ABOUT THE SPEAKER
Miguel Nicolelis - Neuroscientist
Miguel Nicolelis explores the limits of the brain-machine interface.

Why you should listen

At the Nicolelis Laboratory at Duke University, Miguel Nicolelis is best known for pioneering studies in neuronal population coding, Brain Machine Interfaces (BMI) and neuroprosthetics in human patients and non-human primates.His lab's work was seen, famously though a bit too briefly, when a brain-controlled exoskeleton from his lab helped Juliano Pinto, a paraplegic man, kick the first ball at the 2014 World Cup.

But his lab is thinking even bigger. They've developed an integrative approach to studying neurological disorders, including Parkinsons disease and epilepsy. The approach, they hope, will allow the integration of molecular, cellular, systems and behavioral data in the same animal, producing a more complete understanding of the nature of the neurophysiological alterations associated with these disorders. He's the author of the books Beyond Boundaries and The Relativistic Brain.

Miguel was honored as one of Foreign Policy's 2015 Global Thinkers.

More profile about the speaker
Miguel Nicolelis | Speaker | TED.com
TEDMED 2012

Miguel Nicolelis: A monkey that controls a robot with its thoughts. No, really.

Miguel Nicolelis: Nyani anayethibiti roboti akitumia fikra. Ukweli mtupu.

Filmed:
1,315,130 views

Tunaweza kutumia akili zetu kuthibiti mashine--bila kutumia mwili kama kiegezo? Miguel Nicolelis anazungumza kuhusu jaribio la kushangaza, ambalo nyani mwerevu huko Marekani alijifunza kuthibiti mashine, na pia mkono wa roboti huko Ujapani, kwa njia ya fikra tu. Jaribio hili lina athari kubwa kwa walemavu--na labda kwa sisi sote. (Filamu ilitengenezwa TEDMED 2012.)
- Neuroscientist
Miguel Nicolelis explores the limits of the brain-machine interface. Full bio

Double-click the English transcript below to play the video.

