturing,
do proizvodnje,
really opens up all sorts of things,
za mnogo toga,
dealing with great lattice properties
gde se radi o boljim svojstvima rešetke
all sorts of wonderful things.
mnogo divnih stvari.
in an emergency situation,
u hitnoj situaciji,
a stent out of the shelf
for you, for your own anatomy
za vašu anatomiju
in real time out of the properties
u stvarnom vremenu od svojstava
after 18 months: really-game changing.
nakon 18 meseci - zaista revolucionarno.
these kinds of structures
i pravljenje ovakvih struktura
that my students are making
ja i moji učenici
na mikro skali.
at nano-fabrication.
from 10 microns and below.
do nivoa od 10 mikrona i ispod.
from 10 microns to 1,000 microns,
napraviti stvari od 10 do 1000 mikrona,
from the silicon industry
iz industrije silikona
up from the bottom
od samog početka
in tens of seconds,
za desetine sekundi,
really game-changing stuff.
zaista revolucionarne stvari.
a part in real time
stvara deo
because this really is owning
jer je ovo zaista posedovanje
software and molecular science,
i molekularne nauke
and engineers around the world
šta će sa ovom alatkom moći da urade
with this great tool.
ABOUT THE SPEAKER
Joseph DeSimone - Chemist, inventorThe CEO of Carbon3D, Joseph DeSimone has made breakthrough contributions to the field of 3D printing.
Why you should listen
Joseph DeSimone is a scholar, inventor and serial entrepreneur. A longtime professor at UNC-Chapel Hill, he's taken leave to become the CEO at Carbon3D, the Silicon Valley 3D printing company he co-founded in 2013. DeSimone, an innovative polymer chemist, has made breakthrough contributions in fluoropolymer synthesis, colloid science, nano-biomaterials, green chemistry and most recently 3D printing. His company's Continuous Liquid Interface Production (CLIP) suggests a breakthrough way to make 3D parts.
Read the paper in Science. Authors: John R. Tumbleston, David Shirvanyants, , Nikita Ermoshkin, Rima Janusziewicz, Ashley R. Johnson, David Kelly, Kai Chen, Robert Pinschmidt, Jason P. Rolland, Alexander Ermoshkin, Edward T. Samulsk.
DeSimone is one of less than twenty individuals who have been elected to all three branches of the National Academies: Institute of Medicine (2014), National Academy of Sciences (2012) and the National Academy of Engineering (2005), and in 2008 he won the $500,000 Lemelson-MIT Prize for Invention and Innovation. He's the co-founder of several companies, including Micell Technologies, Bioabsorbable Vascular Solutions, Liquidia Technologies and Carbon3D.
Joseph DeSimone | Speaker | TED.com