00:16
The kindaina of neuroscienceneuroscience that I do and my colleagueswenzake do
0
330
2851
Hii sayansi ya ubongo ninayofanya na wenzangu
00:19
is almostkaribu like the weathermanweatherman.
1
3181
2166
ni kama mtabiri wa hali ya hewa.
00:21
We are always chasingkukimbiza stormsdhoruba.
2
5347
3516
Tunakimbizana na dhoruba kila wakati.
00:24
We want to see and measurekupima stormsdhoruba -- brainstormskuzingatia, that is.
3
8863
4883
Tunataka kuona na kupima dhoruba--namaanisha dhoruba za ubongo.
00:29
And we all talk about brainstormskuzingatia in our dailykila siku livesanaishi,
4
13746
2768
Sisi sote huongea kuhusu dhoruba za ubongo maishani mwetu
00:32
but we rarelymara chache see or listen to one.
5
16514
3450
lakini ni nadra kuona au kuisikia mojawapo.
00:35
So I always like to startkuanza these talksmazungumzo
6
19964
1634
Hivyo basi mimi hupenda kuanza mazungumzo haya
00:37
by actuallykwa kweli introducingkuanzisha you to one of them.
7
21598
2982
kwa kuwatambulisheni kwa mojawapo.
00:40
ActuallyKweli, the first time we recordedkumbukumbu more than one neuronneuron --
8
24580
3427
Kusema kweli, mara yetu ya kwanza kupima zaidi ya neuron moja--
00:43
a hundredmia brainubongo cellsseli simultaneouslywakati huo huo --
9
28007
2223
seli za ubongo mia moja kwa wakati mmoja--
00:46
we could measurekupima the electricalumeme sparkscheche
10
30230
2469
tungeweza pima cheche za umeme
00:48
of a hundredmia cellsseli in the samesawa animalmnyama,
11
32699
2680
za seli mia moja kutoka kwa mnyama mmoja,
00:51
this is the first imagepicha we got,
12
35379
1802
hii ndio picha ya kwanza tuliyopata,
00:53
the first 10 secondssekunde of this recordingkurekodi.
13
37181
2315
sekunde kumi za kwanza za rekodi hii.
00:55
So we got a little snippetsnippet of a thought,
14
39496
3351
Sasa tukajaribu kufikiria,
00:58
and we could see it in frontmbele of us.
15
42847
2905
na tukaweza kuiona mbele yetu.
01:01
I always tell the studentswanafunzi
16
45752
1012
mimi huwaambia wanafunzi
01:02
that we could alsopia call neuroscientistsneuroscientists some sortfanya of astronomerastronomer,
17
46764
4106
kuwa tunaweza waita wanasayansi wa ubongo kama pia wataalam wa anga,
01:06
because we are dealingkushughulika with a systemmfumo
18
50870
1626
kwa sababu tunakabiliana na mfumo
01:08
that is only comparablekulinganishwa in termsmaneno of numbernambari of cellsseli
19
52496
2917
ambao unalingana kwa ncha ya nambari ya viini
01:11
to the numbernambari of galaxiesgalaxies that we have in the universeulimwengu.
20
55413
2936
na nambari za galaksi tulizo nazo ulimwenguni.
01:14
And here we are, out of billionsmabilioni of neuronsneurons,
21
58349
3030
Kwa hivyo hapa ndipo tulipo, katika mabilioni ya neuroni,
01:17
just recordingkurekodi, 10 yearsmiaka agoiliyopita, a hundredmia.
22
61379
2818
tukirekodi tu, miaka kumi iliyopita, alafu mia moja.
01:20
We are doing a thousandelfu now.
23
64197
1583
Sasa hivi tunarekodi hadi miaka elfu moja.
01:21
And we hopetumaini to understandkuelewa something fundamentalmsingi about our humanbinadamu natureasili.
24
65780
5400
Na tunatumai kuelewa cha msingi kuhusu asili yetu ya kibinadamu.
01:27
Because, if you don't know yetbado,
25
71180
1932
Kwa sababu, kama bado hujui,
01:29
everything that we use to definekufafanua what humanbinadamu natureasili is comesinakuja from these stormsdhoruba,
26
73112
5250
kila kitu tunachotumia kutambua asili ya binadamu kimetoka katika dhoruba hizi,
01:34
comesinakuja from these stormsdhoruba that rollroll over the hillsmilima and valleysmabonde of our brainsakili
27
78362
4651
katika dhoruba zishukazo kutoka milima na mabonde ya akili zetu
01:38
and definekufafanua our memorieskumbukumbu, our beliefsimani,
28
83013
3885
na ambazo zinaeleza kumbukumbu zetu, imani zetu,
01:42
our feelingshisia, our plansmipango for the futurebaadaye.
29
86898
2700
hisia zetu, mipango yetu ya siku za usoni.
01:45
Everything that we ever do,
30
89598
2398
Kila kitu tunachofanya,
01:47
everything that everykila humanbinadamu has ever donekufanyika, do or will do,
31
91996
5067
kila kitu ambacho binadamu amekifanya, anakifanya ama atakifanya,
01:52
requiresinahitaji the toiltaabu of populationswatu of neuronsneurons producingkuzalisha these kindsaina of stormsdhoruba.
32
97063
5434
kinahitaji bidii ya idadi kubwa ya neuroni zinazozalisha dhoruba hizi.
01:58
And the soundsauti of a brainstormkuchangia mawazo, if you've never heardkusikia one,
33
102497
2483
Na sauti ya dhoruba ya ubongo, kama hujawaisikia moja,
02:00
is somewhatkiasi fulani like this.
34
104980
3349
huwa hivi.
02:04
You can put it louderzaidi if you can.
35
108329
3146
Unaweza ongeza sauti kama waweza.
02:07
My sonmwana callswito this "makingkufanya popcornpopcorn while listeningkusikiliza to a badly-tunedtuned vibaya A.M. stationkituo."
36
111475
6403
Mwanangu huiita "kutengeneza popcorn huku ukiskiza kituo cha redio kilichoegezwa vibaya."
02:13
This is a brainubongo.
37
117878
1485
Huu ni ubongo.
02:15
This is what happenshutokea when you routenjia these electricalumeme stormsdhoruba to a loudspeakermawasiliano
38
119363
3434
Haya ndiyo yanayotokea unapoelekeza dhoruba hizi za umeme kwenye kipaza sauti
02:18
and you listen to a hundredmia brainubongo cellsseli firingkurusha,
39
122797
2866
na usikie seli mia moja vya ubongo vikirushwa,
02:21
your brainubongo will soundsauti like this -- my brainubongo, any brainubongo.
40
125663
4622
haya ndiyo yatakayosikika katika ubongo wako--ubongo wangu, na ubongo wowote.
02:26
And what we want to do as neuroscientistsneuroscientists in this time
41
130285
3762
Kile tunachotaka kufanya kama wanasayansi ya ubongo katika wakati huu
02:29
is to actuallykwa kweli listen to these symphoniessymphonies, these brainubongo symphoniessymphonies,
42
134047
5350
ni kuskiza kwa makini sauti hizi, sauti hizi za ubongo,
02:35
and try to extractDondoa from them the messagesujumbe they carrykubeba.
43
139397
3400
na kujaribu kudondoa zile jumbe zinazobeba
02:38
In particularhasa, about 12 yearsmiaka agoiliyopita
44
142797
2851
Haswa, takriban miaka kumi na mbili iliyopita
02:41
we createdimeundwa a preparationmaandalizi that we namedjina lake brain-machinemashine ya ubongo interfacesinterfaces.
45
145648
3048
tulitengeneza muundo tuliouita mashine ya akili.
02:44
And you have a schemempango here that describesinaelezea how it worksinafanya kazi.
46
148696
2702
Na hapa una mpango unaoeleza vile inavyotumika.
02:47
The ideawazo is, let's have some sensorssensorer that listen to these stormsdhoruba, this electricalumeme firingkurusha,
47
151398
5566
Lengo ni, tuwe na vitega hisia vinavyosikiza dhoruba hizi, vile umeme unavyozalishwa,
02:52
and see if you can, in the samesawa time that it takes
48
156964
3082
na kuona kama inawezekana, kwa wakati huo huo wakati unaopita
02:55
for this stormdhoruba to leaveshika the brainubongo and reachfikia the legsmiguu or the armssilaha of an animalmnyama --
49
160046
4969
kabla ya dhoruba hii kutoka kwa akili na kufika kwenye miguu ama mikono ya mnyama
03:00
about halfnusu a secondpili --
50
165015
2864
kama nusu sekunde--
03:03
let's see if we can readsoma these signalsishara,
51
167879
2351
wacha tuone kama tunaweza kusoma ishara hizi,
03:06
extractDondoa the motormagari messagesujumbe that are embeddediliyoingia in it,
52
170230
3400
kudondoa jumbe za ubongo inazobeba,
03:09
translatekutafsiri it into digitaldigital commandsamri
53
173630
2272
kuitafsiri iwe amri za kikompyuta
03:11
and sendtuma it to an artificialbandia devicekifaa
54
175902
1886
na kuituma hadi kwenye kifaa kilichoundwa na binadamu
03:13
that will reproducekuzaa the voluntaryhiari motormagari wheelgurudumu of that brainubongo in realhalisi time.
55
177788
5893
kitakachozalisha ule mzunguko hiari wa akili wakati ule ule.
03:19
And see if we can measurekupima how well we can translatekutafsiri that messageujumbe
56
183681
3848
tuone kama tunaweza kupima ni vipi tunaweza tafsiri ujumbe huo vyema zaidi
03:23
when we comparekulinganisha to the way the bodymwili does that.
57
187529
3518
wakati tunapolinganisha na vile mwili unavyofanya kazi hio.
03:26
And if we can actuallykwa kweli providekutoa feedbackmaoni,
58
191047
2866
Wakati tunapotoa maoni,
03:29
sensoryhisia signalsishara that go back from this roboticroboti, mechanicalmitambo, computationalcomputational actuatoractuator
59
193913
5734
viashiria hisia
03:35
that is now underchini the controlkudhibiti of the brainubongo,
60
199647
2251
sasa iliyo chini ya udhibiti wa ubongo,
03:37
back to the brainubongo,
61
201898
1311
hadi tena kwa ubongo,
03:39
how the brainubongo dealsmikataba with that,
62
203209
2121
vile ubongo unavyokabiliana na kazi hiyo,
03:41
of receivingkupokea messagesujumbe from an artificialbandia piecekipande of machinerymashine.
63
205330
4901
ya kupokea jumbe kutoka mashine zilizoundwa na binadamu
03:46
And that's exactlyhasa what we did 10 yearsmiaka agoiliyopita.
64
210231
2321
Na ndivyo haswa tulivyofanya miaka kumi iliyopita.
03:48
We startedilianza with a superstartimu monkeytumbili calledaitwaye AuroraAurora
65
212552
2961
Tulianza na nyani nyota kwa jina Aurora
03:51
that becameikawa one of the superstarsizi of this fieldshamba.
66
215513
2468
aliyekuwa nyota kwenye eneo hili.
03:53
And AuroraAurora likedwalipenda to playkucheza videovideo gamesmichezo.
67
217981
2299
Na Aurora alipenda kucheza michezo ya kompyuta.
03:56
As you can see here,
68
220280
1373
Mnavyoona hapa,
03:57
she likesanapenda to use a joystickfuraha, like any one of us, any of our kidswatoto, to playkucheza this gamemchezo.
69
221653
4944
anapenda kutumia kijiti, kama vile kila mmoja wetu, na watoto wetu, kucheza mchezo huu.
04:02
And as a good primatenyani, she even trieshujaribu to cheatsoka before she getshupata the right answerjibu.
70
226597
4671
Kama mnyama mwerevu, anajaribu kudanganya kabla afikie jibu sahihi.
04:07
So even before a targetlengo appearstokea that she's supposedwalidhani to crossmsalaba
71
231268
4283
Kwa hivyo kabla ya hatua anayopaswa kupita
04:11
with the cursorkielekezi that she's controllingkudhibiti with this joystickfuraha,
72
235551
2850
akitumia mshale anaodhibiti kwa kijiti,
04:14
AuroraAurora is tryingkujaribu to find the targetlengo, no matterjambo where it is.
73
238401
3951
Aurora anajaribu kufikia hatua, popote ilipo.
04:18
And if she's doing that,
74
242352
1469
Na anapofanya hivyo,
04:19
because everykila time she crossesmisalaba that targetlengo with the little cursorkielekezi,
75
243821
3314
kwa sababu kila wakati anapovuka hatua akitumia ule mshale mdogo,
04:23
she getshupata a droptone of BrazilianBrazil orangemachungwa juicejuisi.
76
247135
2950
anapata tone la juisi ya machungwa.
04:25
And I can tell you, any monkeytumbili will do anything for you
77
250085
2950
nakuambia, nyani yeyote atakufanyia chochote
04:28
if you get a little droptone of BrazilianBrazil orangemachungwa juicejuisi.
78
253035
3100
kama utampa tone la juisi ya machungwa.
04:32
ActuallyKweli any primatenyani will do that.
79
256135
2731
Kwa kweli mnyama yeyote anaweza kufanya hivyo.
04:34
Think about that.
80
258866
1334
Hebu tafakari hayo.
04:36
Well, while AuroraAurora was playingkucheza this gamemchezo, as you saw,
81
260200
3400
Hivyo basi, wakati Aurora alikuwa akicheza mchezo huu, vile mlivyoona,
04:39
and doing a thousandelfu trialsmajaribio a day
82
263600
2435
na kufanya majaribio elfu moja kwa siku
04:41
and gettingkupata 97 percentasilimia correctsahihi and 350 millilitersmilliliters of orangemachungwa juicejuisi,
83
266035
3883
na kupata asilimia tisini na saba sahihi na milimita mia tatu na hamsini za juisi ya machungwa,
04:45
we are recordingkurekodi the brainstormskuzingatia that are producedzinazozalishwa in her headkichwa
84
269918
3399
tunarekodi dhorubaza ubongo zitokazo kichwani mwake
04:49
and sendingkutuma them to a roboticroboti armmkono
85
273317
1647
na kuzituma kwenye mkanda wa mashine
04:50
that was learningkujifunza to reproducekuzaa the movementsharakati that AuroraAurora was makingkufanya.
86
274964
3871
unaotoa zile dhoruba haswa Aurora alikuwa akitoa.
04:54
Because the ideawazo was to actuallykwa kweli turnkugeuka on this brain-machinemashine ya ubongo interfaceinterface
87
278835
3783
Kwa sababu wazo lilikuwa ni kuwasha hii mashine ya ubongo
04:58
and have AuroraAurora playkucheza the gamemchezo just by thinkingkufikiri,
88
282618
4700
na kuona Aurora akicheza mchezo ule kwa kufikiria tu,
05:03
withoutbila interferencekuingiliwa of her bodymwili.
89
287318
2617
bila mwili wake kuingilia kati.
05:05
Her brainstormskuzingatia would controlkudhibiti an armmkono
90
289935
2916
Dhoruba zake za akili zitadhibiti mkono
05:08
that would movehoja the cursorkielekezi and crossmsalaba the targetlengo.
91
292851
2709
utakaosogeza ule mshale na kuvuka hatua.
05:11
And to our shockmshtuko, that's exactlyhasa what AuroraAurora did.
92
295560
3191
Na kwa mshangao wetu, hivyo haswa ndivyo Aurora alifanya.
05:14
She playedalicheza the gamemchezo withoutbila movingkusonga her bodymwili.
93
298751
4200
Alicheza mchezo huo bila kusogeza mwili wake.
05:18
So everykila trajectorytrajectory that you see of the cursorkielekezi now,
94
302951
2237
Hivyo basi kila msogezo unaoona sasa kwenye kijiti
05:21
this is the exactsawa first momentwakati she got that.
95
305188
3212
hivyo ndivyo haswa alivyofanya mara ya kwanza.
05:24
That's the exactsawa first momentwakati
96
308400
1784
Hiyo ndiyo ilikuwa mara ya kwanza
05:26
a brainubongo intentionnia was liberatedhuru from the physicalkimwili domainsvikoa of a bodymwili of a primatenyani
97
310184
6767
nia kwenye ubongo ilitolewa kutoka kwenye mwili wa nyani
05:32
and could acttenda outsidenje, in that outsidenje worldulimwengu,
98
316951
3700
na iliweza kufanya kazi nje ya mwili, hapa ulimwengu wa nje,
05:36
just by controllingkudhibiti an artificialbandia devicekifaa.
99
320651
2966
kwa kudhibiti mashine.
05:39
And AuroraAurora keptimehifadhiwa playingkucheza the gamemchezo, keptimehifadhiwa findingkutafuta the little targetlengo
100
323617
4917
Na Aurora aliendelea kucheza mchezo huo, aliendelea kufikia ile hatua
05:44
and gettingkupata the orangemachungwa juicejuisi that she wanted to get, that she cravedcraved for.
101
328534
3917
na kupata juisi ya machungwa aliyotaka, aliyotamani.
05:48
Well, she did that because she, at that time, had acquiredalipewa a newmpya armmkono.
102
332451
6701
Kwa kweli, alifanya hivyo kwa sababu, wakati ule, yeye alipata mkono mpya.
05:55
The roboticroboti armmkono that you see movingkusonga here 30 dayssiku laterbaadae,
103
339152
2963
Mkono ule wa roboti unaoona ukitembea hapa siku thelathini baadaye,
05:58
after the first videovideo that I showedilionyesha to you,
104
342115
2686
baada ya ile video ya kwanza niliyowaonyesheni,
06:00
is underchini the controlkudhibiti of Aurora'sYa Aurora brainubongo
105
344801
2650
uko chini ya udhibiti wa ubongo ya Aurora
06:03
and is movingkusonga the cursorkielekezi to get to the targetlengo.
106
347451
3168
na unasongeza mshale ule ili kufikia ile hatua.
06:06
And AuroraAurora now knowsanajua that she can playkucheza the gamemchezo with this roboticroboti armmkono,
107
350619
3899
Na Aurora sana anajua kuwa anaweza kucheza mchezo huu akitumia mkono mashine,
06:10
but she has not lostpotea the abilityuwezo to use her biologicalbiolojia armssilaha to do what she pleaseskinachompendeza.
108
354518
5716
lakini hajapoteza uwezo wa kutumia mkono wake asili kwa chochote angependa kufanya.
06:16
She can scratchmwanzo her back, she can scratchmwanzo one of us, she can playkucheza anothermwingine gamemchezo.
109
360234
4067
Anaweza kujikuna mgongo, anaweza kukuna mmoja wetu, anaweza kucheza mchezo wowote mwingine.
06:20
By all purposesmadhumuni and meansina maana,
110
364301
1600
Kwa nia zote na madhumuni,
06:21
Aurora'sYa Aurora brainubongo has incorporatedkuingizwa that artificialbandia devicekifaa
111
365901
4116
akili ya Aurora imehusisha kile kifaa bandia
06:25
as an extensionugani of her bodymwili.
112
370017
2750
kama muendelezo wa mwili wake.
06:28
The modelmfano of the selfbinafsi that AuroraAurora had in her mindakili
113
372767
3533
Huu mfano wa ubinafsi ambao Aurora alikuwa nao kwa akili yake
06:32
has been expandedkupanuliwa to get one more armmkono.
114
376300
4084
umepanuliwa kupata mkono mmoja zaidi.
06:36
Well, we did that 10 yearsmiaka agoiliyopita.
115
380384
2350
Tulifanya hivyo miaka kumi iliyopita.
06:38
Just fastharaka forwardmbele 10 yearsmiaka.
116
382734
2833
Sasa songea mbele miaka kumi.
06:41
Just last yearmwaka we realizedgundua that you don't even need to have a roboticroboti devicekifaa.
117
385567
4983
Mwaka uliopita tu tuligundua kuwa huhutaji kuwa na kifaa cha mashine.
06:46
You can just buildjenga a computationalcomputational bodymwili, an avataravatar, a monkeytumbili avataravatar.
118
390550
5484
Unaweza tu kutengeneza kifaa cha kompyuta.
06:51
And you can actuallykwa kweli use it for our monkeysnyani to eitherama interactkuingiliana with them,
119
396034
4250
Na unaweza kuitumia kwa nyani zetu kuleta uhusiano kati yao
06:56
or you can traintreni them to assumefanya in a virtualvirtual worldulimwengu
120
400284
4439
ama unaweza wafunza kudhania ulimwengu gushi
07:00
the first-personmtu wa kwanza perspectivemtazamo of that avataravatar
121
404723
3044
maono ya mtu kuhusiana na mashine ile
07:03
and use her brainubongo activityshughuli to controlkudhibiti the movementsharakati of the avatar'swa huisho armssilaha or legsmiguu.
122
407767
5651
na kutumia msisimko wa akili yake kudhibiti matembezi ya mikono na miguu ya mashine.
07:09
And what we did basicallykimsingi was to traintreni the animalswanyama
123
413418
2766
Na cha msingi tulichofanya kilikuwa kufunza hawa wanyama
07:12
to learnkujifunza how to controlkudhibiti these avatarsavatars
124
416184
3050
njia ya kudhiiti mashine hizi
07:15
and explorekuchunguza objectsvitu that appearonekana in the virtualvirtual worldulimwengu.
125
419234
3899
na kuchunguza vidude vinavyojitokeza katika ulimwengu gushi.
07:19
And these objectsvitu are visuallykuibua identicalkufanana,
126
423133
2301
Na vidude hivi vimefanana
07:21
but when the avataravatar crossesmisalaba the surfaceuso of these objectsvitu,
127
425434
3883
lakini wakati mashine inapovuka mbele ya vidude hivi,
07:25
they sendtuma an electricalumeme messageujumbe that is proportionaluwiano to the microtactilemicrotactile texturetexture of the objectkitu
128
429317
6400
zinatuma ujumbe wa umeme uliyosawia na uso wa kile kidude
07:31
that goeshuenda back directlymoja kwa moja to the monkey'sya tumbil brainubongo,
129
435717
4016
ambao unaenda moja kwa moja hadi kwenye ubongo wa nyani,
07:35
informingtaarifa the brainubongo what it is the avataravatar is touchingkugusa.
130
439733
5052
ukieleza ubongo kile hasa machine ile inagusa.
07:40
And in just fournne weekswiki, the brainubongo learnsanajifunza to processmchakato this newmpya sensationhisia
131
444785
4765
Na kwa muda wa wiki nne tu, akili inajifunza kuhisi hii hisia mpya
07:45
and acquireshupata a newmpya sensoryhisia pathwaynjia -- like a newmpya sensehisia.
132
449550
6434
na inapata njia mpya ya hisia--kama hisia mpya.
07:51
And you trulykweli liberatekuikomboa the brainubongo now
133
455984
2416
Sasa unaiacha akili iwe huru
07:54
because you are allowingkuruhusu the brainubongo to sendtuma motormagari commandsamri to movehoja this avataravatar.
134
458400
4384
kwa sababu unaikubali akili kutuma jumbe ili kuthibiti mashine hii.
07:58
And the feedbackmaoni that comesinakuja from the avataravatar is beingkuwa processedkusindika directlymoja kwa moja by the brainubongo
135
462784
5000
Na maoni yanayotoka kwenye mashine yanachanganuliwa kwenye ubongo moja kwa moja
08:03
withoutbila the interferencekuingiliwa of the skinngozi.
136
467784
2433
bila ya ngozi kuingilia kati.
08:06
So what you see here is this is the designkubuni of the taskkazi.
137
470217
2534
Kwa hivyo kile mnachoona hapa ni ule ubunifu wa kazi ile.
08:08
You're going to see an animalmnyama basicallykimsingi touchingkugusa these threetatu targetsmalengo.
138
472751
4250
Mtaweza kuona mnyama akigusa sehemu au hatua hizi tatu.
08:12
And he has to selectchagua one because only one carrieshubeba the rewardzawadi,
139
477001
4349
Lazima achague moja kwa vile ni moja pekee inayoelekea palipo na zawadi,
08:17
the orangemachungwa juicejuisi that they want to get.
140
481350
1867
ile juisi ya machungwa ambayo wanayoitaka.
08:19
And he has to selectchagua it by touchkugusa usingkutumia a virtualvirtual armmkono, an armmkono that doesn't existzipo.
141
483217
5633
Na inambidi aichague kwa mguso akitumia mkono gushi, mkono amao haupo.
08:24
And that's exactlyhasa what they do.
142
488850
2000
Na hivyo ndivyo hasa wanavyofanya.
08:26
This is a completekamili liberationuhuru of the brainubongo
143
490850
3435
Huu ni uhuru kamili wa akili
08:30
from the physicalkimwili constraintsvikwazo of the bodymwili and the motormagari in a perceptualdhahiri taskkazi.
144
494285
4282
kutokana na vikwazo vya kimwili na kazi ya akili ya kuona.
08:34
The animalmnyama is controllingkudhibiti the avataravatar to touchkugusa the targetsmalengo.
145
498567
4167
Yule mnyama anathibiti mashine ile kugusa malengo hayo.
08:38
And he's sensingkuhisi the texturetexture by receivingkupokea an electricalumeme messageujumbe directlymoja kwa moja in the brainubongo.
146
502734
5651
Na anahisi vile ilivyo kwa kupokea ujumbe umeme moja kwa moja kwenye ubongo.
08:44
And the brainubongo is decidingkuamua what is the texturetexture associatedkuhusishwa with the rewardzawadi.
147
508385
3883
Na huo ubongo unaamua ni hisia ipi inayoashiria ile zawadi.
08:48
The legendshadithi that you see in the moviemovie don't appearonekana for the monkeytumbili.
148
512268
3832
Wale wakongwe uwaonao kwenye filamu hawawakilishi nyani huyu.
08:52
And by the way, they don't readsoma EnglishKiingereza anywayhata hivyo,
149
516100
2484
Na kusema kweli, hata hawawezi kusoma Kiingereza,
08:54
so they are here just for you to know that the correctsahihi targetlengo is shiftingkuhama positionnafasi.
150
518584
5216
kwa hivyo wako hapa kuwaonyesheni ya kwamba lengo sahihi linabadilika badilika.
08:59
And yetbado, they can find them by tactileneno discriminationubaguzi,
151
523800
3934
Hata hivyo, wanawezazipata kwa kubagua,
09:03
and they can pressbonyeza it and selectchagua it.
152
527734
3217
na wanawezazibonyeza na kuzichagua.
09:06
So when we look at the brainsakili of these animalswanyama,
153
530951
2682
Hivyo basi tunapoangalia bongo za wanyama hawa,
09:09
on the topjuu paneljopo you see the alignmentMpangilio of 125 cellsseli
154
533633
3667
katika sehemu ya juu mtaona mpangilio wa viini mia na ishirini na tano
09:13
showingkuonesha what happenshutokea with the brainubongo activityshughuli, the electricalumeme stormsdhoruba,
155
537300
4201
vikionyesha kile kinachotokea kwenye ubongo, zile dhoruba umeme,
09:17
of this samplesampuli of neuronsneurons in the brainubongo
156
541501
2067
za sampuli hii ya neuron kwenye ubongo
09:19
when the animalmnyama is usingkutumia a joystickfuraha.
157
543568
2116
wakati mnyama huyo anatumia kijiti.
09:21
And that's a picturepicha that everykila neurophysiologistneurophysiologist knowsanajua.
158
545684
2600
Na hiyo ndio picha kila mwanafiziolojia ayoinajua.
09:24
The basicmsingi alignmentMpangilio showsinaonyesha that these cellsseli are codingcoding for all possibleinawezekana directionsmaelekezo.
159
548284
5183
Mpangilio wa kimsingi unaonyesha kuwa viini hivi vinafuata kila mwelekeo.
09:29
The bottomchini picturepicha is what happenshutokea when the bodymwili stopsataacha movingkusonga
160
553467
5683
Picha iliyo chini inaonyesha kinachotokea wakati mwili uachapo kusongea
09:35
and the animalmnyama startskuanza controllingkudhibiti eitherama a roboticroboti devicekifaa or a computationalcomputational avataravatar.
161
559150
6134
na yule mnyama aanzapo kuthibiti kidude cha roboti ama mashine ya kikompyuta.
09:41
As fastharaka as we can resetWeka upya our computerskompyuta,
162
565284
3066
Kwa kasi ile ile tunayoweza kubadilisha kompyuta zetu,
09:44
the brainubongo activityshughuli shiftsmabadiliko to startkuanza representinginayowakilisha this newmpya toolchombo,
163
568350
5818
kazi inayoendelea akilini hubadilika ili kuwakilisha kifaa hiki kipya,
09:50
as if this too was a partsehemu of that primate'sya nyani bodymwili.
164
574168
5250
kana kwamba ilikuwa sehemu ya mwili wa mnyama huyo.
09:55
The brainubongo is assimilatingassimilating that too, as fastharaka as we can measurekupima.
165
579418
4715
Akili inaichanganua pia, kwa kasi ile ile tunayopima nayo.
10:00
So that suggestsinashauri to us that our sensehisia of selfbinafsi
166
584133
3618
Hiyo inatuashiria kuwa hisia za kibinafsi
10:03
does not endmwisho at the last layersafu of the epitheliumepithelium of our bodiesmiili,
167
587751
4150
haziishi kwenye safu ya mwisho ya ngozi ya miili yetu,
10:07
but it endshuisha at the last layersafu of electronselektroni of the toolszana that we're commandingMkuu with our brainsakili.
168
591901
5718
bali inaisha kwenye safu ya mwisho ya electroni za vifaa tunavyotumia akili zetu kuvithibiti.
10:13
Our violinsviolins, our carsmagari, our bicyclesbaiskeli, our soccersoka ballsmipira, our clothingnguo --
169
597619
4764
Vayolini zetu, magari yetu, baiskeli zetu, mipira yetu ya kandanda, nguo zetu
10:18
they all becomekuwa assimilatedatapaswa by this voraciousvoracious, amazingajabu, dynamicnguvu systemmfumo calledaitwaye the brainubongo.
170
602383
6851
zote zinabadilishwa na hiki chombo thabiti, huu mfumo badilifu unaoitwa ubongo.
10:25
How farmbali can we take it?
171
609234
1699
Ni umbali upi tunaoweza kuipeleka?
10:26
Well, in an experimentjaribio that we ranmbio a fewwachache yearsmiaka agoiliyopita, we tookalichukua this to the limitkikomo.
172
610933
4218
Katika jaribio tulilofanya miaka chache iliyopita, tuliipeleka hadi kikomo.
10:31
We had an animalmnyama runningKimbia on a treadmillTinga
173
615151
2482
Tulikuwa na mnyama aliyekimbia kwenye baiskeli zoezi
10:33
at DukeDuke UniversityChuo Kikuu cha on the EastMashariki CoastPwani of the UnitedMuungano StatesMarekani,
174
617633
2267
katika chuo kikuu cha Duke katika mashariki ya pwani ya Marekani,
10:35
producingkuzalisha the brainstormskuzingatia necessarymuhimu to movehoja.
175
619900
2700
ikizalisha dhoruba bongo zinazohitajika kusonga.
10:38
And we had a roboticroboti devicekifaa, a humanoidAtacama robotrobot,
176
622600
4091
Na tukawa na chombo cha roboti, roboti ya kibinadamu,
10:42
in KyotoKyoto, JapanJapani at ATRATR LaboratoriesMaabara
177
626691
2394
huko Kyoto, Ujapani katika maabara ya ATR
10:44
that was dreaminginaelekea its entirenzima life to be controlledkudhibitiwa by a brainubongo,
178
629085
6094
iliyopanga maisha yake yote kuthibitiwa na ubongo,
10:51
a humanbinadamu brainubongo, or a primatenyani brainubongo.
179
635179
3273
akili ya binadamu, ama ya mnyama.
10:54
What happenshutokea here is that the brainubongo activityshughuli that generatedyanayotokana the movementsharakati in the monkeytumbili
180
638452
4598
Kile kinachotokea hapa ni kwamba shighuli katika ubongo uliozalisha msongeo katika nyani huyo
10:58
was transmittedzinaa to JapanJapani and madealifanya this robotrobot walktembea
181
643050
3467
ulisambazwa hadi Ujapani na ukafanya roboti kutembea
11:02
while footagepicha of this walkingkutembea was sentalitumwa back to DukeDuke,
182
646517
4067
na ukanda ya matembezi haya ukapelekwa hadi Duke,
11:06
so that the monkeytumbili could see the legsmiguu of this robotrobot walkingkutembea in frontmbele of her.
183
650584
5233
ili nyani huyo aone miguu ya yule roboti ikitembea mbele yake.
11:11
So she could be rewardedthawabu, not by what her bodymwili was doing
184
655817
4067
Ilmradi azawadiwe, sio kwa kile mwili wake ulikuwa ukifanya
11:15
but for everykila correctsahihi stephatua of the robotrobot on the other sideupande of the planetsayari
185
659884
4961
bali kwa kila hatua sahihi iliyochukuliwa na roboti aliyekuwa sehemu ya pili ya ulimwengu
11:20
controlledkudhibitiwa by her brainubongo activityshughuli.
186
664845
2609
ikithibitiwa na shughuli ya akili yake.
11:23
FunnyMapenzi thing, that roundpande zote tripsafari around the globeglobe tookalichukua 20 millisecondsmilisekunde lesschini
187
667454
7118
Cha kuchekesha ni kwamba, safari hiyo ilichukua milisekunde ishirini chini
11:30
than it takes for that brainstormkuchangia mawazo to leaveshika its headkichwa, the headkichwa of the monkeytumbili,
188
674572
4150
ya wakati dhoruba bongo inayochukua kutoka kichwani mwake, kichwa cha nyani,
11:34
and reachfikia its ownmwenyewe musclemisuli.
189
678722
3870
hadi kwenye msuli wake.
11:38
The monkeytumbili was movingkusonga a robotrobot that was sixsita timesnyakati biggerkubwa zaidi, acrosskote the planetsayari.
190
682592
6030
Nyani alikuwa akisongeza roboti iliyokuwa na ukubwa mara sita wake yeye, kutoka sehemu moja ya ulimwengu hadi nyengine.
11:44
This is one of the experimentsmajaribio in whichambayo that robotrobot was ableinaweza to walktembea autonomouslykujitegemea.
191
688622
6400
Hii ni moja wapo ya majaribio ambapo roboti iliweza kutembea bila usaidizi.
11:50
This is CBCB1 fulfillingkutimiza its dreamndoto in JapanJapani
192
695022
5267
Hii ni CB1 ikitimiza ndoto yake Ujapani
11:56
underchini the controlkudhibiti of the brainubongo activityshughuli of a primatenyani.
193
700289
3700
chini ya uthibiti wa shughuli ya ubongo wa mnyama.
11:59
So where are we takingkuchukua all this?
194
703989
1989
Kwa hivyo ni wapi tunapopeleka haya yote?
12:01
What are we going to do with all this researchutafiti,
195
705978
2343
Ni wapi tunapoenda na huu utafiti,
12:04
besidesbadala studyingkusoma the propertiesmali of this dynamicnguvu universeulimwengu that we have betweenkati our earsmasikio?
196
708321
5668
kando na kusomea tabia za ulimwengu huu badilifu tulionao katikati ya masikio yetu?
12:09
Well the ideawazo is to take all this knowledgeujuzi and technologyteknolojia
197
713989
4833
Nia yetu ni kutumia usomi huu na teknolojia hii
12:14
and try to restorekurejesha one of the mostwengi severekali neurologicalneurological problemsmatatizo that we have in the worldulimwengu.
198
718822
5484
na duniani.kujaribu kurekebisha mojawapo ya shida kubwa zaidi katika ufahamu wa ubongo tulizonazo hapa ulimwenguni.
12:20
MillionsMamilioni of people have lostpotea the abilityuwezo to translatekutafsiri these brainstormskuzingatia
199
724306
4583
Mamilioni ya watu wamepoteza uwezo wakutafsiri hizi dhoruba za ubongo
12:24
into actionhatua, into movementmwendo.
200
728889
2116
ziwe hatua, au harakati.
12:26
AlthoughIngawa theirwao brainsakili continueendelea to producekuzalisha those stormsdhoruba and codemsimbo for movementsharakati,
201
731005
5234
Ingawaje akili zao zinazidi kuzaa dhoruba hizo na matembezi,
12:32
they cannothaiwezi crossmsalaba a barrierkizuizi that was createdimeundwa by a lesionvidonda on the spinalmgongo cordkamba.
202
736239
5167
haziwezi kilichoundwa kwa lesheni kwenye uti wa mgongo.kupita kizuizi
12:37
So our ideawazo is to createkuunda a bypasskupita,
203
741406
2450
Kwa hivyo lengo letu ni kutengeneza njia,
12:39
is to use these brain-machinemashine ya ubongo interfacesinterfaces to readsoma these signalsishara,
204
743856
4032
tukitumia hizi mashine za ubongo kutafsiri viashiria hivi,
12:43
larger-scalekikubwa brainstormskuzingatia that containvyenye the desirehamu to movehoja again,
205
747888
4050
dhoruba kubwa akilini zilizo na hamu ya kutembea tena,
12:47
bypasskupita the lesionvidonda usingkutumia computationalcomputational microengineeringmicroengineering
206
751938
3969
kupita ile lesheni tukitumia uhandisi wa kikompyuta
12:51
and sendtuma it to a newmpya bodymwili, a wholeyote bodymwili calledaitwaye an exoskeletonKiunzi nje,
207
755907
7114
na kuituma hadi kwenye mwili mpya, mwili mpya kabisa unaoitwa eksoskeletoni,
12:58
a wholeyote roboticroboti suitsuti that will becomekuwa the newmpya bodymwili of these patientswagonjwa.
208
763021
5567
suti mpya ya kiroboti inatakayokuwa mwili mpya wa wagonjwa hawa.
13:04
And you can see an imagepicha producedzinazozalishwa by this consortiumMuungano.
209
768588
4126
Na unaweza kuona picha inayojitokeza kutokana na muungano huu.
13:08
This is a nonprofitmashirika yasiyo ya faida consortiumMuungano calledaitwaye the WalkKutembea Again ProjectMradi
210
772714
4059
Huu ni muungano uitwao Walk Again Project
13:12
that is puttingkuweka togetherpamoja scientistswanasayansi from EuropeEurope,
211
776773
2783
unaoleta pamoja wanasayansi kutoka Uropa,
13:15
from here in the UnitedMuungano StatesMarekani, and in BrazilBrazili
212
779556
1865
kutoka hapa Marekani, na Brazili
13:17
togetherpamoja to work to actuallykwa kweli get this newmpya bodymwili builtkujengwa --
213
781421
4517
kufanya kazi ili kutengeneza mwili huu mpya—
13:21
a bodymwili that we believe, throughkupitia the samesawa plasticplastiki mechanismsutaratibu
214
785938
3334
mwili tunaoamini, katika mfumo plastiki ule ule
13:25
that allowkuruhusu AuroraAurora and other monkeysnyani to use these toolszana throughkupitia a brain-machinemashine ya ubongo interfaceinterface
215
789272
5802
uliowezesha Aurora na nyani wengine kutumia hivi vifaa kupitia kwa mashine ya ubongo
13:30
and that allowsinaruhusu us to incorporatekuingiza the toolszana that we producekuzalisha and use in our dailykila siku life.
216
795074
5630
na ambayo ilituwezesha kuingiza vifaa tunavyoweza kutengeneza na kutumia katika maisha yetu, siku baada ya siku.
13:36
This samesawa mechanismutaratibu, we hopetumaini, will allowkuruhusu these patientswagonjwa,
217
800704
3684
Mfumo huu huu, tunatumai, utawezesha wagonjwa hawa,
13:40
not only to imaginefikiria again the movementsharakati that they want to make
218
804388
3768
Mfumo huu huu, tunatumai, utawezesha wagonjwa hawa,
13:44
and translatekutafsiri them into movementsharakati of this newmpya bodymwili,
219
808156
3207
bali pia kutafsiri mafikira hayo kuwa matembezi ya mwili huu mpya,
13:47
but for this bodymwili to be assimilatedatapaswa as the newmpya bodymwili that the brainubongo controlsudhibiti.
220
811363
6758
lakini kwa mwili huu kubadilika kama ule mwili mpya unaothibitiwa na ubongo.
13:54
So I was told about 10 yearsmiaka agoiliyopita
221
818121
3851
Niliambiwa miaka kumi iliyopita
13:57
that this would never happenkutokea, that this was closekaribu to impossiblehaiwezekani.
222
821972
5066
kuwa haya yote hayatatokea, ati hii ilikuwa haiwezekani.
14:02
And I can only tell you that as a scientistmwanasayansi,
223
827038
2451
Na naweza kuwaamia kama mwanasayansi,
14:05
I grewilikua up in southernkusini BrazilBrazili in the mid-'mid-60s
224
829489
2986
nilikua huko Brazili ya kusini katika miaka ya sitini
14:08
watchingkuangalia a fewwachache crazywazimu guys tellingkuwaambia [us] that they would go to the MoonMwezi.
225
832475
5048
nikiangalia wale wenye maono wakituambia kuwa wataenda Mwezini.
14:13
And I was fivetano yearsmiaka oldzamani,
226
837523
1461
Na nilikuwa na umri wa miaka mitano,
14:14
and I never understoodkueleweka why NASANASA didn't hirekukodisha CaptainKapteni KirkKirk and SpockSpock to do the jobkazi;
227
838984
4240
na sikuwahi kuelewa sababu gani NASA haikuwaajiri manahodha Kirk na Spock kufanya kazi hiyo;
14:19
after all, they were very proficientmagari --
228
843224
2432
kwani, si walikuwa na ustadi wa hali ya juu—
14:21
but just seeingkuona that as a kidmtoto
229
845656
3450
lakini kuona tu kama mtoto
14:25
madealifanya me believe, as my grandmotherbibi used to tell me,
230
849106
2985
ilinifanya kuamini, kama nyanyangu alivyokuwa akiniambia,
14:27
that "impossiblehaiwezekani is just the possibleinawezekana
231
852091
1845
kwamba "kisichowezekana ni kile tu kinachowezekana
14:29
that someonemtu has not put in enoughkutosha effortjuhudi to make it come truekweli."
232
853936
3904
lakini mtu hajatia bidii ya kutosha kukitimiza."
14:33
So they told me that it's impossiblehaiwezekani to make someonemtu walktembea.
233
857840
3799
Kwa hivyo waliniambia kuwa haiwezekani kufanya mtu atembee.
14:37
I think I'm going to followFuata my grandmother'sBibi adviceushauri.
234
861639
3251
Nafikiri nitafuata wasia wa nyanyangu.
14:40
Thank you.
235
864890
1450
Asanteni.
14:42
(ApplauseMakofi)
236
866340
8029
(Makofi)
Translated by David Mvoi
Reviewed by Joachim Mangilima

▲Back to top

ABOUT THE SPEAKER
Miguel Nicolelis - Neuroscientist
Miguel Nicolelis explores the limits of the brain-machine interface.

Why you should listen

At the Nicolelis Laboratory at Duke University, Miguel Nicolelis is best known for pioneering studies in neuronal population coding, Brain Machine Interfaces (BMI) and neuroprosthetics in human patients and non-human primates.His lab's work was seen, famously though a bit too briefly, when a brain-controlled exoskeleton from his lab helped Juliano Pinto, a paraplegic man, kick the first ball at the 2014 World Cup.

But his lab is thinking even bigger. They've developed an integrative approach to studying neurological disorders, including Parkinsons disease and epilepsy. The approach, they hope, will allow the integration of molecular, cellular, systems and behavioral data in the same animal, producing a more complete understanding of the nature of the neurophysiological alterations associated with these disorders. He's the author of the books Beyond Boundaries and The Relativistic Brain.

Miguel was honored as one of Foreign Policy's 2015 Global Thinkers.

More profile about the speaker
Miguel Nicolelis | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee